CN106883905B - 氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法 - Google Patents

氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法 Download PDF

Info

Publication number
CN106883905B
CN106883905B CN201710181529.1A CN201710181529A CN106883905B CN 106883905 B CN106883905 B CN 106883905B CN 201710181529 A CN201710181529 A CN 201710181529A CN 106883905 B CN106883905 B CN 106883905B
Authority
CN
China
Prior art keywords
graphene oxide
solution
particle
polyethylene glycol
barium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710181529.1A
Other languages
English (en)
Other versions
CN106883905A (zh
Inventor
郭志猛
杨芳
隋延力
林宁宁
李丽丽
陈存广
叶四扬
张欣悦
李琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201710181529.1A priority Critical patent/CN106883905B/zh
Publication of CN106883905A publication Critical patent/CN106883905A/zh
Application granted granted Critical
Publication of CN106883905B publication Critical patent/CN106883905B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M161/00Lubricating compositions characterised by the additive being a mixture of a macromolecular compound and a non-macromolecular compound, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • C10M169/044Mixtures of base-materials and additives the additives being a mixture of non-macromolecular and macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2227/00Organic non-macromolecular compounds containing atoms of elements not provided for in groups C10M2203/00, C10M2207/00, C10M2211/00, C10M2215/00, C10M2219/00 or C10M2223/00 as ingredients in lubricant compositions
    • C10M2227/09Complexes with metals
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2229/00Organic macromolecular compounds containing atoms of elements not provided for in groups C10M2205/00, C10M2209/00, C10M2213/00, C10M2217/00, C10M2221/00 or C10M2225/00 as ingredients in lubricant compositions
    • C10M2229/04Siloxanes with specific structure
    • C10M2229/041Siloxanes with specific structure containing aliphatic substituents
    • C10M2229/0415Siloxanes with specific structure containing aliphatic substituents used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/60Electro rheological properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/14Electric or magnetic purposes
    • C10N2040/16Dielectric; Insulating oil or insulators

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种氧化石墨烯/草酸氧钛钡复合颗粒电流变液材料的制备方法,以聚乙二醇(PEG)分散剂,将其添加在氧化石墨烯/草酸氧钛钡复合纳米颗粒为介电粒子的电流变液中。分散剂为聚乙二醇有利于氧化石墨烯/草酸氧钛钡复合纳米颗粒分散均匀,不会发生团聚。采用化学沉淀法添加分散剂,在聚乙二醇和冷冻干燥共同作用下,本发明制备的氧化石墨烯/草酸氧钛钡复合纳米颗粒的分散性良好、不易发生团聚、不易吸附空气中的水分且颗粒具有特殊的形状。按介电粒子与连续相质量比3:1配制成电流变液,可获得较高的流变特性,即在3kV/mm电场强度下,电流变液的屈服应力提高5.3倍,并具有良好的抗沉降性能。

Description

氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法
技术领域
本发明属于电流变材料技术领域,属于智能材料的一种,具体涉及用分散剂对氧化石墨烯-草酸氧钛钡颗粒表面进行改性后得到的复合材料为分散相的电流变液。
背景技术
电流变液是一种由微、纳米介电颗粒分散在绝缘液体中组成的智能流体,其流变性能如剪切应力在外电场作用下能快速、可逆地出现几个数量级的变化。这种奇异的特性使得电流变液在诸如减振器、离合器、控制阀等机电转换装置方面具有广阔的应用前景。然而,根据介电极化理论设计和制备的传统型电流变液存在剪切应力较低,难以满足工业实际应用要求。颗粒分散性好、粒度均匀细小、形貌、结构等影响电流变液的综合性能,因此对粒子的形貌、尺寸和结构进行设计成为近年来材料科学研究的热点之一。
发明内容
本发明所要解决的技术问题在于研究纳米介电颗粒的形貌、尺寸和结构的制备方法,提供一种分散剂和特殊干燥方法,其中分散剂为聚乙二醇(PEG),采用液氮冷冻干燥。解决的技术问题在于提供一种具有较高的屈服应力值、良好的抗沉降性的以氧化石墨烯/草酸氧钛钡复合纳米颗粒为分散相的电流变液。本发明通过PEG作为分散剂,改变PEG的分子量,制备出具有特殊形貌氧化石墨烯-草酸氧钛钡(GBTO)粒子,研究了GBTO粒子形貌、PEG分子对材料电流变性能和界面极化能力的影响。
一种氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法,其特征在于:采用聚乙二醇作为分散剂,通过聚乙二醇对氧化石墨烯/草酸氧钛钡复合纳米颗粒进行改性,用化学共沉淀法制备改性氧化石墨烯/草酸氧钛钡复合纳米颗粒,将改性氧化石墨烯/草酸氧钛钡复合纳米颗粒作为分散相、聚二甲基硅油作为连续相,按1:1~3:1质量比将二者混合制成电流变液。
如上所述一种氧化石墨烯/草酸氧钛钡复合颗粒电流变液材料的制备方法,其特征在于所述氧化石墨烯/草酸氧钛钡复合纳米颗粒具体制备步骤如下:
1、四氯化钛与冰水按0.1~0.2mol/L配成溶液A;
2、氯化钡与去离子水按0.1~0.2mol/L配成溶液B;
3、草酸与去离子水按0.1~0.2mol/L配成溶液C;
4、聚乙二醇与无水乙醇按0.1~10g/L配成溶液D,其中聚乙二醇的分子量在200~6000之间,如聚乙二醇800、聚乙二醇2000、聚乙二醇4000或聚乙二醇6000等;
5、将片层状,厚度80~150nm,不规则形状,最大尺寸30um的氧化石墨烯,用稀氨水调节PH值至9,制成悬浮液E;
6、A溶液和B溶液按体积比1:1混合均匀,加入溶液D,上述三种溶液A:B:D=1.05:1:1,搅拌10~30min;加入悬浮液E,四种溶液A:B:D:E=1.05:1:1:1;
7、按上述四种溶液比例加入C溶液,在45~60℃温度超声磁力搅拌下逐滴滴加C溶液,各溶液比为A:B:C:D:E=1.05:1:2:1:1,立即有沉淀产生;
8、滴加完毕后,把反应物放入高温反应釜中,在150~200℃恒温反应2~4h;
9、过滤、多次洗涤沉淀物以除去样品中吸附的氯离子,液氮冷冻干燥18~24h后,45~60℃下真空干燥4~8h,即得到聚乙二醇改性的氧化石墨烯/草酸氧钛钡复合纳米颗粒,即GBTO粒子。
进一步的将聚乙二醇改性的氧化石墨烯/草酸氧钛钡复合纳米颗粒和聚二甲基硅油首混后放入球磨机球磨20~60min,过80目筛后得到的悬浮液即得到电流变液产品。
氧化石墨烯/草酸氧钛钡复合纳米颗粒与聚二甲基硅油质量比不同,在同一电场梯度时,电流变屈服应力不同,在质量比为3:1,电场梯度为3kV/mm时,其流变的屈服应力最高,使用性能最佳。
本发明在制备氧化石墨烯/草酸氧钛钡复合纳米颗粒使用了分散剂,制备方法简单,原料廉价易得,且能获得分散性良好、粒度均一的氧化石墨烯/草酸氧钛钡复合纳米颗粒,其作为分散相得到的电流变液具有较高的屈服应力值、良好的抗沉降性能。
具体实施方式
实施例1:
(1)四氯化钛与冰水按0.2mol/L配成溶液A;(2)氯化钡与去离子水按0.2mol/L配成溶液B;(3)草酸与去离子水按0.1mol/L配成溶液C;(4)聚乙二醇800与无水乙醇按8g/L配成溶液D;(5)将氧化石墨烯用稀氨水调节PH值至9,制成悬浮液E;(6)A溶液和B溶液按体积比1:1混合均匀,加入溶液D,上述三种溶液A:B:D=1.05:1:1,搅拌10min;(7)上述三种溶液中加入悬浮液E,上述四种溶液A:B:D:E=1.05:1:1:1;(8)按上述四种溶液比例加入C溶液,在55℃温度超声磁力搅拌下逐滴滴加C溶液,各溶液比为A:B:C:D:E=1.05:1:2:1:1,立即有沉淀产生;(9)滴加完毕后,把反应物放入高温反应釜中,在180℃恒温反应2h;(10)过滤、多次洗涤沉淀物以除去样品中吸附的氯离子,液氮冷冻干燥24h后,50℃真空干燥8h,即得到聚乙二醇修饰的GBTO粒子。其中,氧化石墨烯/草酸氧钛钡复合纳米颗粒、聚二甲基硅油的质量比为1:1~3:1,首混后放入球磨机球磨20min,过80目筛后得到的悬浮液即可得到电流变液产品。
采用流变仪对实施例1制备的电流变液进行屈服应力测试。聚乙二醇800修饰的氧化石墨烯/草酸氧钛钡复合纳米颗粒与聚二甲基硅油的质量比为3:1时,其屈服应力值最高,使用性能最佳,其屈服应力值在3kV/mm时达到37.30kPa。
实施例2:
(1)四氯化钛与冰水按0.15mol/L配成溶液A;(2)氯化钡与去离子水按0.15mol/L配成溶液B;(3)草酸与去离子水按0.15mol/L配成溶液C;(4)将聚乙二醇2000与无水乙醇按5g/L配成溶液D;(5)将氧化石墨烯用稀氨水将调节PH值至9,制成悬浮液E;(6)A溶液和B溶液按体积比1:1混合均匀,加入溶液D,上述三种溶液A:B:D=1.05:1:1,搅拌30min;(7)上述三种溶液中加入悬浮液E,上述四种溶液A:B:D:E=1.05:1:1:1;(8)按上述四种溶液比例加入C溶液,在60℃温度超声磁力搅拌下逐滴滴加C溶液,各溶液比为A:B:C:D:E=1.05:1:2:1:1,立即有沉淀产生;(9)滴加完毕后,把反应物放入高温反应釜中,在150℃恒温反应3h;(10)过滤、多次洗涤沉淀物以除去样品中吸附的氯离子,液氮冷冻干燥24h后,50℃真空干燥4h,即得到聚乙二醇修饰的GBTO粒子。其中,氧化石墨烯/草酸氧钛钡复合纳米颗粒、聚二甲基硅油的质量比为1:1~3:1,首混后放入球磨机球磨30min,过80目筛后得到的悬浮液即可得到电流变液产品。
采用流变仪对实施例2制备的电流变液进行屈服应力测试。聚乙二醇2000修饰的氧化石墨烯/草酸氧钛钡复合纳米颗粒与聚二甲基硅油的质量比为3:1时,其屈服应力值最高,使用性能最佳,其屈服应力值在3kV/mm时达到45.6kPa。
实施例3:
(1)四氯化钛与冰水按0.1mol/L配成溶液A;(2)氯化钡与去离子水按0.1mol/L配成溶液B;(3)草酸与去离子水按0.1mol/L配成溶液C;(4)聚乙二醇4000与无水乙醇按4g/L配成溶液D;(5)将氧化石墨烯用稀氨水调节PH值至9,制成悬浮液E;(6)A溶液和B溶液按体积比1:1混合均匀,加入溶液D,上述三种溶液A:B:D=1.05:1:1,搅拌10min;(7)上述三种溶液中加入悬浮液E,上述四种溶液A:B:D:E=1.05:1:1:1;(8)按上述四种溶液比例加入C溶液,在55℃温度超声磁力搅拌下逐滴滴加C溶液,各溶液比为A:B:C:D:E=1.05:1:2:1:1,立即有沉淀产生;(9)滴加完毕后,把反应物放入高温反应釜中,在200℃恒温反应3h;(10)过滤、多次洗涤沉淀物以除去样品中吸附的氯离子,液氮冷冻干燥20h后,55℃真空干燥6h,即得到聚乙二醇修饰的GBTO粒子。其中,氧化石墨烯/草酸氧钛钡复合纳米颗粒、聚二甲基硅油的质量比为1:1~3:1,首混后放入球磨机球磨30min,过80目筛后得到的悬浮液即可得到电流变液产品。
采用流变仪对实施例3制备的电流变液进行屈服应力测试。聚乙二醇4000修饰的氧化石墨烯/草酸氧钛钡复合纳米颗粒与聚二甲基硅油的质量比为3:1时,其屈服应力值最高,使用性能最佳,其屈服应力值在3kV/mm时达到56.98kPa。
实施例4:
(1)四氯化钛与冰水按0.12mol/L配成溶液A;(2)氯化钡与去离子水按0.12mol/L配成溶液B;(3)草酸与去离子水按0.12mol/L配成溶液C;(4)聚乙二醇6000与无水乙醇按2g/L配成溶液D;(5)将氧化石墨烯用稀氨水调节PH值至9,制成悬浮液E;(6)A溶液和B溶液按体积比1:1混合均匀,加入溶液D,上述三种溶液A:B:D=1.05:1:1,搅拌15min;(7)上述三种溶液中加入悬浮液E,上述四种溶液A:B:D:E=1.05:1:1:1;(8)按上述四种溶液比例加入C溶液,在50℃温度超声磁力搅拌下逐滴滴加C溶液,各溶液比为A:B:C:D:E=1.05:1:2:1:1,立即有沉淀产生;(9)滴加完毕后,把反应物放入高温反应釜中,在180℃恒温反应2h;(10)过滤、多次洗涤沉淀物以除去样品中吸附的氯离子,液氮冷冻干燥20h后,50℃真空干燥5h,即得到聚乙二醇修饰的GBTO粒子。其中,氧化石墨烯/草酸氧钛钡复合纳米颗粒、聚二甲基硅油的质量比为1~3:1,首混后放入球磨机球磨40min,过80目筛后得到的悬浮液即可得到电流变液产品。
采用流变仪测试实施例4制备的电流变液进行屈服应力测试。聚乙二醇6000修饰的氧化石墨烯/草酸氧钛钡复合纳米颗粒与聚二甲基硅油的质量比为3:1时,其屈服应力值最高,使用性能最佳,其屈服应力值在3kV/mm时达到39.14kPa。

Claims (4)

1.一种氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法,其特征在于:采用聚乙二醇作为分散剂,通过聚乙二醇对氧化石墨烯/草酸氧钛钡复合纳米颗粒进行改性,用化学共沉淀法制备改性氧化石墨烯/草酸氧钛钡复合纳米颗粒,将改性氧化石墨烯/草酸氧钛钡复合纳米颗粒作为分散相、聚二甲基硅油作为连续相,按1:1~3:1质量比将二者混合制成电流变液;
所述改性氧化石墨烯/草酸氧钛钡复合纳米颗粒具体制备步骤如下:
(1)四氯化钛与冰水按0.1~0.2mol/L配成溶液A;
(2)氯化钡与去离子水按0.1~0.2mol/L配成溶液B;
(3)草酸与去离子水按0.1~0.2mol/L配成溶液C;
(4)聚乙二醇与无水乙醇按0.1~10 g/L配成溶液D;
(5)将片层状,厚度80~150nm,不规则形状,最大尺寸30μm 的氧化石墨烯用稀氨水调节pH 值至9,制成悬浮液E;
(6)A溶液和B溶液按体积比1.05:1混合均匀,加入溶液D,上述三种溶液A:B:D=1.05:1:1,搅拌10~30min;加入悬浮液E,四种溶液A:B:D:E=1.05:1:1:1;
(7)按步骤(6)所述四种溶液比例加入C溶液,在45~60℃温度超声磁力搅拌下逐滴滴加C溶液,各溶液比为A:B:C:D:E=1.05:1:2:1:1,立即有沉淀产生;
(8)滴加完毕后,把反应物放入高温反应釜中,在150~200℃恒温反应2~4h;
(9)过滤、多次洗涤沉淀物以除去样品中吸附的氯离子,液氮冷冻干燥18~24h后,45~60℃下真空干燥4~8h,即得到聚乙二醇改性的氧化石墨烯/草酸氧钛钡复合纳米颗粒,即GBTO粒子。
2.根据权利要求1中所述一种氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法,其特征在于:所述的聚乙二醇的分子量在200~6000之间。
3.根据权利要求2中所述一种氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法,其特征在于:所述的聚乙二醇为聚乙二醇800、聚乙二醇2000、聚乙二醇4000或聚乙二醇6000。
4.根据权利要求1中所述一种氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法,其特征在于:将聚乙二醇改性的氧化石墨烯/草酸氧钛钡复合纳米颗粒和聚二甲基硅油首混后放入球磨机球磨20~60min,过80目筛后得到的悬浮液即得到电流变液产品。
CN201710181529.1A 2017-03-24 2017-03-24 氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法 Expired - Fee Related CN106883905B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710181529.1A CN106883905B (zh) 2017-03-24 2017-03-24 氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710181529.1A CN106883905B (zh) 2017-03-24 2017-03-24 氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法

Publications (2)

Publication Number Publication Date
CN106883905A CN106883905A (zh) 2017-06-23
CN106883905B true CN106883905B (zh) 2019-04-12

Family

ID=59181993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710181529.1A Expired - Fee Related CN106883905B (zh) 2017-03-24 2017-03-24 氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法

Country Status (1)

Country Link
CN (1) CN106883905B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706362A (zh) * 2017-08-17 2018-02-16 中国第汽车股份有限公司 一种石墨烯复合电极材料的制备方法
CN114921280B (zh) * 2022-04-25 2022-11-11 上海大学 基于碳量子点的巨电流变颗粒的制备方法及巨电流变材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787319A (zh) * 2009-01-22 2010-07-28 中国科学院宁波材料技术与工程研究所 一种草酸氧钛锌电流变液及其制备方法
CN106010737A (zh) * 2016-06-06 2016-10-12 北京科技大学 一种氧化石墨烯/草酸氧钛钡复合电流变液及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101787319A (zh) * 2009-01-22 2010-07-28 中国科学院宁波材料技术与工程研究所 一种草酸氧钛锌电流变液及其制备方法
CN106010737A (zh) * 2016-06-06 2016-10-12 北京科技大学 一种氧化石墨烯/草酸氧钛钡复合电流变液及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
聚苯胺修饰草酸氧钛钡电流变性能的研究;刘秧生等;《功能材料》;20091130;第39卷(第11期);第1832-1834页

Also Published As

Publication number Publication date
CN106883905A (zh) 2017-06-23

Similar Documents

Publication Publication Date Title
Huang et al. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres
CN108579664B (zh) 基于二维层状材料麦羟硅钠石的磁性纳米复合材料及其制备方法和应用
Chen et al. Magnetic nanocomposite of hydroxyapatite ultrathin nanosheets/Fe 3 O 4 nanoparticles: microwave-assisted rapid synthesis and application in pH-responsive drug release
CN105399150B (zh) 一种钴酸镍纳米材料及其制备方法和应用
Chen et al. Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA
CN107240508B (zh) 一种石墨烯/铁氧体纳米复合电极材料的制备方法
Ge et al. Effect of structure-directing agents on facile hydrothermal preparation of hierarchical γ-Al2O3 and their adsorption performance toward Cr (VI) and CO2
CN106587095B (zh) 有序介孔mcm-41分子筛/四氧化三铁纳米复合材料及其制备方法
CN106883905B (zh) 氧化石墨烯/草酸氧钛钡颗粒电流变液材料的制备方法
Lin et al. Preparation of uniform magnetic iron oxide nanoparticles by co-precipitation in a helical module microchannel reactor
Jia et al. Preparation and application of novel magnetically separable γ-Fe2O3/activated carbon sphere adsorbent
CN101089164B (zh) 极性分子型电流变液
CN108706637B (zh) 一种尺寸均匀可调的磁性氧化铁介晶材料的制备方法
CN107993784A (zh) 多种形貌的磁性颗粒及其制备方法与应用
CN102659188A (zh) 一种具有多级结构的磁性三氧化二铁微米花材料及其制备方法
CN107706000A (zh) 一种花球状氧化镍/聚吡咯/石墨烯复合材料及其制备方法
CN109499520A (zh) 一种氨基功能化二氧化锰负载纳米磁性膨润土的制备方法及其应用
CN108658108A (zh) 一种氧化铝空心微球的制备方法
CN105502518B (zh) 一种花状钴酸锰及其制备方法
CN101508468A (zh) 一种铁酸盐纳米超结构多孔材料及其制备方法
CN104556245B (zh) 一种汉堡状纳米氧化铁材料及其制备方法和用途
CN106010737B (zh) 一种氧化石墨烯/草酸氧钛钡复合电流变液及其制备方法
CN101698737B (zh) 一种有机/无机纳米磁性复合材料的制备方法
CN103482681A (zh) 一种制备单分散球状纳米氧化锌的方法
CN110223816A (zh) 一种基于磁性有机凝胶的磁流变液及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190412

CF01 Termination of patent right due to non-payment of annual fee