CN106881107A - 一种担载型分级多孔银及其制备方法 - Google Patents

一种担载型分级多孔银及其制备方法 Download PDF

Info

Publication number
CN106881107A
CN106881107A CN201510940785.5A CN201510940785A CN106881107A CN 106881107 A CN106881107 A CN 106881107A CN 201510940785 A CN201510940785 A CN 201510940785A CN 106881107 A CN106881107 A CN 106881107A
Authority
CN
China
Prior art keywords
silver
classifying porous
loaded
porous silver
foam metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510940785.5A
Other languages
English (en)
Other versions
CN106881107B (zh
Inventor
孙公权
袁丽只
姜鲁华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201510940785.5A priority Critical patent/CN106881107B/zh
Publication of CN106881107A publication Critical patent/CN106881107A/zh
Application granted granted Critical
Publication of CN106881107B publication Critical patent/CN106881107B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本发明涉及一种担载型分级多孔银,所述担载型分级多孔银的载体为泡沫金属,所述分级多孔银由银纳米粒子聚集形成的一级孔银聚集体,一级孔银聚集体再次聚集相互连接而形成;所述泡沫金属载体的金属为铜、镍、铁中的一种或两种以上的合金。所述担载型分级多孔银的制备方法,泡沫金属为前体,用电化学的方法制备卤化银,再在一定的条件下还原制备分级多孔银的方法。与现有技术相比,本发明所述担载型分级多孔银由银纳米粒子聚集形成的一级孔、银纳米聚集体相互连接形成的二级孔及泡沫金属载体本身具有的大孔构成,本发明所述分级多孔银的制备方法具有绿色环保、简便、易于实施、生产成本低;以及制备过程中分级多孔银的孔径及孔隙率分布可控等优点。

Description

一种担载型分级多孔银及其制备方法
技术领域
本发明属于纳米材料制备领域,具体的说涉及一种担载型分级多孔银;
本发明还涉及所述担载型分级多孔银的制备方法。
背景技术
纳米多孔金属是近年来发展起来的一类新型纳米结构材料,由于它具有比表面积大、密度小、结构灵活可调、渗透性好等特点,使得多孔材料被广泛地应用于分离、催化、传感、医药、电极、机械等领域。多孔银由于其优异的物理化学性质,在催化剂材料、电子陶瓷材料、防静电材料、生物传感器材料等领域有广泛的应用前景。
制备多孔金属的常用方法是脱合金法和模板法。但是这两种方法工艺相对复杂,成本高,难以实现工业化生产,同时采用上述方法制备的银的孔隙结构单一,且难以控制。针对现有技术中存在的问题,我们发明了一种分级多孔银及一种简单易于实现的制备分级多孔银的方法,且已经申请了中国专利。由该方法制备的分级多孔银具有优异的氧还原和过氧化氢还原电催化活性,但是该分级多孔银的孔尺寸主要是纳米级的,仅存在少量的微米级的孔,当制备的分级多孔银厚度较大时,其多孔结构仍然不利于反应物质在孔道内的传输,导致其活性物质不能充分利用。
发明内容
本发明针对现有技术中存在的问题,发明了一种担载型分级多孔银的制备方法及一种简单易于实现的制备担载型分级多孔银的方法。
为实现上述发明内容,本发明采用以下技术方案来实现:
一种担载型分级多孔银,所述担载型分级多孔银的载体为泡沫金属,所述分级多孔银由银纳米粒子聚集形成的一级孔银聚集体,一级孔银聚集体再次聚集相互连接而形成。
所述泡沫金属载体的金属为铜、镍、铁中的一种或两种以上的合金;所述分级多孔银于泡沫金属载体上的载量为0.1mg/cm2~20mg/cm2泡沫金属,所述分级多孔银于泡沫金属载体上的载量优选为1mg/cm2~10mg/cm2
所述一级孔银聚集体上具有一级孔,一级孔的孔径在5~500nm之间,再次聚集的一级孔银聚集体之间具有二级孔,二级孔的孔径在1~5μm之间;所述一级孔的孔径优选为20~200nm;二级孔的孔径优选为1.5~3μm。
所述银纳米粒子的直径为20~300nm,一级孔银聚集体的大小为0.5~5μm。所述银纳米粒子的直径优选为45-180nm,一级孔银聚集体的大小优选为0.5~2μm。
所述担载型分级多孔银的制备方法如下:采用电镀或化学镀或涂覆的方法于泡沫金属上担载金属银,进一步采用电化学方法对担载在泡沫金属上的金属银进行氧化处理,之后进行还原制得担载型分级多孔银。
所述采用电化学方法对担载在泡沫金属上的金属银进行氧化处理的过程中,以担载金属银的泡沫金属为工作电极,以铂或石墨棒中的一种为对电极,银/氯化银、汞/氧化汞或饱和甘汞中的一种为参比电极,以含Cl-、Br-或I-中的一种或两种以上卤素离子的溶液为电解液。
所述电化学方法对担载在泡沫金属上的银进行氧化处理的过程中,相对于可逆氢电极的电化学处理电位为0.5V~10V;电化学处理时间为1s-100h。
所述电化学处理电位优选为0.5V~5V;所述电化学处理时间优选为60s-20h;所述电化学处理时间最优为120s-8h。
所述电解液中卤素离子的浓度总和大于0.001mM。
所述还原方法为电化学还原、光照还原、电子束还原、辐射还原、激光还原中的一种或两种以上。
与现有技术相比,本发明所述担载型分级多孔银具有多级孔结构,其包括泡沫金属载体的大孔,由银纳米聚集体相互连接形成的二级孔的中孔以及由银纳米粒子聚集形成的一级孔的小孔。多级孔结构有利于催化领域的多相传质,如将其用作过氧化氢电还原电催化剂和氧还原电催化剂时,泡沫金属载体的大孔有利于过氧化氢电还原产生的氧气的脱除和氧气的传输,用作氧还原电催化剂时,泡沫金属载体的大孔有利于氧气的传输,多孔银的一级孔和二级孔使其表面积增加,从而使得单位质量银催化剂对过氧化氢还原反应及氧还原反应的电催化活性大幅提高。
本发明所述担载型分级多孔银的制备方法具有绿色环保、简便、易于实施、生产成本低;以及制备过程中分级多孔银的孔径及孔隙率分布可控等优点。
附图说明:
图1a,b为比较例1的泡沫镍的SEM照片;图1c,d为比较例2的电镀银之后的泡沫镍的SEM照片;图1e,f为根据实施例1制备的经电化学多孔化处理之后的泡沫镍载银的SEM照片。
图2a、b、c分别为为比较例1的泡沫镍、比较例2的泡沫镍载银和根据实施例1制备的泡沫镍载分级多孔银作为过氧化氢阴极还原反应电催化剂时的铝-过氧化氢电池性能。
具体实施方式
下面结合实施例对本发明做详细的描述。当然本发明并不仅限于这些具体的实施例。
比较例1:商品泡沫镍。
比较例2:电镀银后的商品泡沫镍。
实施例1:配置含0.1M NaCl和0.1M NaOH的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,铂片为对电极,汞/氧化汞电极为参比电极,在1.0V(相对于可逆氢电极)下电化学处理2h后再在0.1M NaOH电解液中在0.15V(相对于可逆氢电极)下进行电化学还原1h得到多孔银。
实施例2:配置含0.001mM NaCl的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,石墨棒为对电极,银/氯化银电极为参比电极,在1.5V(相对于可逆氢电极)下电化学处理100h后再在20万勒克斯的强光照下照射1h得到多孔银。
实施例3:配置含2M NaCl和0.1M HCl的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,银片为对电极,饱和甘汞电极为参比电极,在5.0V下电化学处理360s后再进行铜靶X射线照射1h得到多孔银。
实施例4:配置饱和NaCl的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,银/氯化银电极为参比电极,在10.0V下电化学处理1s后再用电子枪束轰击20min得到多孔银。
实施例5:配置含0.1M HCl的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,Pt片为对电极,饱和甘汞电极为参比电极,在2.0V下电化学处理1h后再进行1W的激光照射1h得到多孔银。
实施例6:配置含0.001mM NaBr的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,石墨棒为对电极,银/氯化银电极为参比电极,在1.5V(相对于可逆氢电极)下电化学处理100h后再在50万勒克斯的强光照下照射5min得到多孔银。
实施例7:配置含0.005M NaBr和0.1M NaOH的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,铂片为对电极,汞/氧化汞电极为参比电极,在1.0V(相对于可逆氢电极)下电化学处理20h后再在0.1M NaOH电解液中在0.3V(相对于可逆氢电极)下进行电化学还原10min得到多孔银。
实施例8:配置含2M NaBr和0.1M HBr的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,银片为对电极,饱和甘汞电极为参比电极,在5.0V下电化学处理1s后再进行镁靶X射线照射1h得到多孔银。
实施例9:配置饱和NaBr的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,金片为对电极,银/氯化银电极为参比电极,在10.0V下电化学处理60s后再用电子枪束轰击40min得到多孔银。
实施例10:配置含0.1M HBr的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,Pt片为对电极,饱和甘汞电极为参比电极,在2.0V下电化学处理1h后再进行2W的激光照射3h得到多孔银。
实施例11:配置含0.001mM NaI的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,石墨棒为对电极,银/氯化银电极为参比电极,在0.5V(相对于可逆氢电极)下电化学处理100h后再进行400℃加热10h还原得到多孔银。
实施例12:配置含0.005M NaI和0.1M NaOH的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,铂片为对电极,汞/氧化汞电极为参比电极,在1.0V(相对于可逆氢电极)下电化学处理8h后再在0.1M NaOH电解液中在0.5V(相对于可逆氢电极)下进行电化学还原8min得到多孔银。
实施例13:配置含2M NaI和0.1M HI的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,银片为对电极,饱和甘汞电极为参比电极,在5.0V下电化学处理60s后再进行铝靶X射线照射1h得到多孔银。
实施例14:配置饱和NaI的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,金片为对电极,银/氯化银电极为参比电极,在10.0V下电化学处理120s后再用电子枪束轰击30min得到多孔银。
实施例15:配置含0.1M HI的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,Pt片为对电极,饱和甘汞电极为参比电极,在2.0V下电化学处理1h后再进行5W的激光照射30min得到多孔银。
实施例16:配置含0.1M十六烷基三甲基氯化铵和0.1M NaOH的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,石墨棒为对电极,银/氯化银电极为参比电极,在1.5V(相对于可逆氢电极)下电化学处理1h后再在30万勒克斯的强光照下照射20min得到多孔银。
实施例17:配置含0.5M十四烷基三甲基溴化铵和0.1M NaOH的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,铂片为对电极,汞/氧化汞电极为参比电极,在1.0V(相对于可逆氢电极)下电化学处理2h后再在0.1M NaOH电解液中在0V(相对于可逆氢电极)下进行电化学还原得到多孔银。
实施例18:配置含0.5M 1,3-二甲基咪唑溴盐和0.1M NaOH的溶液并将其作为电解液,将担载一定质量银的泡沫镍作为工作电极,银片为对电极,饱和甘汞电极为参比电极,再进行铝靶X射线照射2h得到多孔银。
图1a,b为比较例1的泡沫镍的SEM照片,从图中可以看出泡沫镍的表面很光滑;图1c,d为比较例2的电镀银之后的泡沫镍的SEM照片,从图中可以看出50nm–3μm的银粒子均匀的分散在泡沫镍的表面上;图1e,f为根据实施例1制备的经电化学多孔化处理之后的泡沫镍载银的SEM照片,从图中可以看出,所得到的多孔银具有多级孔结构,分析可知,一级孔是由银纳米粒子聚集留下的空隙形成的,而二级孔是由一级孔银聚集体再次聚集时留下的空隙而形成的。由图可知,一级孔的孔径在5-500nm,二级孔的孔径在1-5μm之间。
图2a、b、c分别为比较例1的泡沫镍、比较例2的泡沫镍载银和根据实施例1制备的泡沫镍载分级多孔银作为过氧化氢还原反应电催化剂时的铝-过氧化氢电池性能。由图2所示,泡沫镍作为过氧化氢还原反应电催化剂时,铝-过氧化氢电池性能很差(图2a),泡沫镍载银作为过氧化氢还原反应电催化剂时,铝-过氧化氢电池性能有很大程度的提高(图2b),说明银具有较好的催化过氧化氢还原的性能,当以泡沫镍载分级多孔银作为过氧化氢还原反应电催化剂时的铝-过氧化氢电池性能进一步提升(图2c)说明多孔化后提高了银的活性表面积。

Claims (10)

1.一种担载型分级多孔银,其特征在于:所述担载型分级多孔银的载体为泡沫金属,所述分级多孔银由银纳米粒子聚集形成的一级孔银聚集体,一级孔银聚集体再次聚集相互连接而形成。
2.如权利要求1所述担载型分级多孔银,其特征在于:所述泡沫金属载体的金属为铜、镍、铁中的一种或两种以上的合金;所述分级多孔银于泡沫金属载体上的载量为0.1mg/cm2~20mg/cm2泡沫金属,所述分级多孔银于泡沫金属载体上的载量优选为1mg/cm2~10mg/cm2
3.如权利要求1所述担载型分级多孔银,其特征在于:所述一级孔银聚集体上具有一级孔,一级孔的孔径在5~500nm之间,再次聚集的一级孔银聚集体之间具有二级孔,二级孔的孔径在1~5μm之间;所述一级孔的孔径优选为20~200nm;二级孔的孔径优选为1.5~3μm。
4.如权利要求1所述担载型分级多孔银,其特征在于:所述银纳米粒子的直径为20~300nm,一级孔银聚集体的大小为0.5~5μm。
5.如权利要求4所述担载型分级多孔银,其特征在于:所述银纳米粒子的直径优选为45-180nm,一级孔银聚集体的大小优选为0.5~2μm。
6.一种如权利要求1-5任一所述担载型分级多孔银的制备方法,其特征在于:采用电镀或化学镀或涂覆的方法于泡沫金属上担载金属银,进一步采用电化学方法对担载在泡沫金属上的金属银进行氧化处理,之后进行还原制得担载型分级多孔银。
7.如权利要求6所述担载型分级多孔银的制备方法,其特征在于:所述采用电化学方法对担载在泡沫金属上的金属银进行氧化处理的过程中,以担载金属银的泡沫金属为工作电极,以铂或石墨棒中的一种为对电极,银/氯化银、汞/氧化汞或饱和甘汞中的一种为参比电极,以含Cl-、Br-或I-中的一种或两种以上卤素离子的溶液为电解液,所述电解液中卤素离子的浓度总和大于0.001mM。
8.如权利要求7所述担载型分级多孔银的制备方法,其特征在于:所述电化学方法对担载在泡沫金属上的银进行氧化处理的过程中,相对于可逆氢电极的电化学处理电位为0.5V~10V;电化学处理时间为1s-100h。
9.如权利要求8所述担载型分级多孔银的制备方法,其特征在于:所述电化学处理电位优选为0.5V~5V;所述电化学处理时间优选为60s-20h;所述电化学处理时间最优为120s-8h。
10.如权利要求6所述担载型分级多孔银的制备方法,其特征在于:所述还原方法为电化学还原、光照还原、电子束还原、辐射还原、激光还原中的一种或两种以上。
CN201510940785.5A 2015-12-16 2015-12-16 一种担载型分级多孔银及其制备方法 Active CN106881107B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510940785.5A CN106881107B (zh) 2015-12-16 2015-12-16 一种担载型分级多孔银及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510940785.5A CN106881107B (zh) 2015-12-16 2015-12-16 一种担载型分级多孔银及其制备方法

Publications (2)

Publication Number Publication Date
CN106881107A true CN106881107A (zh) 2017-06-23
CN106881107B CN106881107B (zh) 2019-10-25

Family

ID=59174679

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510940785.5A Active CN106881107B (zh) 2015-12-16 2015-12-16 一种担载型分级多孔银及其制备方法

Country Status (1)

Country Link
CN (1) CN106881107B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109126782A (zh) * 2018-10-22 2019-01-04 浙江工业大学 一种用于电化学合成氨的多孔PdRu合金催化剂及其制备方法
CN109954500A (zh) * 2017-12-25 2019-07-02 沈阳三聚凯特催化剂有限公司 一种铜基骨架复合膜型加氢催化剂和其制备方法以及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486785A (zh) * 2003-08-12 2004-04-07 上海交通大学 泡沫金属负载TiO2纳米光催化过滤网的制备方法
CN101693197A (zh) * 2009-10-19 2010-04-14 山东大学 一种多孔银催化剂及其制备方法
US20140113218A1 (en) * 2012-10-23 2014-04-24 The Johns Hopkins University Encapsulated Nanoporous Metal Nanoparticle Catalysts
CN104143643A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种燃料电池用担载型催化剂及其应用
CN104525937A (zh) * 2014-12-23 2015-04-22 吉林大学 一种多孔银微纳米结构及其形貌及尺寸可控的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1486785A (zh) * 2003-08-12 2004-04-07 上海交通大学 泡沫金属负载TiO2纳米光催化过滤网的制备方法
CN101693197A (zh) * 2009-10-19 2010-04-14 山东大学 一种多孔银催化剂及其制备方法
US20140113218A1 (en) * 2012-10-23 2014-04-24 The Johns Hopkins University Encapsulated Nanoporous Metal Nanoparticle Catalysts
CN104143643A (zh) * 2013-05-09 2014-11-12 中国科学院大连化学物理研究所 一种燃料电池用担载型催化剂及其应用
CN104525937A (zh) * 2014-12-23 2015-04-22 吉林大学 一种多孔银微纳米结构及其形貌及尺寸可控的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIANBO JIN ET AL.: "The electrochemical formation and reduction of a thick AgCl deposition layer on a silver substrate", 《JOURNAL OF ELECTROANALYTICAL CHEMISTRY》 *
刘培生等: "《泡沫金属》", 31 May 2012, 中南大学出版社 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109954500A (zh) * 2017-12-25 2019-07-02 沈阳三聚凯特催化剂有限公司 一种铜基骨架复合膜型加氢催化剂和其制备方法以及应用
CN109954500B (zh) * 2017-12-25 2023-05-05 沈阳三聚凯特催化剂有限公司 一种铜基骨架复合膜型加氢催化剂和其制备方法以及应用
CN109126782A (zh) * 2018-10-22 2019-01-04 浙江工业大学 一种用于电化学合成氨的多孔PdRu合金催化剂及其制备方法

Also Published As

Publication number Publication date
CN106881107B (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
Liang et al. Metal-organic frameworks derived reverse-encapsulation Co-NC@ Mo2C complex for efficient overall water splitting
Wang et al. NiSe2 nanoparticles embedded in CNT networks: scalable synthesis and superior electrocatalytic activity for the hydrogen evolution reaction
Wang et al. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam
Liu et al. Amorphous iron-nickel phosphide nanocone arrays as efficient bifunctional electrodes for overall water splitting
EP3670701B1 (en) Method for converting carbon dioxide (co2) into co by an electrolysis reaction
Zhang et al. Oxygen reduction reaction on Pt-based electrocatalysts: Four-electron vs. two-electron pathway
Etesami et al. Benchmarking superfast electrodeposited bimetallic (Ni, Fe, Co, and Cu) hydroxides for oxygen evolution reaction
Xia et al. Hierarchical 0D− 2D Co/Mo selenides as superior bifunctional electrocatalysts for overall water splitting
Martini et al. Using a combination of Co, Mo, and Pt oxides along with graphene nanoribbon and MoSe2 as efficient catalysts for OER and HER
Rajala et al. A platinum nanowire electrocatalyst on single-walled carbon nanotubes to drive hydrogen evolution
Zhu et al. Rapid and scalable synthesis of bismuth dendrites on copper mesh as a high-performance cathode for electroreduction of CO2 to formate
CN110252335A (zh) 一种碳包覆镍钌纳米材料及其制备方法和应用
CN107858701A (zh) 一种用于固态聚合物水电解器的钛基析氢电极及其制备方法
Cheng et al. Pd doped Co3O4 nanowire array as the H2O2 electroreduction catalyst
Çögenli et al. Graphene aerogel supported platinum nanoparticles for formic acid electro-oxidation
Fu et al. Synthesis of Pd/TiO2 nanotubes/Ti for oxygen reduction reaction in acidic solution
Gao et al. Free-standing Ni-Co alloy nanowire arrays: Efficient and robust catalysts toward urea electro-oxidation
Şahin et al. Investigation of the hydrogen evolution on Ni deposited titanium oxide nano tubes
Kang et al. Preparation of Ag–Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property
Wu et al. Decorated by Cu nanoparticles CoS2 nanoneedle array for effective water oxidation electrocatalysis
Wu et al. Surface modification engineering on three-dimensional self-supported NiCoP to construct NiCoOx/NiCoP for highly efficient alkaline hydrogen evolution reaction
Salome et al. An electrochemical route to prepare Pd nanostructures on a gas diffusion substrate for a PEMFC
US9567677B2 (en) Electrochemical method of producing hydrogen peroxide using a titanium oxide nanotube catalyst
Wang et al. Inverse doping IrOx/Ti with weakened Ir-O interaction toward stable and efficient acidic oxygen evolution
Li et al. Dual surfactants applied in synthesis of MoSe2 for high-efficiency hydrogen evolution reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant