CN106877406A - 一种多能源船舶微网的多目标电源配置优化方法 - Google Patents

一种多能源船舶微网的多目标电源配置优化方法 Download PDF

Info

Publication number
CN106877406A
CN106877406A CN201710177368.9A CN201710177368A CN106877406A CN 106877406 A CN106877406 A CN 106877406A CN 201710177368 A CN201710177368 A CN 201710177368A CN 106877406 A CN106877406 A CN 106877406A
Authority
CN
China
Prior art keywords
energy
load
storage system
generating set
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710177368.9A
Other languages
English (en)
Other versions
CN106877406B (zh
Inventor
廖卫强
俞万能
王国玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jimei University
Original Assignee
Jimei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jimei University filed Critical Jimei University
Priority to CN201710177368.9A priority Critical patent/CN106877406B/zh
Publication of CN106877406A publication Critical patent/CN106877406A/zh
Application granted granted Critical
Publication of CN106877406B publication Critical patent/CN106877406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

本发明涉及一种多能源船舶微网的多目标电源配置优化方法,针对一类包含柴油发电机、风力发电、光伏发电和电池储能的船舶微网系统,通过研究动态负荷下储能系统临界出力点,并以此作为柴蓄进行出力优先的判断,构建基于动态临界点的柴蓄优先选择的储能系统调度策略,本发明能够实现真正意义上的动态多目标微电网的电源配置优化。

Description

一种多能源船舶微网的多目标电源配置优化方法
技术领域
本发明涉及多能源船舶能源规划领域,特别是一种多能源船舶微网的多目标电源配置优化方法。
背景技术
在现代社会,交通运输是经济发展的基本需要和先决条件,而水运作为第二大能源消费运输方式,具有运量大、成本低等特点。随着运输行业纳入温室气体减排目标,绿色环保低碳的造船模式将成为未来船舶制造业发展的必然方向。在国家加快推进“中国制造2025”的背景下,新能源在船舶上的应用得到了广泛的关注,而如何有效、合理地利用清洁能源如风能、太阳能以及波浪能等来获取电能的纯绿色船舶可以从根本上解决柴电船舶电力推进系统的污染问题。而微网作为一种包含可再生能源的分布式电源(distributedenergy resource,DER)综合集成技术,是分布式发电的有效管理形式。因此,船舶微电网这样一种新型船舶电力系统由此产生。而在船舶微电网系统中,由于船舶平台在空间环境上的限制,并不是所有类型的船舶平台都适合安装风力发电或太阳能发电装置。船舶微电网的规模、各分布式电源容量以及电压等级与系统所在船舶的用电需求、航运线路、运输距离、环境条件、经济条件等多方面因素有关。对于远洋运输船舶如集装箱船、散货船、游轮、客轮等各类型的船舶构造差异巨大,对船舶微电网系统的需求也各不相同,导致分布式电源的配置也各不相同。由于分布式电源的规格和数量在船舶微电网中受到很大的限制。如何实现合理配置分布式电源,合理协调电源能量分配,最优化经济效益和环境效益等问题亟待解决。多能源船舶微电网电源优化配置目的在于选择出能够实现系统经济性、供电可靠性、节能减排性等目标最优化的分布式电源组合配置,配置包括分布式电源种类、型号、数量、容量、安装位置等。独立微电网电源优化配置的结果是根据所要优化的目标来确定的,优化规划目标通常包括经济性、可靠性、环保性三大类。经济性目标包括全寿命周期内的标准化购置、燃料、维护、更换等成本;可靠性目标包括负荷缺失率、电力不足时间、电力不足概率等;环保性目标主要是CO2、CO、SO2、未燃烧碳氢化物、颗粒物、氮氧化物等污染物的排放水平。对于多能源船舶微电网,不同能源之间的运行控制策略具有多样性,而运行控制策略将直接影响系统配置方案的各项技术经济指标。
现有技术都是在特定静态控制策略下对微电网电源类型和容量参数进行优化,即在整个调度过程,固定使用柴油发电机来满足系统的要求,储能系统只是作为补充能源,或者固定使用储能系统来满足系统的要求,柴油发电机只是作为补充能源,而没有充分考虑蓄电池储能系统具有动态吸收能量或释放能量,蓄电池储能系统中能量来源组成比例的不确定性的特点,导致了蓄电池储能系统充放电所造成的使用经济性和环保性的不确定性;因此,从经济性层面考虑,根据储能系统的实时能量来源比例情况,柴油发电机和储能系统哪个作为补充能源应该是个动态变化的情况。
发明内容
有鉴于此,本发明的目的是提出一种多能源船舶微网的多目标电源配置优化方法,通过研究动态负荷下储能系统临界出力点,并以此作为柴蓄进行出力优先的判断,构建基于动态临界点的柴蓄优先选择的储能系统调度策略,实现真正意义上的动态多目标微电网的电源配置优化。
本发明采用以下方案实现:一种多能源船舶微网的多目标电源配置优化方法,具体包括以下步骤:
步骤S1:构建由柴油发电机组、可再生能源以及储能系统组成的船舶电力微网系统;其中所述柴油发电机组采用同步发电机发电,直接并入交流微网;所述可再生能源以及储能系统通过各自的交流器接入交流微网;
步骤S2:确定所述储能系统的实时临界最佳放电点;
步骤S3:基于步骤S2确定的所述储能系统的实时临界最佳放电点的能量协调构建调度控制策略;
步骤S4:将对各种备选电源的配置问题转化为求满足等式约束和不等式约束的目标函数最小值的优化模型:
其中,f(x)为优化目标函数,f1(x),f2(x),f3(x)为目标函数,h(x)和g(x)分别为等式约束条件和不等式约束条件;f1(x)全寿命周期内的投资总成本函数,f2(x)为污染物排放治理成本函数,f3(x)为系统容量可靠性函数;
步骤S5:以步骤S4构建的3个函数作为优化目标,基于步骤S3构建的调度控制策略,基于NSGA-II的多目标遗传算法进行求解。
进一步的,所述步骤S2具体包括以下步骤:
步骤S21:当前净负荷为Lj时,柴油发电机组发电成本Y1采用下式计算:
Y1=(kLj+C)F1
其中,k为燃料费用;C为污染气体单位治理费用;F1为燃料消耗量;
步骤S22:当前净负荷为Lj时,蓄电池储能系统发电成本Y2采用下式计算:
其中,k为燃料费用;C为污染气体单位治理费用;F1为燃料消耗量,Pk为蓄电池储能系统中来自可再生能源的能量;μ为柴油发电机组对蓄电池储能系统的充电效率;
步骤S23:确定满足条件Y1=Y2的点为所述储能系统的实时临界最佳放电点。
进一步的,所述步骤S3具体包括以下步骤:
步骤S31:计算当前仿真步长内蓄电池储能系统的最大充电功率P3、放电功率P4;并判断CH的值,当CH=0,优先选择储能出力;当CH=1,优先选择柴油发电机组出力;
步骤S32:判断是否n*P5+P4+P1<Pload并且n<m;若是,则投入一台发电机,即令n=n+1,并且重新判断步骤S32;否则,进入步骤S33;
步骤S33:判断是否(n-1)*P5+P4+P1>Pload、n*P6+P4+P1>Pload并且n>1,若是,则关闭一台发电机,即令n=n-1,并且重新判断步骤S33;否则进入步骤S34;
步骤S34:判断是否n*P5+P4+P1<Pload,若是,则令
Pgen=n*P5
P=P4
Ecs=Ecs+Pload-n*P5-P4-P;
此时,发电机最大出力,蓄电池最大放电,确定容量短缺,并返回步骤S31;否则,进入步骤S35:
步骤S35:判断是否n*P5+P1>Pload,若否,则令
此时,发电机最大出力,蓄电池实际放电,并返回步骤S31;若是,进入步骤S36;
步骤S36:判断是否n*P6+P1>Pload,若是,进入步骤S37,否则进入步骤S38;
步骤S37:判断是否n*P6+P1+P3>Pload,若是,则令
此时,发电机最小出力,蓄电池最大充电,确定过剩电能,并返回步骤S31;否则,令
此时,发电机最小出力,蓄电池实际充电,并返回步骤S31;
步骤S38:判断是否CH=1,若是,则进入步骤S39;否则,令
此时,发电机实际出力,并返回步骤S31;
步骤S39:判断是否n*P6+P1+P4>Pload,若是,则令
此时,发电机最小出力,蓄电池实际放电,并返回步骤S31;否则,令
此时,蓄电池最大放电,发电机实际出力,并返回步骤S31;
其中,P为实际充放电功率,充电为负,放电为正;P1为风力发电机组和光伏发电系统可再生能源的总输出功率;n为柴油发电机组数量;P5、P6为柴油发电机组最大输出功率、最小输出功率;Pload为负荷需求;Pgen为柴油发电机组实际输出功率;Ecs为容量短缺;Ept为过剩电能。
进一步的,步骤S3中的调度控制策略满足以下两个前提条件:
当前时刻柴油发电机组能够满足净负荷且无过剩电能;
当前时刻蓄电池储能系统最大放电功率P4>0,即SOC>SOCmin,其中,SOC表示蓄电池储能系统的荷电状态,SOCmin表示蓄电池储能系统最小荷电状态设置。
进一步的,步骤S4中f1(x),f2(x),f3(x)的计算采用下式:
其中,CI(n)、CR(n)、CM(n)、CF(n)分别为第n年各电源的初始投资费用、更新费用、维护费用和燃料费用;σCO、σHC、σNO、σS分别为污染物CO2、CO、HC、CO、S的排放系数,νfule(k)为第k年柴油发电机的年消耗量;Ec(t)为t时刻未满足的容量,即负荷缺电量,El(t)为t时刻负荷需求容量。
进一步的,所述步骤S5具体包括以下步骤:
步骤S51:对系统进行初始化,读取独立微电网微电网系统中风力发电机组、蓄电池储能系统、光伏发电系统、柴油发电机组和遗传算法的参数;
步骤S52:初始化种群P,令当前迭代次数gen=1,通过随机函数产生第一代种群的优化变量;
步骤S53:调用准稳态仿真计算目标函数值,并计算出初始种群个体适应度函数值、拥挤距离来进行Pareto排序;
步骤S54:从父代种群P中通过选择、交叉和变异操作得到子代种群Qm,调用准稳态仿真计算目标函数值,并计算个体适应度函数值;
步骤S55:对父代种群和子代种群全体进行Pareto分级排序,根据个体的支配关系和拥挤距离保留非支配解,得到新一代种群个体;
步骤S56:判断迭代是否达到最大次数,若是,则输出最终的优化结果,否则将当前种群作为父代种群并返回步骤S53,并将当前迭代次数自增1。
与现有技术相比,本发明有以下有益效果:本发明针对一类包含柴油发电机、风力发电、光伏发电和电池储能的船舶微网系统,通过研究动态负荷下储能系统临界出力点,并以此作为柴蓄进行出力优先的判断,构建基于动态临界点的柴蓄优先选择的储能系统调度策略,实现真正意义上的动态多目标微电网的电源配置优化。
附图说明
图1为本发明实施例中的船舶微网系统示意图。
图2为本发明实施例中不同Pk下发电成本变化曲线图。
图3为本发明实施例中基于临界点的控制策略准稳态仿真计算流程图。
图4为本发明实施例中基于NSGA-II的多目标遗传算法示意图。
图5为风光柴蓄混合能源独立船舶微电网在基于柴蓄选择优先和不加入储能系统动态调度两种控制策略下的电源配置Pareto最优解集。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
本实施例构建由柴油发电机组、太阳能以及锂电池组组成的船舶电力微网系统,从燃料和排污费用角度,研究得到动态负荷下储能系统的临界出力点,对多能源微网在不同工况下的经济稳定运行下,研发了柴蓄选择优先的能量控制策略,充分利用可再生资源,实现船舶电力系统节能减排效果的最大化以及系统稳定经济运行,实现动态能量控制策略下微电网电源的配置优化。
本实施例具体按以下流程进行:
1、构建船舶微电网系统
本实施例所针对的船舶微网系统结构如图1所示。可再生能源和储能系统等通过各自的变流器接入交流微网系统。柴油发电机采用同步发电机发电,直接并入交流微网。在优化规划设计中,忽略线路阻抗引起的损耗。
2、基于柴储优先实时协调控制策略的构建。
2.1储能系统实时动态临界最佳放电点的确定。
对于柴油发电机组和蓄电池储能系统某一时刻发电成本计算,主要考虑运行燃料费用、排污治理费用。假设当前净负荷为Lj时,则利用柴油发电机组发电所产生的燃料和排污治理费用计算如式1所示。
Y1=(kLj+C)F1 (1)
式中,Y1为柴油发电机组发电成本,¥;k为燃料费用,¥/h;C为污染气体单位治理费用,¥/L;F1为燃料消耗量,L。
当净负荷为Lj时,计算蓄电池储能系统某一时刻发电成本需要判断其内部能量的来源情况。若使用来源于柴油发电机组给蓄电池充电的能量,则要通过考虑这部分的能量充电损耗率,计算出充电过程中实际的燃油消耗费用和排污治理费用;若使用来自可再生能源给蓄电池充电的能量,则近似出力成本为零。具体计算如式2所示。
式中,Y2为蓄电池储能系统发电成本,¥;k为燃料费用,¥/h;C为污染气体单位治理费用,¥/L;F1为燃料消耗量,L;Pk为蓄电池储能系统中来自可再生能源的能量,kW;μ为柴油发电机组对蓄电池储能系统的充电效率。
式中,λ为污染物当量值与治理费用的折算率;σCO、σHC、σNO、σSξCO、ξHC、ξNO、ξS为污染物CO2、CO、HC、CO、S、SO2的排放系数,kg/L和污染当量值,如表1所示。
表1大气污染物污染当量值
Tab.1Equivalentvalue ofair pollution
通过式(1)、(2)、(3)可求出不同Pk、不同净负荷条件下Y1、Y2大小。图2为Y1、Y2随净负荷大小Lj的变化曲线。
从图2可以看出,通过简化计算,发电成本与净负荷成线性关系;储能系统存储来源可再生能源的能量Pk越大,其出力成本越低。以储能Pk=10为例,当净负荷Lj=25kW时,Y1=Y2=2.46¥;当Lj>25kW时,Y1<Y2;当Lj<25kW时,Y1>Y2;所以定义在储能Pk=10kW时,其临界优先放电点为PQ=25kW,即优先选择蓄电池储能系统进行出力,最大值为25kW。表2为不同储能下的临界优先放电点。
表2不同储能下的临界优先放电点
Tab.2Critical discharge point under different energy storage
2.2基于储能系统实时临界最佳放电点的能量协调控制策略。
根据以上储能充放临界点的确定方法,可以实时计算出不同时刻不同负荷基于储能不同充放临界点,根据该时刻的临界点构建调度策略准稳态仿真流程图如图3所示。其中CH表示柴蓄选择优先权,当CH=0,优先选择储能出力;当CH=1,优先选择柴油发电机组出力。P3、P4为当前仿真步长内蓄电池储能系统的最大充电功率、放电功率,P为实际充放电功率,充电为负,放电为正;P1为风力发电机组和光伏发电系统可再生能源的总输出功率;n为柴油发电机组数量;P5、P6为柴油发电机组最大输出功率、最小输出功率;Pload为负荷需求;Pgen为柴油发电机组实际输出功率;Ecs为容量短缺;Ept为过剩电能;
该调度策略需满足两个前提条件:
1)当前时刻柴油发电机组能够满足净负荷且无过剩电能;
2)当前时刻蓄电池储能系统最大放电功率P4>0,即SOC>SOCmin
3、船舶微电网的电源优化设计模型。
本实施例对各种备选电源的配置问题可以转化为求满足等式约束和不等式约束的目标函数最小值的优化模型,如式(4)所示:
式中:f(x)为优化目标函数;f1(x)、f2(x)、f3(x)为目标函数;h(x)和g(x)分别为等式约束条件和不等式约束条件。
f1(x)为全寿命周期内的投资总成本,如式(5)
其中,N为全寿命周期年限;r为折现率;CI(n)、CR(n)、CM(n)、CF(n)分别为第n年各电源的初始投资费用、更新费用、维护费用和燃料费用。
f2(x)污染物排放治理成本,如式(6)
式中,σCO、σHC、σNO、σS分别为污染物CO2、CO、HC、CO、S的排放系数,kg/L;νfule(k)为第k年柴油发电机的年消耗量,L。
f3(x)系统容量可靠性,如式(7)
4、多目标电源配置优化求解。
本实施例以以上构建的三个函数作为优化目标,各目标之间不存在优劣之分。基于本发明所构建的柴储优先实时协调控制策略,采用了基于NSGA-II的多目标遗传算法进行求解,其求解流程如图4所示。
具体操作步骤如下:
1)对系统进行初始化。读取独立微电网微电网系统中风力发电机组、蓄电池储能系统、光伏发电系统、柴油发电机组等设备和遗传算法的参数。
2)初始化种群P,令当前迭代次数gen=1,通过随机函数产生第一代种群的优化变量,调用准稳态仿真计算目标函数值,并计算出初始种群个体适应度函数值、拥挤距离来进行Pareto排序。
3)从父代种群P中通过选择、交叉和变异操作得到子代种群Qm,调用准稳态仿真计算目标函数值,并计算个体适应度函数值。
4)对父代种群和子代种群全体进行Pareto分级排序,根据个体的支配关系和拥挤距离保留非支配解,得到新一代种群个体。
5)判断迭代是否达到最大次数,若是,则输出最终的优化结果,否则将当前种群P作为父代种群继续进行步骤3),并将当前迭代次数自增1。
特别的,在本实施例中,如图5所示,图5为风光柴蓄混合能源独立船舶微电网在基于柴蓄选择优先和不加入储能系统动态调度两种控制策略下的电源配置Pareto最优解集。其中,策略1表示以柴油发电机组为主控电源的能量控制策略,策略2代表以柴油发电机组为主控电源并基于柴蓄选择优先的储能系统动态调度的能量控制策略;星型离散点代表在控制策略1下的电源配置Pareto最优解集;点型离散点代表在控制策略2下的电源配置Pareto最优解集。
从图5的(a)中可以发现,两种控制策略的Pareto解集分布趋势基本相同,说明三个目标函数的制约关系是一致的,不会因为控制策略的不同而改变;但同时也可以看出策略2的解集更优于策略1的解集。从图5的(b)、(c)、(d)可以明显地看出控制策略2相比策略1在相同缺失率的条件下,独立微电网的总成本现值和排污水平相对较低,由此可见,基于柴蓄选择优先的控制策略下独立微电网系统能够有效降低了全寿命周期内的成本现值和排污量并且在一定程度上提高了系统可靠性。
从图5所示的优化解集中对不同的能量控制策略各选两种配置组合方案进行分析,表3为策略1、2下选取的电源组合方案的运行结果。
表3策略1、2下的优化结果
从表3中可知,无论是配置1还是配置2,策略2相对策略1下的系统总成本现值、负荷缺失率和污染物排放量均低更低,这是因为在储能系统动态调度的策略中,蓄电池储能系统能够根据当前实际运行状况计算柴蓄发电成本来对出力方式进行选择,大大减少系统的运行成本,同时提高了蓄电池储能系统使用率,降低了污染物的排放量。因此采用基于储能系统动态调度的控制策略比单一使用柴油发电机组为主控电源的控制策略在独立微电网电源优化配置中有更好的经济性能、可靠性能和环保性能。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1.一种多能源船舶微网的多目标电源配置优化方法,其特征在于:包括以下步骤:
步骤S1:构建由柴油发电机组、可再生能源以及储能系统组成的船舶电力微网系统;其中所述柴油发电机组采用同步发电机发电,直接并入交流微网;所述可再生能源以及储能系统通过各自的交流器接入交流微网;
步骤S2:确定所述储能系统的实时临界最佳放电点;
步骤S3:基于步骤S2确定的所述储能系统的实时临界最佳放电点的能量协调构建调度控制策略;
步骤S4:将对各种备选电源的配置问题转化为求满足等式约束和不等式约束的目标函数最小值的优化模型:
min f ( x ) = m i n { f 1 ( x ) , f 2 ( x ) , f 3 ( x ) } s . t . h ( x ) = 0 g ( x ) ≤ 0 ;
其中,f(x)为优化目标函数,f1(x),f2(x),f3(x)为目标函数,h(x)和g(x)分别为等式约束条件和不等式约束条件;f1(x)全寿命周期内的投资总成本函数,f2(x)为污染物排放治理成本函数,f3(x)为系统容量可靠性函数;
步骤S5:以步骤S4构建的3个函数作为优化目标,基于步骤S3构建的调度控制策略,基于NSGA-II的多目标遗传算法进行求解。
2.根据权利要求1所述的一种多能源船舶微网的多目标电源配置优化方法,其特征在于:所述步骤S2具体包括以下步骤:
步骤S21:当前净负荷为Lj时,柴油发电机组发电成本Y1采用下式计算:
Y1=(kLj+C)F1
其中,k为燃料费用;C为污染气体单位治理费用;F1为燃料消耗量;
步骤S22:当前净负荷为Lj时,蓄电池储能系统发电成本Y2采用下式计算:
Y 2 = 0 ( L j < P k ) ( kL j + C ) ( L j - P k ) F 1 / &mu; ( L j &GreaterEqual; P k ) ;
其中,k为燃料费用;C为污染气体单位治理费用;F1为燃料消耗量,Pk为蓄电池储能系统中来自可再生能源的能量;μ为柴油发电机组对蓄电池储能系统的充电效率;
步骤S23:确定满足条件Y1=Y2的点为所述储能系统的实时临界最佳放电点。
3.根据权利要求1所述的一种多能源船舶微网的多目标电源配置优化方法,其特征在于:所述步骤S3具体包括以下步骤:
步骤S31:计算当前仿真步长内蓄电池储能系统的最大充电功率P3、放电功率P4;并判断CH的值,当CH=0,优先选择储能出力;当CH=1,优先选择柴油发电机组出力;
步骤S32:判断是否n*P5+P4+P1<Pload并且n<m;若是,则投入一台发电机,即令n=n+1,并且重新判断步骤S32;否则,进入步骤S33;
步骤S33:判断是否(n-1)*P5+P4+P1>Pload、n*P6+P4+P1>Pload并且n>1,若是,则关闭一台发电机,即令n=n-1,并且重新判断步骤S33;否则进入步骤S34;
步骤S34:判断是否n*P5+P4+P1<Pload,若是,则令
Pgen=n*P5
P=P4
Ecs=Ecs+Pload-n*P5-P4-P;
此时,发电机最大出力,蓄电池最大放电,确定容量短缺,并返回步骤S31;否则,进入步骤S35:
步骤S35:判断是否n*P5+P1>Pload,若否,则令
P gen = n * P 5 P = P load - n * P 5 - P 1 ;
此时,发电机最大出力,蓄电池实际放电,并返回步骤S31;若是,进入步骤S36;
步骤S36:判断是否n*P6+P1>Pload,若是,进入步骤S37,否则进入步骤S38;
步骤S37:判断是否n*P6+P1+P3>Pload,若是,则令
P g e n = n * P 6 P = P 3 ;
此时,发电机最小出力,蓄电池最大充电,确定过剩电能,并返回步骤S31;否则,令
P = P l o a d - n * P 6 - P 1 P g e n = n * P 6 ;
此时,发电机最小出力,蓄电池实际充电,并返回步骤S31;
步骤S38:判断是否CH=1,若是,则进入步骤S39;否则,令
P = 0 P g e n = P l o a d - P 1 ;
此时,发电机实际出力,并返回步骤S31;
步骤S39:判断是否n*P6+P1+P4>Pload,若是,则令
P = P l o a d - n * P 6 - P 1 P g e n = n * P 6 ;
此时,发电机最小出力,蓄电池实际放电,并返回步骤S31;否则,令
P = P 4 P g e n = P l o a d - P 1 - P 4 ;
此时,蓄电池最大放电,发电机实际出力,并返回步骤S31;
其中,P为实际充放电功率,充电为负,放电为正;P1为风力发电机组和光伏发电系统可再生能源的总输出功率;n为柴油发电机组数量;P5、P6为柴油发电机组最大输出功率、最小输出功率;Pload为负荷需求;Pgen为柴油发电机组实际输出功率;Ecs为容量短缺;Ept为过剩电能。
4.根据权利要求3所述的一种多能源船舶微网的多目标电源配置优化方法,其特征在于:步骤S3中的调度控制策略满足以下两个前提条件:
当前时刻柴油发电机组能够满足净负荷且无过剩电能;
当前时刻蓄电池储能系统最大放电功率P4〉0,即SOC>SOCmin,其中,SOC表示蓄电池储能系统的荷电状态,SOCmin表示蓄电池储能系统最小荷电状态设置。
5.根据权利要求1所述的一种多能源船舶微网的多目标电源配置优化方法,其特征在于:步骤S4中f1(x),f2(x),f3(x)的计算采用下式:
f 1 ( x ) = &Sigma; n = 1 N &lsqb; C I ( n ) + C R ( n ) + C M ( n ) + C F ( n ) &rsqb; ( 1 + r ) n ;
f 2 ( X ) = &Sigma; k = 1 K ( &sigma; CO 2 , &sigma; C O , &sigma; H C , &sigma; N O , &sigma; S ) v f u l e ( k ) ;
f 3 ( 3 ) = &Sigma; t = 1 8760 E c ( t ) &Sigma; t = 1 8760 E l ( t ) ;
其中,CI(n)、CR(n)、CM(n)、CF(n)分别为第n年各电源的初始投资费用、更新费用、维护费用和燃料费用;σCO、σHC、σNO、σS分别为污染物CO2、CO、HC、CO、S的排放系数,νfule(k)为第k年柴油发电机的年消耗量;Ec(t)为t时刻未满足的容量,即负荷缺电量;El(t)为t时刻负荷需求容量。
6.根据权利要求1所述的一种多能源船舶微网的多目标电源配置优化方法,其特征在于:所述步骤S5具体包括以下步骤:
步骤S51:对系统进行初始化,读取独立微电网微电网系统中风力发电机组、蓄电池储能系统、光伏发电系统、柴油发电机组和遗传算法的参数;
步骤S52:初始化种群P,令当前迭代次数gen=1,通过随机函数产生第一代种群的优化变量;
步骤S53:调用准稳态仿真计算目标函数值,并计算出初始种群个体适应度函数值、拥挤距离来进行Pareto排序;
步骤S54:从父代种群P中通过选择、交叉和变异操作得到子代种群Qm,调用准稳态仿真计算目标函数值,并计算个体适应度函数值;
步骤S55:对父代种群和子代种群全体进行Pareto分级排序,根据个体的支配关系和拥挤距离保留非支配解,得到新一代种群个体;
步骤S56:判断迭代是否达到最大次数,若是,则输出最终的优化结果,否则将当前种群作为父代种群并返回步骤S53,并将当前迭代次数自增1。
CN201710177368.9A 2017-03-23 2017-03-23 一种多能源船舶微网的多目标电源配置优化方法 Active CN106877406B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710177368.9A CN106877406B (zh) 2017-03-23 2017-03-23 一种多能源船舶微网的多目标电源配置优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710177368.9A CN106877406B (zh) 2017-03-23 2017-03-23 一种多能源船舶微网的多目标电源配置优化方法

Publications (2)

Publication Number Publication Date
CN106877406A true CN106877406A (zh) 2017-06-20
CN106877406B CN106877406B (zh) 2019-06-07

Family

ID=59172068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710177368.9A Active CN106877406B (zh) 2017-03-23 2017-03-23 一种多能源船舶微网的多目标电源配置优化方法

Country Status (1)

Country Link
CN (1) CN106877406B (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919675A (zh) * 2017-12-13 2018-04-17 上海电机学院 综合考虑车主和运营商利益的充电站负荷调度模型
CN108494080A (zh) * 2018-03-16 2018-09-04 上海海事大学 一种基于改进nsga-ii的混合动力船舶多目标能量优化方法
CN108539231A (zh) * 2018-03-20 2018-09-14 佛山(云浮)氢能产业与新材料发展研究院 一种多套燃料电池系统的协调控制方法及系统
CN108988339A (zh) * 2018-08-30 2018-12-11 集美大学 一种混合能源系统的多目标优化配置方法以及装置
CN109193803A (zh) * 2018-09-25 2019-01-11 湖北追日电气股份有限公司 多能源智能控制一体化系统及多能源智能控制方法
CN109617139A (zh) * 2019-01-29 2019-04-12 西安建筑科技大学 一种基于两阶段模糊控制的微电网供冷系统能量分配方法
CN109979292A (zh) * 2019-03-29 2019-07-05 武汉理工大学 一种船用混合能源电力推进系统半实物试验平台
CN110110422A (zh) * 2019-04-29 2019-08-09 达器船用推进器(江苏)有限公司 船舶多电源复合利用最低耗油率优化方法
CN111355270A (zh) * 2020-03-31 2020-06-30 国网浙江省电力有限公司电力科学研究院 一种海岛微电网群容量优化配置方法
CN111932008A (zh) * 2020-08-06 2020-11-13 集美大学 一种可适用不同天气状况的船舶光伏输出功率预测方法
CN113193554A (zh) * 2021-05-06 2021-07-30 上海交通大学 一种基于数据驱动的新能源船舶节能减排方法及系统
CN116050796A (zh) * 2023-02-15 2023-05-02 上海交通大学 基于燃料电池能量梯级利用的移动能源网络优化调度方法
CN117559509A (zh) * 2024-01-11 2024-02-13 中国海洋大学 一种船舶柴光储最佳功率匹配方法及装置
CN117559509B (zh) * 2024-01-11 2024-05-14 中国海洋大学 一种船舶柴光储最佳功率匹配方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201966838U (zh) * 2011-03-29 2011-09-07 戴树梅 一种风、光、柴、蓄组合电源及其综合控制系统
JP2012060870A (ja) * 2010-09-11 2012-03-22 Akitaka Numata 人間の健康を増進し景気を振興させる蓄電池。
CN105591406A (zh) * 2015-12-31 2016-05-18 华南理工大学 一种基于非合作博弈的微电网能量管理系统的优化算法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060870A (ja) * 2010-09-11 2012-03-22 Akitaka Numata 人間の健康を増進し景気を振興させる蓄電池。
CN201966838U (zh) * 2011-03-29 2011-09-07 戴树梅 一种风、光、柴、蓄组合电源及其综合控制系统
CN105591406A (zh) * 2015-12-31 2016-05-18 华南理工大学 一种基于非合作博弈的微电网能量管理系统的优化算法

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107919675A (zh) * 2017-12-13 2018-04-17 上海电机学院 综合考虑车主和运营商利益的充电站负荷调度模型
CN107919675B (zh) * 2017-12-13 2021-05-07 上海电机学院 综合考虑车主和运营商利益的充电站负荷调度模型
CN108494080A (zh) * 2018-03-16 2018-09-04 上海海事大学 一种基于改进nsga-ii的混合动力船舶多目标能量优化方法
CN108494080B (zh) * 2018-03-16 2024-01-30 上海海事大学 一种基于改进nsga-ii的混合动力船舶多目标能量优化方法
CN108539231B (zh) * 2018-03-20 2021-01-05 佛山(云浮)氢能产业与新材料发展研究院 一种多套燃料电池系统的协调控制方法及系统
CN108539231A (zh) * 2018-03-20 2018-09-14 佛山(云浮)氢能产业与新材料发展研究院 一种多套燃料电池系统的协调控制方法及系统
CN108988339A (zh) * 2018-08-30 2018-12-11 集美大学 一种混合能源系统的多目标优化配置方法以及装置
CN109193803A (zh) * 2018-09-25 2019-01-11 湖北追日电气股份有限公司 多能源智能控制一体化系统及多能源智能控制方法
CN109193803B (zh) * 2018-09-25 2022-04-19 湖北追日电气股份有限公司 多能源智能控制一体化系统及多能源智能控制方法
CN109617139A (zh) * 2019-01-29 2019-04-12 西安建筑科技大学 一种基于两阶段模糊控制的微电网供冷系统能量分配方法
CN109617139B (zh) * 2019-01-29 2022-09-27 西安建筑科技大学 一种基于两阶段模糊控制的微电网供冷系统能量分配方法
CN109979292A (zh) * 2019-03-29 2019-07-05 武汉理工大学 一种船用混合能源电力推进系统半实物试验平台
CN110110422A (zh) * 2019-04-29 2019-08-09 达器船用推进器(江苏)有限公司 船舶多电源复合利用最低耗油率优化方法
CN110110422B (zh) * 2019-04-29 2023-08-25 达器船用推进器(江苏)有限公司 船舶多电源复合利用最低耗油率优化方法
CN111355270A (zh) * 2020-03-31 2020-06-30 国网浙江省电力有限公司电力科学研究院 一种海岛微电网群容量优化配置方法
CN111932008A (zh) * 2020-08-06 2020-11-13 集美大学 一种可适用不同天气状况的船舶光伏输出功率预测方法
CN111932008B (zh) * 2020-08-06 2022-08-30 集美大学 一种可适用不同天气状况的船舶光伏输出功率预测方法
CN113193554A (zh) * 2021-05-06 2021-07-30 上海交通大学 一种基于数据驱动的新能源船舶节能减排方法及系统
CN116050796A (zh) * 2023-02-15 2023-05-02 上海交通大学 基于燃料电池能量梯级利用的移动能源网络优化调度方法
CN116050796B (zh) * 2023-02-15 2023-09-22 上海交通大学 基于燃料电池能量梯级利用的移动能源网络优化调度方法
CN117559509A (zh) * 2024-01-11 2024-02-13 中国海洋大学 一种船舶柴光储最佳功率匹配方法及装置
CN117559509B (zh) * 2024-01-11 2024-05-14 中国海洋大学 一种船舶柴光储最佳功率匹配方法及装置

Also Published As

Publication number Publication date
CN106877406B (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN106877406B (zh) 一种多能源船舶微网的多目标电源配置优化方法
CN104362677B (zh) 一种主动配电网优化配置结构及其配置方法
CN106026152B (zh) 一种电动汽车接入微电网的充放电调度方法
CN103151798B (zh) 独立微网系统的优化方法
CN105160451B (zh) 一种含电动汽车的微电网多目标优化调度方法
CN105811409B (zh) 一种含电动汽车混合储能系统的微网多目标运行调度方法
CN108520314A (zh) 结合v2g技术的主动配电网调度方法
CN108173283A (zh) 一种含风光可再生能源的热电联供系统运行方法
CN106058855A (zh) 协调储能与柔性负荷的主动配电网多目标优化调度方法
CN105868844A (zh) 一种含电动汽车混合储能系统的微网多目标运行调度方法
CN106549419B (zh) 基于万有引力算法的独立微网系统设计方法
CN105787605A (zh) 基于改进型量子遗传算法的微网经济优化运行调度方法
CN106447152A (zh) 基于能源中心的电‑气‑热系统协同调度方法和系统
CN112347694B (zh) 含洋流-海上风电-潮汐流发电的海岛微网电源规划方法
CN110245794A (zh) 考虑灵活性的多能源汇集中心火储容量双层优化方法
CN111786422A (zh) 基于bp神经网络的微电网参与上层电网实时优化调度方法
CN207819466U (zh) 一种适用零碳建筑的多能互补协调控制供电系统
CN110957722B (zh) 一种含电转气设备的微型能源网日前优化调度方法
CN115001038A (zh) 一种基于随机规划的风光柴储容量配比优化方法
CN116093949A (zh) 考虑两阶段p2g混合储能与碳势控制需求响应优化方法
CN103489131B (zh) 一种基于光柴储供电系统的运行调度方法
CN113902309B (zh) 绿色港口能源互联系统的优化方法及系统
Weiqiang et al. Multi-objective optimisation of ship microgrid research based on priority selective control strategy of diesel generator and energy storage
CN114971154A (zh) 一种包含碳交易机制的可再生能源消纳方法
CN113949098A (zh) 计及fcv的孤岛型混合微电网系统可靠性评估方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant