CN106872957A - 一种目标检测方法 - Google Patents

一种目标检测方法 Download PDF

Info

Publication number
CN106872957A
CN106872957A CN201710202149.1A CN201710202149A CN106872957A CN 106872957 A CN106872957 A CN 106872957A CN 201710202149 A CN201710202149 A CN 201710202149A CN 106872957 A CN106872957 A CN 106872957A
Authority
CN
China
Prior art keywords
reference unit
detection method
object detection
target
thresholding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710202149.1A
Other languages
English (en)
Inventor
刘贵如
汪军
修宇
邹姗
鲍广喜
刘志军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN201710202149.1A priority Critical patent/CN106872957A/zh
Publication of CN106872957A publication Critical patent/CN106872957A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/414Discriminating targets with respect to background clutter

Abstract

本发明提供一种目标检测方法,首先通过对极大值参考单元进行剔除,其次对背景噪声功率进行估算;然后计算功率检测门限,最后判别出检测目标。本发明解决了现有检测方法存在检测性能低,漏检率和虚警率过高,以及在确定极大和极小值功率剔除门限时要依赖于先验知识的技术问题。具有目标检测率高,漏警率低等优点。

Description

一种目标检测方法
技术领域
本发明属于雷达目标检测技术领域,具体涉及一种目标检测方法。
背景技术
以下对本发明的相关技术背景进行说明,但这些说明并不一定构成本发明的现有技术。
随着车辆主动安全技术和智能车技术的白热化,环境感知所需要的目标检测技术广泛应用与行人、车辆、路标、路牌等能够反射微波信号的目标的静态和动态检测。主流的检测技术包括基于微波雷达技术、激光雷达技术和视觉技术。
微波雷达技术以其全天候和低成本的优势,得到了广泛的应用。目前的目标检测方法大部分通过参考窗中的参考单元估计背景噪声功率,再乘以比例系数得到功率,然后将检测单元功率值和功率检测门限进行比较确定检测单元是否为有效目标的回波信号单元即是否有目标。
各检测算法之前的主要差别在于背景噪声功率的估计方法不同。单元平均恒虚警(Cell Averaging-Constant False Alarm Rate,CA-CFAR)目标检测方法通过将参考窗口中所有参考单元的功率值取均值作为背景噪声功率估计值,估计功率检测门限。在均匀噪声环境下具有最优的检测性能,但是在非均匀噪声环境下检测性能严重下降。
最大选择恒虚警(Greatest Of-Constant False Alarm Rate,GO-CFAR)目标检测方法和最小选择恒虚警(Smallest Of-Constant False Alarm Rate,SO-CFAR)目标检测方法是在单元平均恒虚警目标检测方法的基础上进行了改进,最大选择恒虚警目标检测方法针对杂波干扰和多干扰目标检测率过小,漏检率过高。而最小选择恒虚警目标检测方法检测率高,但是在杂波干扰和多干扰目标环境下,虚警率过高。
自动删除单元平均恒虚警(Automatic Censored Cell Averaging-ConstantFalse Alarm Rate,ACCA-CFAR)目标检测方法和自动双剔除单元平均恒虚警(AutomaticDual Censored Cell Averaging-Constant False Alarm Rate,ADCCA-CFAR)目标检测方法通过剔除参考窗口中极大和极小值参考单元,然后取平均值的方法得到功率检测门限,相比较单元平均恒虚警检测方法,具有较佳的检测性能,但是极大和极小值功率剔除门限的确定要依赖于先验知识,具有局限性。
发明内容
为解决现有检测方法存在检测性能低,漏检率和虚警率过高,以及在确定极大和极小值功率剔除门限时要依赖于先验知识的技术问题,本发明提供一种目标检测方法。
本发明提供的方法如下:一种目标检测方法,包括以下步骤:
步骤1,对极大值参考单元进行剔除;
步骤2,对背景噪声功率进行估算;
步骤3,计算功率检测门限;
步骤4,对检测目标进行判别。
优选地,所述步骤1中通过双重剔除,剔除极大值参考单元,具体剔除极大值参考单元的方法如下:
步骤1,设定第一重剔除门限为Tc1,由参考单元样本期望值λ乘以系数α得到剔除门限Tc1,计算公式可以表示为:Tc1=λ·α;
参考窗中,除了x0外,其余参考单元xi分别与Tc1进行比较,小于等于Tc1的参考单元序列记为S0,其余参考单元被认为是极大值参考单元,从参考窗中剔除,可表示为:
其中,i∈[1,N];
步骤2,设定Tc2表示第二重剔除门限,由x0测试单元乘以系数α得到剔除门限Tc2,计算公式可以表示为:Tc2=x0·α;S0中全部参考单元{xj}1均与Tc2进行比较,小于等于Tc2的参考单元序列记为S1,其余参考单元被认为是极大值参考单元,从S0中剔除,可表示为:
其中xj∈S0,j∈[1,n0]。
优选地,上述背景噪声功率估算的方法如下:
步骤1,假设Z表示背景噪声功率估计值,则Z的计算公式表示为:
其中,xl∈S0,l∈[1,n0],xk∈S1,k∈[1,n1];
步骤2,根据n1与Nt的比较结果,检测方法从S1或S0中选择相应的参考单元,用于估算出背景噪声功率Z。
优选地,上述计算功率检测门限的方法如下:假设T表示功率检测门限,则T的计算公式表示为:T=Z·α;其中α分别为门限系数。
优选地,上述目标判别的方法如下:假设H1表示有目标,H0表示无目标,目标有无判断方法如下:
优选地,上述参考窗口大小设定为N,所述目标虚警率设定为Pfa,所述门限系数α的计算公式为:
α=(Pfa)1/N-1。
优选地,上述Pfa=10-4;所述N取24。
优选地,上述n1与Nt的比较结果为n1≥Nt时,干扰目标参考单元出现在参考单元集s1中的概率较高,为了提高目标检测方法的检测率,将从S1中选择参考单元用于估计背景噪声功率Z。
优选地,上述n1与Nt的比较结果为n1<Nt时,干扰目标参考单元出现在单元集S1中的概率较小,为了避免Z值估计过小,导致虚警率过高,选择S0中所有参考单元用于估计背景噪声功率Z。
具体优点为:
1、本发明提供的目标检测方法是基于杂波分布模型及参考窗口中参考单元样本的统计特性,对背景噪声平均功率值进行估计,并实时调整极大值剔除功率门限,有效剔除极大值参考单元,不仅提高目标检测率,也降低了漏警率,同时克服了杂波干扰和多目标干扰噪声环境下,目标检测方法检测性能严重下降的问题。
2、本发明提供的目标检测方法基于待检测参考单元功率值乘以根据目标恒虚警率计算得到的比例系数得到第二重极大值参考单元剔除功率门限,再次有效剔除极大值参考单元,提高了目标检测率,降低漏警率。
3、本发明提供的目标检测方法根据参考窗中两次剔除极大值参考单元后,剩余参考单元数,选择相应的参考单元集,估计背景噪声功率值,再乘以根据目标恒虚警率计算得到的比例系数,得到最终的功率检测门限,避免了噪声功率估计过低造成的虚警率过高的问题。
附图说明
通过以下参照附图而提供的具体实施方式部分,本发明的特征和优点将变得更加容易理解,在附图中:
图1是本发明中目标检测方法的结构示意图;;
图2是本发明中本目标检测方法在均匀噪声仿真环境下的目标检测率仿真曲线图;
图3是本发明中本目标检测方法在杂波干扰仿真环境下的目标检测率仿真曲线图;
图4是本发明中本目标检测方法在多干扰目标仿真环境下的目标检测率仿真曲线图。
具体实施方式
下面参照附图对本发明的示例性实施方式进行详细描述。对示例性实施方式的描述仅仅是出于示范目的,而绝不是对本发明及其应用或用法的限制。
参见图1中目标检测方法的结构示意图所示,该方法中设定I和Q为雷达回波信号,经过检波器后得到检测包络序列输入信号。λ为参考窗中参考单元样本期望值,通过杂波分布模型可以估算得到;α为比例系数,0<α≤1;x0为测试单元;x1,x2,x3,……xN为从包络序列输入信号中提取的参考窗参考单元序列,N为参考窗大小,Nt为整数取n0/2。S0为参考窗口中参考单元经过第一次剔除后剩余的参考单元集合,n0表示S0中参考单元个数。S1为参考窗口中参考单元经过第二次剔除后剩余的参考单元集合,n1表示S1中参考单元个数。T为检测功率门限。
目标检测方法的执行步骤如下:
步骤1,对极大值参考单元剔除。假设,Tc1表示第一重剔除门限,由参考单元样本期望值λ乘以系数α得到剔除门限Tc1,计算公式可以表示为:
Tc1=λ·α (1)
参考窗中,除了x0外,其余参考单元xi分别与Tc1进行比较,小于等于Tc1的参考单元序列记为S0,其余参考单元被认为是极大值参考单元,从参考窗中剔除,可表示为:
其中,i∈[1,N]。
假设Tc2表示第二重剔除门限,由x0测试单元乘以系数α得到剔除门限Tc2,计算公式可以表示为:
Tc2=x0·α (3)
S0中全部参考单元{xj}1均与Tc2进行比较,小于等于Tc2的参考单元序列记为S1,其余参考单元被认为是极大值参考单元,从S0中剔除,可表示为:
其中xj∈S0,j∈[1,n0]。
通过双重剔除,剔除极大值参考单元,提高了本目标检测方法的检测率,降低了本目标检测方法的漏检率。
步骤2,对背景噪声功率进行估算;假设Z表示背景噪声功率估计值,则Z的计算公式表示为:
其中,xl∈S0,l∈[1,n0],xk∈S1,k∈[1,n1]。根据n1与Nt的比较结果,检测方法将从S1或者S0中选择相应的参考单元,用于估计背景噪声功率Z。当n1≥Nt时,干扰目标参考单元出现在参考单元集s1中的概率较高,为了提高目标检测方法的检测率,将从S1中选择参考单元用于估计背景噪声功率Z;当n1<Nt时,干扰目标参考单元出现在单元集S1中的概率较小,为了避免Z值估计过小,导致虚警率过高,所以选择S0中所有参考单元用于估计背景噪声功率Z。通过选择相应的参考单元用于估计背景噪声功率,剔除了极小值参考单元,降低了本检测方法的虚警概率。
步骤3,计算功率检测门限。假设T表示功率检测门限,则T的计算公式表示为:
T=Z·α (6)
其中α分别为门限系数。
步骤4,对检测目标进行判别。测试单元x0通过与功率检测门限T进行比较即可判别测试单元x0是否为有效目标的回波信号单元即是否有目标,假设H1表示有目标,H0表示无目标,目标有无判断方法如下:
本方法中的参考窗口大小N取24,Pfa为目标虚警率,本方法中Pfa=10-4,门限系数α的计算公式为:
α=(Pfa)1/N-1 (8)
参见图2所示,该图为本目标检测方法与CA-CFAR和ACCA-CFAR目标检测方法在均匀背景噪声环境下的检测率仿真对比曲线图。从图中可以看出本目标检测方法检测率达97.45%,接近于CA-CFAR,优于ACCA-CFAR目标检测方法。当检测概率为80.00%时,各方法与CA-CFAR方法相比,本目标检测方法损失约0.04dB,ACCA-CFAR方法损失约2.01dB,表明本目标检测方法在均匀背景噪声环境下具有较好的检测性能。
参见图3所示,该图为本目标检测方法与ACCA-CFAR目标检测方法在杂波干扰环境下的检测率仿真对比曲线图。从图中可以看出,本目标检测方法的检测率优于ACCA-CFAR目标检测方法,当SNR=25dB时,本目标检测方法的检测率为97.21%,分别高出ACCA-CFAR目标检测方法的检测率3.20%,表明本目标检测方法在杂波干扰环境下也具有较好的检测性能。
参见图4所示,该图为本目标检测方法与ACCA-CFAR目标检测方法在6个干扰目标环境下的检测率仿真对比曲线图。从图中可以看出,本目标检测方法的检测率优于ACCA-CFAR目标检测方法,当SNR=25dB时,本目标检测方法的检测率为96.32%,分别高出ACCA-CFAR目标检测方法的检测率2.14%,表明本目标检测方法在多干扰目标环境下也具有较好的检测性能。
虽然参照示例性实施方式对本发明进行了描述,但是应当理解,本发明并不局限于文中详细描述和示出的具体实施方式,在不偏离权利要求书所限定的范围的情况下,本领域技术人员可以对所述示例性实施方式做出各种改进或变型。

Claims (9)

1.一种目标检测方法,其特征在于:包括以下步骤:
1)对极大值参考单元进行剔除;
2)对背景噪声功率进行估算;
3)计算功率检测门限;
4)对检测目标进行判别。
2.根据权利要求1所述的目标检测方法,其特征在于:所述步骤1中通过双重剔除,剔除极大值参考单元,具体剔除极大值参考单元的方法如下:
步骤1,设定第一重剔除门限为Tc1,由参考单元样本期望值λ乘以系数α得到剔除门限Tc1,计算公式可以表示为:Tc1=λ·α;
参考窗中,除了x0外,其余参考单元xi分别与Tc1进行比较,小于等于Tc1的参考单元序列记为S0,其余参考单元被认为是极大值参考单元,从参考窗中剔除,可表示为:
其中,i∈[1,N];
步骤2,设定Tc2表示第二重剔除门限,由x0测试单元乘以系数α得到剔n除门限Tc2,计算公式可以表示为:Tc2=x0·α;S0中全部参考单元{xj}10均与Tc2进行比较,小于等于Tc2的参考单元序列记为S1,其余参考单元被认为是极大值参考单元,从S0中剔除,可表示为:
其中xj∈S0,j∈[1,n0]。
3.根据权利要求1所述的目标检测方法,其特征在于:所述背景噪声功率估算的方法如下:
步骤1,假设Z表示背景噪声功率估计值,则Z的计算公式表示为:
Z = 1 n 1 &Sigma; k = 1 n 1 x k n 1 &GreaterEqual; N t 1 n 0 &Sigma; l = 1 n 0 x l n 1 < N t
其中,xl∈S0,l∈[1,n0],xk∈S1,k∈[1,n1];
步骤2,根据n1与Nt的比较结果,检测方法从S1或S0中选择相应的参考单元,用于估算出背景噪声功率Z。
4.根据权利要求3所述的目标检测方法,其特征在于:所述计算功率检测门限的方法如下:假设T表示功率检测门限,则T的计算公式表示为:T=Z·α;其中α分别为门限系数。
5.根据权利要求4所述的目标检测方法,其特征在于:所述目标判别的方法如下:假设H1表示有目标,H0表示无目标,目标有无判断方法如下:
x 0 > T &DoubleRightArrow; H 1 x 0 < T &DoubleRightArrow; H 0 .
6.根据权利要求5所述的目标检测方法,其特征在于:所述参考窗口大小设定为N,所述目标虚警率设定为Pfa,所述门限系数α的计算公式为:
α=(Pfa)1/N-1。
7.根据权利要求6所述的目标检测方法,其特征在于:所述Pfa=10-4;所述N取24。
8.根据权利要求3或7所述的目标检测方法,其特征在于:所述n1与Nt的比较结果为n1≥Nt时,干扰目标参考单元出现在参考单元集s1中的概率较高,为了提高目标检测方法的检测率,将从S1中选择参考单元用于估计背景噪声功率Z。
9.根据权利要求3或7所述的目标检测方法,其特征在于:所述n1与Nt的比较结果为n1<Nt时,干扰目标参考单元出现在单元集S1中的概率较小,为了避免Z值估计过小,导致虚警率过高,选择S0中所有参考单元用于估计背景噪声功率Z。
CN201710202149.1A 2017-03-30 2017-03-30 一种目标检测方法 Pending CN106872957A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710202149.1A CN106872957A (zh) 2017-03-30 2017-03-30 一种目标检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710202149.1A CN106872957A (zh) 2017-03-30 2017-03-30 一种目标检测方法

Publications (1)

Publication Number Publication Date
CN106872957A true CN106872957A (zh) 2017-06-20

Family

ID=59159555

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710202149.1A Pending CN106872957A (zh) 2017-03-30 2017-03-30 一种目标检测方法

Country Status (1)

Country Link
CN (1) CN106872957A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193904A (ja) * 2019-05-29 2020-12-03 日本電気株式会社 目標信号分離装置、パッシブレーダー装置および目標信号分離方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012503A (zh) * 2010-07-29 2011-04-13 中国人民解放军海军航空工程学院 基于秩和局部估计的选大和选小非参量恒虚警检测器
US20130201054A1 (en) * 2012-02-02 2013-08-08 Raytheon Canada Limited Knowledge Aided Detector
CN104035090A (zh) * 2014-05-16 2014-09-10 奇瑞汽车股份有限公司 一种基于雷达目标检测的自由滑窗式cfar控制方法
CN104502899A (zh) * 2014-12-27 2015-04-08 长安大学 一种自适应的恒虚警率目标检测方法
CN104914433A (zh) * 2015-06-15 2015-09-16 南京航空航天大学 一种基于链表排序的os-cfar多目标提取的实现方法
CN105046859A (zh) * 2015-06-02 2015-11-11 北方工业大学 基于振动信号空时二维稀疏表示k-s检验的光纤入侵检测方法
CN105572651A (zh) * 2015-12-30 2016-05-11 哈尔滨工业大学 一种基于杂波背景统计识别的cfar检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012503A (zh) * 2010-07-29 2011-04-13 中国人民解放军海军航空工程学院 基于秩和局部估计的选大和选小非参量恒虚警检测器
US20130201054A1 (en) * 2012-02-02 2013-08-08 Raytheon Canada Limited Knowledge Aided Detector
CN104035090A (zh) * 2014-05-16 2014-09-10 奇瑞汽车股份有限公司 一种基于雷达目标检测的自由滑窗式cfar控制方法
CN104502899A (zh) * 2014-12-27 2015-04-08 长安大学 一种自适应的恒虚警率目标检测方法
CN105046859A (zh) * 2015-06-02 2015-11-11 北方工业大学 基于振动信号空时二维稀疏表示k-s检验的光纤入侵检测方法
CN104914433A (zh) * 2015-06-15 2015-09-16 南京航空航天大学 一种基于链表排序的os-cfar多目标提取的实现方法
CN105572651A (zh) * 2015-12-30 2016-05-11 哈尔滨工业大学 一种基于杂波背景统计识别的cfar检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RENLI ZHANG,ET AL: "Improved switching CFAR detector for non-homogeneous environments", 《ELSEVIER》 *
SAEED ERFANIAN,ET AL: "Introducing excision switching-CFAR in K distributed sea clutter", 《ELSEVIER》 *
郭裕兰等: "一种基于最大选择的 Switching-CFAR 检测器", 《国防科技大学学报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020193904A (ja) * 2019-05-29 2020-12-03 日本電気株式会社 目標信号分離装置、パッシブレーダー装置および目標信号分離方法
JP7234803B2 (ja) 2019-05-29 2023-03-08 日本電気株式会社 目標信号分離装置、パッシブレーダー装置および目標信号分離方法

Similar Documents

Publication Publication Date Title
CN107024682A (zh) 一种基于自适应剔除算法的目标检测方法
CN106646419B (zh) 一种检测杂波边缘雷达目标的自适应恒虚警方法
CN108802722B (zh) 一种基于虚拟谱的弱目标检测前跟踪方法
CN104977579B (zh) 一种基于随机协方差矩阵的多亮点目标空时检测方法
CN111366919B (zh) 基于毫米波雷达的目标检测方法和装置、电子设备、存储介质
CN103995258B (zh) 复杂杂波边缘环境下雷达目标自适应融合检测方法
CN110007299B (zh) 一种基于混合坐标伪谱技术的微弱目标检测跟踪方法
CN106772268A (zh) 一种高斯白噪声下的弱信号盲检测方法
CN105842687A (zh) 基于rcs预测信息的检测跟踪一体化方法
CN109521412A (zh) 基于局部统计量融合的雷达组网空域目标检测方法
CN107067039A (zh) 基于超像素的sar图像舰船目标快速检测方法
CN104237861A (zh) 一种未知杂波背景下的cfar检测门限获取方法
CN107202989A (zh) 一种适用于被动拖曳线列阵声呐的复杂弱目标检测和跟踪方法
CN107703495A (zh) 一种目标信号检测方法及系统
CN105954739A (zh) 一种知识辅助的非参量恒虚警检测方法
CN107024680A (zh) 一种基于双删除门限的目标检测方法
CN106093903A (zh) 基于单边检测单元累积平均的多目标恒虚警检测方法
CN105866748B (zh) 一种基于检测先验的固定窗长恒虚警检测方法
CN102930532A (zh) 基于mrf迭代的sar图像非监督变化检测方法和装置
CN106872957A (zh) 一种目标检测方法
CN108614244A (zh) 韦布尔杂波环境下基于偏斜度的恒虚警检测方法
CN108507607A (zh) 一种基于核函数的微弱信号检测方法
CN107861108A (zh) 一种基于功率谱盒维数的海上目标检测方法
CN106019250A (zh) 基于角闪烁转发式假目标鉴别方法
Zhang et al. An improved CFAR detector for non-homogeneous clutter environment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170620