CN106854215B - 一种新型比率型二价铅离子荧光探针及其制备方法与应用 - Google Patents

一种新型比率型二价铅离子荧光探针及其制备方法与应用 Download PDF

Info

Publication number
CN106854215B
CN106854215B CN201710012203.6A CN201710012203A CN106854215B CN 106854215 B CN106854215 B CN 106854215B CN 201710012203 A CN201710012203 A CN 201710012203A CN 106854215 B CN106854215 B CN 106854215B
Authority
CN
China
Prior art keywords
ratio
fluorescence probe
ion
phenyls
type lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710012203.6A
Other languages
English (en)
Other versions
CN106854215A (zh
Inventor
姚顺成
宋非非
朱沛华
王瑜成
余吉梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201710012203.6A priority Critical patent/CN106854215B/zh
Publication of CN106854215A publication Critical patent/CN106854215A/zh
Application granted granted Critical
Publication of CN106854215B publication Critical patent/CN106854215B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种新型比率型二价铅离子荧光探针及其制备方法与应用。本发明的荧光探针能够在水体系、有机溶剂体系或生物体中选择性检测二价铅离子,在二价铅离子存在时,探针溶液颜色和荧光强度均有显著变化。本发明所述的荧光探针的特性对检测环境中和生物体内的重金属离子含量有突出优点,并在生物荧光标记及生物成像领域有潜在的应用。

Description

一种新型比率型二价铅离子荧光探针及其制备方法与应用
技术领域
本发明涉及一种新型比率型二价铅离子荧光探针及其制备方法与应用,尤其涉及一种苝酰亚胺-卟啉大环化合物及其制备方法和应用;属于有机小分子荧光探针领域。
背景技术
铅离子(Pb2+)是一种极具生理毒性的重金属元素,它被广泛地应用于人类生活生产的各个领域,例如矿山开采、金属冶炼、汽油、建筑材料、燃煤、蓄电池汽车尾气等,使其在许多地区引发了不同程度地铅污染,给自然环境和人类身体健康带来危害。铅作为目前全球最引人关注的环境污染物之一,它对人体的危害主要通过消化道和呼吸道等方式进入到人体内,并且与人体内的各种酶和氨基酸等相互结合,干扰人体的生化和生理活性;铅中毒容易引发贫血症、神经失调和肾损伤等。因此,研发简便、快速、有效、经济的重金属检测方法是非常有必要的。常见的铅离子检测方法有原子吸收光谱法、电感耦合等离子体质谱法、电化学分析法、离子色谱法等,但是这些方法依赖于昂贵的仪器设备、繁杂的预处理或者需要熟练的操作技巧等大大限制了其实际应用。因此,研发一种简单、准确同时专一性比较强的检测铅离子的方法具有非常重要的意义。而荧光分析法由于具有分析灵敏度高、选择性强、使用简便、空间分辨能力高及对细胞损伤小等特点已成为检测微量样品的一个重要且有力的手段,同时引起人们越来越多的关注。
通常情况下,合理的荧光分子探针的设计就是把荧光信号基团与具有某种检测功能的识别基团通过特定的连接方式有效连接在一起。但在已经报道的荧光分子探针中,以荧光强度变化作为检测信号的探针分子其强度变化很容易受到设备效率、环境条件、探针浓度等外在因素的干扰,从而降低荧光探针检测的选择性和灵敏度。而比率型荧光探针主要是依靠双发射波长的比值提供信号,能够有效的解决这些问题的干扰。比率型荧光探针是由两个具有不同发射波长的发光基团通过特定的识别基团共价连接而成的双元体系,其工作原理是连接体(分子识别基团)与被分析物结合后引起能量供体与受体间距离、偶极参数等变化,影响两个发光基团之间能量或电荷转移效率,导致相对应的荧光信号发射峰的位置和强度发生改变,实现对待测物的检测过程。因此,开发新颖的比率型铅离子荧光探针,在水体系及生物环境中检测二价铅离子具有重要的研究意义。
发明内容
针对现有检测技术的不足,本发明通过分子设计、合成出一种新型比率型二价铅离子荧光探针。
本发明还提供了上述比率型二价铅离子荧光探针的制备方法。
本发明还提供了上述比率型二价铅离子荧光探针的应用。
本发明采用以下技术方案:一种新型比率型二价铅离子荧光探针,其特征在于,其结构式为:
本发明提供了上述比率型二价铅离子荧光探针的制备方法。
上述比率型二价铅离子荧光探针的制备方法,其特征在于,它包括以下步骤:
1)将5-(4-羧基苯基)-10, 15, 20-三(4-叔丁基苯基)-卟啉与SOCl2中回流,得到5-(4-甲酰氯苯基)-10, 15, 20-三(4-叔丁基苯基)-卟啉;
2) 5-(4-甲酰氯苯基)-10, 15, 20-三(4-叔丁基苯基)-卟啉与苝酰亚胺发生缩合反应,得苝酰亚胺-卟啉大环化合物。
上述比率型二价铅离子荧光探针的合成路线如下:
所述步骤1)是采用下述方法完成:在70°C – 80 °C温度条件下,按照5-(4-羧基苯基)-10, 15, 20-三(4-叔丁基苯基)-卟啉溶于氯化亚砜中,加入N,N-二甲基甲酰胺作为催化剂,搅拌反应10-16小时,以氮气作为保护气体。减压蒸馏5-10 min,加入二氯甲烷20 mL,再次减压蒸馏5-10 min,保证完全除去SOCl2,得到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉。
按照1 : 500-1000 : 0.1-0.5的摩尔比取5-(4-羧基苯基)-10, 15, 20-三(4-叔丁基苯基)-卟啉,氯化亚砜,N,N-二甲基甲酰胺。
所述步骤2)是采用下述方法完成:5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉溶解在三氯甲烷中,苝酰亚胺和三乙胺溶于三氯甲烷溶液,在15-35 °C的温度条件下,将苝酰亚胺和三乙胺混合溶液滴加到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉三氯甲烷溶液中,逐滴加入,滴加完毕后搅拌10-16小时。反应混合液分别用水、饱和食盐水洗涤3次。加入无水氯化钙干燥、减压蒸馏。以甲醇和二氯甲烷的混合液作为洗脱液,用硅胶柱进行提纯,收集第二带,既得目标产物,苝酰亚胺-卟啉大环化合物。
所述苝酰亚胺和三乙胺的摩尔比是1 : 10-40。
上述柱色谱分离洗脱剂甲醇和二氯甲烷的体积比为1 : 200。
上述的苝酰亚胺-卟啉大环化合物的制备方法,为了进一步提高苝酰亚胺-卟啉大环化合物的纯度,优选的,步骤(2)中将所得产品加氯仿溶解,用甲醇进行重结晶;氯仿和甲醇的摩尔比为1 : 6-8。其中,氯仿作为良溶剂和甲醇作为不良溶剂。
所述的苝酰亚胺-卟啉大环化合物作为比率型二价铅离子荧光探针的应用,其特征在于,用于水体系、有机溶剂体系或生物体中二价铅离子的检测。以荧光强度变化和颜色发生明显变化方式进行测试二价铅离子。
本发明使用的比率型荧光探针本身荧光强度强,溶液呈现紫红色;随着铅离子的加入荧光强度明显降低,且溶液颜色呈现土黄色。
本发明的优势:
(1)本发明比率型二价铅离子荧光探针制备方法简单,且后处理相对容易;
(2)本发明实现了对二价铅离子有效的快速检测,抗其他金属离子干扰性强,具有良好的选择性。
(3)本发明比率型二价铅离子荧光探针对检测环境中和生物体内的重金属离子含量有突出优点,并在生物荧光标记及生物成像领域有潜在的应用。
附图说明
图1是实施例1中探针苝酰亚胺-卟啉大环化合物的1H NMR图谱;
图2是探针苝酰亚胺-卟啉大环化合物的质谱图;
图3是探针苝酰亚胺-卟啉大环化合物随二价铅离子的加入荧光光谱图的变化情况;
图4是探针苝酰亚胺-卟啉大环化合物随着二价铅离子加入的荧光强度比率值(I607/I719)与铅离子浓度线性关系图;
图5是探针苝酰亚胺-卟啉大环化合物随二价铅离子加入紫外可见光谱图的变化情况;
图6是探针苝酰亚胺-卟啉大环化合物对不同金属离子的选择性荧光光谱图;
图7是探针苝酰亚胺-卟啉大环化合物对不同金属离子的选择性柱状图数据,其中1-13分别指的是Ba2+、Co2+ 、Pb2+、Mg2+、K+、Mn2+、Hg2+、Ni2+、Ca2+、Fe2+、Cd2+、Na+
具体实施方式
下面结合具体实施例和附图对本发明做进一步的详细说明。
实施例1比率型二价铅离子荧光探针的制备工艺Ⅰ
氮气保护下,5-(4-羧基卟啉)-10, 15, 20-三(4-叔丁基苯基)-卟啉(20 mg)溶于5 mL SOCl2中,回流12 h,减压蒸馏5-10 min,加入二氯甲烷20 mL,再次减压蒸馏5-10min,保证完全除去SOCl2,得到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉。室温下,将得到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉溶解在2 mL三氯甲烷中,把含有苝酰亚胺(30 mg,过量)和三乙胺(0.1 mL)的三氯甲烷溶液(10 mL)用恒压滴液漏斗逐滴加入。然后再搅拌反应10 h,然后反应混合液减压浓缩,反应固体溶解在50 mL甲苯中,有机相分别用水(3×10 mL),饱和食盐水10 mL洗涤。然后干燥、减压蒸馏。固体产品用硅胶色谱柱分离,淋洗液为甲醇/二氯甲烷=0.5%,收集第二带。用三氯甲烷/甲醇重结晶,得黑紫色固体粉末,干燥得目标产物,产率15.2%。
1H NMR (CDCl3, 300 MHz): δ 8.98-8.91 (m, 4H), 8.88-8.82 (m, 6H), 8.75(s, 2H), 8.29-8.28 (m, 2H), 8.16-8.10 (m, 6H), 7.75-7.82 (s, 8H), 3.71-3.77(s, 35H), -2.85 (s, 2H). MS (TOF) m/z: 1423.67. 1H NMR图谱如图1所示,质谱图如图2所示,综合1H NMR和MS结果表明,所得产物正确。
实施例2比率型二价铅离子荧光探针的制备工艺Ⅱ
氮气保护下,将5-(4-羧基卟啉)-10, 15, 20-三(4-叔丁基苯基)-卟啉(80 mg)溶于20 mL SOCl2中,加入150 µL DMF,回流12 h,减压蒸馏5-10 min,加入二氯甲烷20 mL,再次减压蒸馏5-10 min,保证完全除去SOCl2,得到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉。室温下,将5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉溶解在5mL无水三氯甲烷中,用恒压滴液漏斗将苝酰亚胺(150 mg)和三乙胺(1 mL)的三氯甲烷(40mL)溶液逐滴加入,搅拌反应10 h,然后反应混合液减压浓缩,反应固体溶解在200 mL甲苯中,有机相分别用水(3×10 mL),饱和食盐水10 mL洗涤。无水硫酸钠干燥、减压蒸馏。固体产品用硅胶色谱柱分离,淋洗液为甲醇/二氯甲烷=0.5%,收集第二带。用三氯甲烷/甲醇重结晶,得黑紫色固体粉末,常温下干燥得产物。产率37.5%。
1H NMR (CDCl3, 300 MHz): δ 8.98-8.91 (m, 4H), 8.88-8.82 (m, 6H), 8.75(s, 2H), 8.29-8.28 (m, 2H), 8.16-8.10 (m, 6H), 7.75-7.82 (s, 8H), 3.71-3.77(s, 35H), -2.85 (s, 2H). MS (TOF) m/z: 1423.67. 1H NMR图谱如图1所示,质谱图如图2所示,综合1H NMR和MS结果表明,所得产物正确。
实施例3荧光探针苝酰亚胺-卟啉大环化合物与二价铅离子作用荧光光谱的变化
将实施例1或实施例2中制备的苝酰亚胺-卟啉大环化合物比率型二价铅离子荧光探针溶于二氯甲烷:甲醇(V:V=1:1)中,配制成浓度为20 µM的苝酰亚胺-卟啉大环化合物溶液,作为储备液。取1 mL储备液到10 mL容量瓶中,分别加入0.02、0.04、0.06、0.08、0.1、0.12、0.14、0.16、0.18、0.2、0.3、0.4、0.5、0.6、0.7、0.8、1 mL的0.2 mM Pb2+溶液,并用二氯甲烷/甲醇(V:V=1:1)定容至10 mL。得到的待测溶液含有2 µM的荧光探针和0.4 µM-20 µM的Pb2+溶液,室温下放置2 h,使铅离子与荧光探针充分反应。相同条件下测试单纯荧光探针溶液,以不加入铅离子作空白对比。上面所述体系用荧光光谱仪测试加入不同铅离子后的荧光光谱,激发波长为418 nm,发射波长范围为550-800 nm,结果如图3所示。实验结果表明随着加入铅离子浓度的不断增多,在653 nm和719 nm处荧光发射峰强度逐渐降低,在607nm处出现一逐渐增强的新的荧光发射峰,表示荧光探针分子和Pb2+络合形成了一种新的配合物。用荧光探针与Pb2+作用在607 nm和719 nm处的荧光比率值I607/I719作为铅离子识别荧光信号的依据。当铅离子浓度在0.4-22 µM区域内,该荧光比率值随着铅离子的浓度增大逐渐增大,分别在0.4-3.2 µM和3.2-22 µM范围内呈现良好的线性关系,R值为0.98,如图4所示。
实施例4荧光探针苝酰亚胺-卟啉大环化合物与二价铅离子作用的紫外可见吸收光谱变化
向浓度为2 µM荧光探针溶液中分别加入二价铅离子浓度为0.4、0.8、1.2、1.6、2、2.4、2.8、3.2、3.6、4、6、8、10、12、14、16、20 µM,室温下放置2 h,使用UV-2550分光光度计测试其紫外可见吸收光谱,结果如图5所示。从图5中可以看出,随着加入Pb2+的量由 0.4 µM增加 2 µM 时,溶液在418 nm处的吸光度强度依次减小,但是峰位置依然不变,当加入Pb2+浓度为2.4、2.8、3.2、3.6、4、6、8、10、12、14、16、20 µM 时最大吸收峰位置红移了5 nm左右,且吸收强度依次降低;而在466 nm 处出现了一个随着Pb2+浓度的增加,吸光度逐渐增加的吸收峰。
实施例5荧光探针苝酰亚胺-卟啉大环化合物对不同金属离子的选择性
以Mg2+、Ca2+、Ba2+、Pb2+、Fe2+、Na+、K+、Cd2+、Mn2+、Hg2+、Ni2+、Co2+这12种金属离子作为研究对象,分别向荧光探针溶液中加入上述过量的金属离子,静置2 h,测试其荧光光谱,激发波长为418 nm,实验结果分别见图6和图7所示(序号1-13分别指的是Ba2+、Co2+ 、Pb2+、Mg2 +、K+、Mn2+、Hg2+、Ni2+、Ca2+、Fe2+、Cd2+、Na+)。结果表明Pb2+ 荧光强度发生明显的淬灭,而其他11种金属盐离子的溶液荧光强度的变化远远不如Pb2+明显,因此可以证实本发明的探针具有较好的选择性。

Claims (10)

1.一种比率型二价铅离子荧光探针,其特征在于,其结构式为:
2.一种权利要求1所述的比率型二价铅离子荧光探针的制备方法,其特征在于,它包括以下步骤:
1)将5-(4-羧基苯基)-10,15,20-三(4-叔丁基苯基)-卟啉在SOCl2中回流,得到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉;
2)5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉与苝酰亚胺发生缩合反应,得苝酰亚胺-卟啉大环化合物;所述5-(4-羧基苯基)-10,15,20-三(4-叔丁基苯基)-卟啉的结构式为:
所述苝酰亚胺的结构式如下:
3.根据权利要求2所述的比率型二价铅离子荧光探针的制备方法,其特征在于,所述步骤1)是采用下述方法完成:在70℃–80℃温度条件下,将5-(4-羧基苯基)-10,15,20-三(4-叔丁基苯基)-卟啉溶于氯化亚砜中,加入N,N-二甲基甲酰胺作为催化剂,搅拌反应10-16小时,以氮气作为保护气体,减压蒸馏5-10min,加入二氯甲烷20mL,再次减压蒸馏5-10min,保证完全除去SOCl2,得到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉。
4.根据权利要求3所述的比率型二价铅离子荧光探针的制备方法,其特征在于,5-(4-羧基苯基)-10,15,20-三(4-叔丁基苯基)-卟啉、 氯化亚砜、 N,N-二甲基甲酰胺的 摩尔比是1:500-1000:0.1-0.5。
5.根据权利要求2所述的比率型二价铅离子荧光探针的制备方法,其特征在于,所述步骤2)是采用下述方法完成:5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉溶解在三氯甲烷中,苝酰亚胺和三乙胺溶于三氯甲烷溶液,在15-35℃的温度条件下,将苝酰亚胺和三乙胺混合溶液滴加到5-(4-甲酰氯苯基)-10,15,20-三(4-叔丁基苯基)-卟啉三氯甲烷溶液中,逐滴加入,滴加完毕后搅拌10-16小时,反应混合液分别用水、 饱和食盐水洗涤3次,加入无水氯化钙干燥, 减压蒸馏,以甲醇和二氯甲烷的混合液作为洗脱液,用硅胶柱进行提纯,收集第二带,既得目标产物,苝酰亚胺-卟啉大环化合物。
6.根据权利要求5所述的比率型二价铅离子荧光探针的制备方法,其特征在于,所述柱色谱分离洗脱剂甲醇和二氯甲烷的体积比为1:200。
7.根据权利要求5所述的比率型二价铅离子荧光探针的制备方法,其特征在于,所述的苝酰亚胺和三乙胺摩尔比是1:10-40。
8.根据权利要求5所述的比率型二价铅离子荧光探针的制备方法,其特征在于,为了提高苝酰亚胺-卟啉大环化合物的纯度,步骤(2)中将所得产品加氯仿溶解,用甲醇进行重结晶;氯仿和甲醇的摩尔比为1:6-8,其中,氯仿作为良溶剂和甲醇作为不良溶剂。
9.一种权利要求1所述的比率型二价铅离子荧光探针的应用,其特征在于,该荧光探针可以应用于水体系、有机溶剂体系或生物体中是否含有二价铅离子的检测。
10.一种权利要求9所述的比率型二价铅离子荧光探针的应用,其特征在于:所述荧光探针是以荧光淬灭和颜色发生明显变化方式实现识别二价铅离子。
CN201710012203.6A 2017-01-09 2017-01-09 一种新型比率型二价铅离子荧光探针及其制备方法与应用 Expired - Fee Related CN106854215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710012203.6A CN106854215B (zh) 2017-01-09 2017-01-09 一种新型比率型二价铅离子荧光探针及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710012203.6A CN106854215B (zh) 2017-01-09 2017-01-09 一种新型比率型二价铅离子荧光探针及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN106854215A CN106854215A (zh) 2017-06-16
CN106854215B true CN106854215B (zh) 2018-11-06

Family

ID=59126716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710012203.6A Expired - Fee Related CN106854215B (zh) 2017-01-09 2017-01-09 一种新型比率型二价铅离子荧光探针及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106854215B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108414489B (zh) * 2018-03-19 2021-02-05 西北师范大学 一种双发射二氧化硅荧光探针在检测Cu2+中的应用
CN110018144B (zh) * 2019-04-17 2021-11-09 南京理工大学 基于ZnTCPP@MOF的无机离子电致化学发光检测方法
CN113968864B (zh) * 2020-07-23 2023-04-07 浙大城市学院 一种基于锌卟啉轴向配位调控的Cu+荧光探针、制备方法和应用
CN111848543B (zh) * 2020-07-27 2022-04-01 吉林大学 一种用于检测二价铅离子的比率型荧光探针及其制备方法
CN111929284A (zh) * 2020-08-01 2020-11-13 淮南师范学院 农产品中铅离子的快速检测技术

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105349135A (zh) * 2015-11-14 2016-02-24 青岛科技大学 一种检测铅离子的荧光探针及制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105349135A (zh) * 2015-11-14 2016-02-24 青岛科技大学 一种检测铅离子的荧光探针及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Fluorescence Switch Based on a Porphyrin-perylene Dyad;Xin Guo YANG;《Chinese Chemical Letters》;20051231;第16卷(第2期);第257-260页 *
Perylene diimide-appended mixed (phthalocyaninato)(porphyrinato) europium(III) double-decker complex: Synthesis, spectroscopy and electrochemical properties;Shuai Dong;《Dyes and Pigments》;20110316;第91卷;第99-104页 *
基于卟啉衍生物的荧光分子探针研究进展;方正辉;《化学传感器》;20100630;第30卷(第2期);第10-15页 *
苝酰亚胺化合物在荧光探针中的应用进展;钟丽娜、杨乐;《化学工程与装备》;20150731;第2015卷(第7期);第214-216页 *

Also Published As

Publication number Publication date
CN106854215A (zh) 2017-06-16

Similar Documents

Publication Publication Date Title
CN106854215B (zh) 一种新型比率型二价铅离子荧光探针及其制备方法与应用
Huang et al. A near-infrared BODIPY-based fluorescent probe for ratiometric and discriminative detection of Hg2+ and Cu2+ ions in living cells
Chen et al. A highly selective naked-eye and fluorescent probe for fluoride ion based on 1, 8-naphalimide and benzothizazole
Wang et al. A novel p-aminophenylthio-and cyano-substituted BODIPY as a fluorescence turn-on probe for distinguishing cysteine and homocysteine from glutathione
Wei et al. Selective fluorescent sensor for mercury (II) ion based on an easy to prepare double naphthalene Schiff base
Hu et al. Sulfonyl rhodamine hydrazide: A sensitive and selective chromogenic and fluorescent chemodosimeter for copper ion in aqueous media
Hu et al. Fe3+-selective fluorescent probe based on rhodamine B and its application in bioimaging
Gao et al. A reversible fluorescent chemosensor for iron ions based on 1H-imidazo [4, 5-b] phenazine derivative
Chen et al. Characterization of rhodamine B hydroxylamide as a highly selective and sensitive fluorescence probe for copper (II)
CN111423423B (zh) 一种比率型荧光探针在检测过氧亚硝基阴离子中的应用
Okudan et al. ‘Naked-eye’detection of fluoride and acetate anions by using simple and efficient urea and thiourea based colorimetric sensors
Dong et al. A novel ferrocenyl-based multichannel probe for colorimetric detection of Cu (II) and reversible fluorescent “turn-on” recognition of Hg (II) in aqueous environment and living cells
Nunez et al. New rhodamine dimer probes for mercury detection via color changes and enhancement of the fluorescence emission: Fast recognition in cellulose supported devices
Li et al. A triphenylamine-isophorone-based “off–on” fluorescent and colorimetric probe for Cu2+
Huang et al. A novel anthracene-based receptor: highly sensitive fluorescent and colorimetric receptor for fluoride
Wang et al. A fluorescent and colorimetric chemosensor for nitric oxide based on 1, 8-naphthalimide
Zhou et al. Ratiometric fluorescent Zn2+ chemosensor constructed by appending a pair of carboxamidoquinoline on 1, 2-diaminocyclohexane scaffold
Dai et al. A highly selective fluorescent sensor for mercury ion (II) based on azathia‐crown ether possessing a dansyl moiety
CN114591633B (zh) 一类氧杂蒽-半花菁近红外荧光染料,其合成方法及应用
Dong et al. A reversible colorimetric chemosensor for “Naked Eye” sensing of cyanide ion in semi-aqueous solution
Jeong et al. TURN-ON fluorescence detection of cyanide using an ensemble system consisting of a dansyl-based cationic probe and dicyanovinyl derivative
Zhang et al. Phenazine-based colorimetric and fluorescent sensor for the selective detection of cyanides based on supramolecular self-assembly in aqueous solution
Wang et al. A near-infrared squaraine dye for cascade recognition of copper ion and biological phosphate and its application in IMPLICATION logic gate
Fu et al. Reversible and reusable selective detection of cyanide in aqueous solution using BODIPY with activated C–H groups
Farhi et al. Design and application of a tripodal on–off type chemosensor for discriminative and selective detection of Fe 2+ ions

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181106

Termination date: 20200109

CF01 Termination of patent right due to non-payment of annual fee