CN106842878A - 基于电控变焦透镜的反射式数字全息显微成像装置 - Google Patents

基于电控变焦透镜的反射式数字全息显微成像装置 Download PDF

Info

Publication number
CN106842878A
CN106842878A CN201710072893.4A CN201710072893A CN106842878A CN 106842878 A CN106842878 A CN 106842878A CN 201710072893 A CN201710072893 A CN 201710072893A CN 106842878 A CN106842878 A CN 106842878A
Authority
CN
China
Prior art keywords
light
beam splitter
microcobjective
spherical wave
light path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710072893.4A
Other languages
English (en)
Inventor
彭翔
邓定南
彭军政
刘晓利
何文奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201710072893.4A priority Critical patent/CN106842878A/zh
Publication of CN106842878A publication Critical patent/CN106842878A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/10Processes or apparatus for producing holograms using modulated reference beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0033Adaptation of holography to specific applications in hologrammetry for measuring or analysing
    • G03H2001/0038Adaptation of holography to specific applications in hologrammetry for measuring or analysing analogue or digital holobjects

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Holo Graphy (AREA)

Abstract

本发明适用于光学成像及测量技术领域,提供了一种基于电控变焦透镜的反射式数字全息显微成像装置,包括:激光器,第一分束镜,第一、第二、第三光路转向组件,第二分束镜和相机;其中,第一分束镜用于将激光器发出的激光分离为物光和参考光;第一、第二光路转向组件用于将物光经过显微物镜后产生的物光球面波的传播方向引导至第二分束镜;第三光路转向组件中的电控变焦透镜用于通过改变焦距,来使参考光经过电控变焦透镜后形成的参考光球面波的曲率与物光球面波的曲率相同;第三光路转向组件用于将参考光球面波的传播方向引导至第二分束镜,第二分束镜用于将球面波输出,相机用于记录形成的干涉条纹图。本发明提供的装置可以消除相位畸变。

Description

基于电控变焦透镜的反射式数字全息显微成像装置
技术领域
本发明属于光学成像及测量技术领域,尤其涉及一种基于电控变焦透镜的反射式数字全息显微成像装置。
背景技术
数字全息显微成像技术作为定量相位测量的一种重要手段,能够利用一幅全息图同时独立的获得物体定量的振幅信息和相位信息,实现实时动态、高分辨率、非侵入测量。该技术广泛应用在应力测量、活体细胞观测、微结构器件三维测量等方面。
数字全息显微技术由于引入了显微物镜,可以提高测量系统的横向分辨率。不同放大倍率显微物镜可应用在不同样品的测量中,大数值孔径的物镜虽然测量视场较小,但是能够观察到更多的样品的细节信息,可用于生物组织细胞的测量。反之,小数值孔径的物镜虽然不能得到样品更多细节的信息,但是能够获得较大的测量视场,可用于菲尼尔透镜等微阵列结构器件测量。所以,对于不同的待测非透明样品,可以使用不同倍率的显微物镜。
然而,使用显微物镜,会在获取的相位信息中引入相位畸变,所以使用传统数字全息显微系统进行定量相位测量时,必须对此现象进行相位畸变校正,才能获得物体准确的相位信息。近年来,相位畸变校正已经成为国内外学者研究的热点。
数字全息显微成像中相位畸变校正方法,主要分为数值补偿法和物理补偿法两类。数值补偿法,即借用计算机,通过后期数值算法处理消除相位畸变,有课题组提出两次曝光法,这种方法是分别采集有样品和无样品时的两幅全息图,求得对应的相位相减就可以消除相位畸变,但是该方法需要采集两幅全息图,系统需要保持较高的稳定性。还有课题组提出相位掩膜、参考共轭全息图、泽尼克多项式拟合三种数值法来消除相位畸变。另外有人提出只采集一幅全息图,利用最小二乘曲面拟合法就能消除相位畸变。然而数值补偿法中需要曲线拟合、多项式拟合等数值计算,随着记录全息图尺寸增大,计算量也会增大。物理补偿法,即在测量系统中通过引入特定的光学元件来消除相位畸变,可用在Mach-Zehnder干涉结构、Linnik干涉结构。有人提出远心系统结构的方法,该方法是在物光光路中使用镜筒透镜,与显微物镜形成远心结构,从而消除相位畸变,但是在商业数字全息显微系统中,为了节省空间和保证系统紧凑性,常常不能满足远心结构的要求。有课题组提出一种方法,该方法在参考光路加入和物光光路相同的显微物镜,通过调节显微物镜位置实现球面参考光和球面物光曲率相同,消除相位畸变。还有一种方法是在参考光光路引入一个普通透镜,调节透镜的位置产生不同曲率球面波匹配显微物镜的曲率,但是上述两种方法都需要对透镜进行机械移动。
因此,在引入显微物镜的情况下,需要对透镜进行机械移动,来消除显微物镜带来的相位畸变;并且,在对不同样品进行测量时,一方面,需要手动切换不同倍率的物镜成像,另一方面,也需要对透镜进行机械移动,才能消除显微物镜带来的相位畸变,不能保证系统的稳定性。
发明内容
本发明所要解决的技术问题在于提供一种基于电控变焦透镜的反射式数字全息显微成像装置,旨在通过切换不同倍率显微物镜来满足不同测量需求的同时,能够利用电控变焦透镜灵活的补偿不同倍率显微物镜带来的相位畸变,避免了光学元件的机械移动。
本发明提供了一种基于电控变焦透镜的反射式数字全息显微成像装置,包括:
激光器、第一分束镜、第一光路转向组件、第二光路转向组件、第三光路转向组件、第二分束镜和相机,其中,所述第二分束镜位于所述第一光路转向组件和所述第二光路转向组件之间;
其中,所述激光器用于发出激光,并经过所述第一分束镜;
所述第一分束镜用于将所述激光分离为物光和参考光,所述物光经过所述第一光路转向组件和第二光路转向组件,产生物光球面波,所述参考光经过所述第三光路转向组件,产生参考光球面波;
所述第二分束镜,用于将所述物光球面波和所述参考光球面波输出至所述相机的成像平面;
所述相机,用于记录所述物光球面波和所述参考光球面波在所述相机的成像平面上干涉形成的干涉条纹图;
其中,所述第二光路转向组件包括显微物镜转盘和显微物镜,所述显微物镜置于所述显微物镜转盘中,所述显微物镜转盘用于根据待测非透明样品切换不同倍率的显微物镜;
所述第三光路转向组件包括电控变焦透镜,所述电控变焦透镜用于根据切换的显微物镜的倍率来改变焦距,从而使参考光经过所述电控变焦透镜后形成的参考光球面波的曲率与所述物光球面波的曲率相同。
进一步地,所述第一光路转向组件还包括:第一平面镜;
所述第一平面镜与所述物光呈45度角放置,所述第一平面镜用于对物光进行反射,并且反射光依次经过所述成像透镜和第二分束镜后射入所述显微物镜,射出的平行光经过所述待测非透明样品反射后再次射入所述显微物镜,从而形成物光球面波;
所述成像透镜用于汇聚所述物光。
进一步地,所述第三光路转向组件还包括:第二平面镜;
所述第二平面镜与所述参考光呈45度角放置,所述第二平面镜用于将所述参考光球面波反射到所述第二分束镜。
进一步地,所述第三光路转向组件还包括:衰减片;
所述衰减片置于所述第一分束镜和所述电控变焦透镜之间,用于使经过的参考光光路的光强发生衰减。
进一步地,所述反射式数字全息显微成像装置还包括:聚光镜;
所述聚光镜置于所述激光器和所述第一分束镜之间,用于使经过的激光变成平行光。
进一步地,所述第一分束镜分离的反射光作为物光,分离的透射光作为参考光。
进一步地,所述物光和参考光的比例为7:3。
本发明与现有技术相比,有益效果在于:本发明提供的一种基于电控变焦透镜的反射式数字全息显微成像装置,一方面,在引入显微物镜的情况下,可以通过改变电控变焦透镜的焦距,来消除显微物镜带来的相位畸变,避免了光学元件的机械移动;另一方面,因为引入了显微物镜转盘,在针对不同的待测非透明样品时,可以利用显微物镜转盘实现方便的切换不同倍率的显微物镜,满足不同的测量需求,并且,可以根据切换的显微物镜的倍率来改变电控变焦透镜的焦距,使参考光经过所述电控变焦透镜后形成的参考光球面波的曲率与所述物光球面波的曲率相同,从而消除相位畸变;切换不同倍率显微物镜时既不需要手动拆卸光路,特别是对于紧凑、笼式结构的数字全息显微测量系统,又不需要对透镜进行机械移动,满足了不同的测量需求,保证了系统的稳定性和实用性。
附图说明
图1是本发明实施例提供的基于电控变焦透镜的反射式数字全息显微成像装置的结构示意图;
图2a是本发明实施例提供的利用数字全息显微成像装置拍摄分辨率板得到的全息图;
图2b是对图2a经过傅里叶变换得到的频谱示意图;
图2c是本发明实施例提供的将图2b中的+1级频谱平移到频谱中央的结果示意图;
图2d是对图2c中的频谱利用傅里叶逆变换求出的物体相位分布图;
图3a是本发明实施例提供的待测分辨率板的三个不同测量区域的示意图;
图3b是图3a中标号为(1)的区域对应的三维轮廓分布曲线示意图;
图3c是图3a中标号为(2)的区域对应的三维轮廓分布曲线示意图;
图3d是图3a中标号为(3)的区域对应的三维轮廓分布曲线示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的主要实现思想为:利用第一分束镜将射入的激光分离为物光和参考光,物光光路中光通过成像透镜和第二分束镜后射入显微物镜,射出的平行光经过所述待测非透明样品反射后再次射入所述显微物镜,从而形成物光球面波;在参考光光路中,因为引入了电控变焦透镜,可以通过调节电流来调节电控变焦透镜的焦距,从而产生与物光球面波一样曲率的参考光球面波,这样物光球面波和参考光球面波在相机成像平面上形成干涉图,消除了相位畸变;并且,由于引入了电控变焦透镜,从而避免了物理补偿中光学元件需要的机械移动的操作。在物光光路中,由于引入了显微物镜转盘,可以根据待测非透明样品切换不同倍率的显微物镜,以满足不同待测非透明样品的需求。
下面具体介绍这种基于电控变焦透镜的反射式数字全息显微成像装置,如图1所示,包括:
激光器1、聚光镜2、第一分束镜3、第一光路转向组件4、第二光路转向组件5、第三光路转向组件6、第二分束镜7和相机8,其中,所述第二分束镜7位于所述第一光路转向组件4和所述第二光路转向组件5之间;
其中,所述激光器1用于发出激光,所述聚光镜2置于所述激光器1和所述第一分束镜3之间,用于使经过的激光变成平行光。
所述第一分束镜3,用于将经过所述聚光镜2后的平行激光分离为物光和参考光。
具体地,其中,以所述第一分束器3反射的光作为物光,反射光和从聚光镜射出的平行激光所成的夹角为90度,以所述第一分束器3透射的光作为参考光;所述物光和参考光的比例为7:3,设置成这样的比例,并结合衰减片可以更好的调整物参光光强比。
所述第一光路转向组件4包括第一平面镜41和成像透镜42,所述第二光路转向组件5包括显微物镜52和显微物镜转盘51,所述第一平面镜41与所述物光呈45度角放置,用于对物光进行反射;所述成像透镜42位于所述第一平面镜41和所述第二分束镜7之间,用于汇聚所述物光,从而使所述物光经过所述第二分束镜7后尽可能多的射入所述显微物镜52;所述显微物镜52置于所述显微物镜转盘51中,所述显微物镜转盘51用于根据待测非透明样品9切换不同倍率的显微物镜52;所述第一光路转向组件4和所述第二光路转向组件5,用于将物光经过所述显微物镜52后产生的物光球面波的传播方向引导至所述第二分束镜7;具体地,所述物光经过所述第一平面镜41反射,并依次经过所述成像透镜42和所述第二分束镜7后射入所述显微物镜52,射出的平行光经过所述待测非透明样品9反射后再次射入所述显微物镜52,从而形成物光球面波,并射入所述第二分束镜7。
本发明采用显微物镜转盘来转动显微物镜,切换不同倍率的显微物镜成像时不需要手动拆卸光路,特别是对于紧凑、笼式结构的数字全息显微测量系统,使操作更简单。
进一步地,本发明适用的待测样品为非透明样品,物光经过待测非透明样品9反射后再经过所述显微物镜52,形成物光球面波;具体地,物光被所述第一平面镜41反射,并依次经过所述成像透镜52和所述第二分束镜7后射入所述显微物镜52,射出的平行光经过所述待测非透明样品9反射后再次射入所述显微物镜52,从而形成物光球面波。
所述第三光路转向组件6包括衰减片61、电控变焦透镜62和第二平面镜63,所述衰减片61置于所述第一分束镜3和所述电控变焦透镜62之间,用于使经过的参考光光路的光强发生衰减;具体地,可以通过更换不同透过率的衰减片61,来调整物参光光强比(即物光和参考光的光强比),从而使得物光和参考光干涉时能得到较好对比度的干涉条纹。
所述电控变焦透镜62用于根据切换的显微物镜的倍率来改变焦距,从而使参考光光路经过所述电控变焦透镜62后形成的参考光球面波的曲率与所述物光球面波的曲率相同;所述第三光路转向组件6用于将所述参考光球面波的传播方向引导至所述第二分束镜7;具体地,所述第二平面镜63与所述参考光呈45度角放置,所述参考光经过所述电控变焦透镜62后形成参考光球面波,并经过所述第二平面镜63反射后射入所述第二分束镜7。
具体地,所述电控变焦透镜62的焦距可控;更具体地,是通过电控变焦透镜控制软件来控制其焦距的;更具体地,所述电控变焦透镜62不同于传统的玻璃和塑料透镜,它是一种焦距可变的透镜,使用光学透明的弹性薄膜将液体限制在腔体当中,通过改变对液体的压力控制薄膜面型的变化,不同压力产生不同形状,从而改变了电控变焦透镜62的曲率,电控变焦透镜62的焦距随之改变。在电控变焦透镜62的腔体外有一个电磁驱动器,将所述电控变焦透镜62通过USB线连接电脑,通过电脑中的电控变焦透镜控制软件来控制电磁驱动器的电流,通过改变流过电磁驱动器的电流,从而改变对液体的压力,最终使焦距发生改变。
所述第二分束镜7,用于将所述物光球面波和所述参考光球面波输出至所述相机的成像平面。
具体地,所述物光球面波经过所述第二分束镜7后垂直照射所述相机8的成像平面;所述参考光球面波经过所述第二分束镜7后倾斜照射所述相机8的成像平面,所述物光球面波和所述参考光球面波之间呈一定的夹角。
所述相机8即CCD,用于记录所述物光球面波和所述参考光球面波在所述相机8的成像平面上干涉形成的干涉条纹图。
本发明介绍的基于电控变焦透镜的反射式数字全息显微成像装置的核心就在于采用了电控变焦透镜。物光光路中光经过待测非透明样品反射并经过所述显微物镜后,形成物光球面波,为了消除显微物镜引入的相位误差,利用电控变焦透镜产生与物光球面波一样曲率的参考光球面波,这样物光球面波和参考光球面波在相机成像平面上形成干涉图,避免了传统参考光路使用普通透镜或者同等参数物镜等光学元件需要机械移动的操作,消除了显微物镜带来的相位畸变,大大提高了系统的准确度。并且由于使用了电控变焦透镜,可以根据需要改变电控变焦透镜的焦距,转动显微物镜转盘来切换不同倍率物镜时,不需要手动拆卸光路更换不同倍率显微物镜,特别是对于紧凑、笼式结构的数字全息显微测量系统,就可结合所述电控变焦透镜灵活补偿不同倍率显微物镜带来的相位畸变,满足了不同的测量需求,同时也保证了系统的稳定性和实用性。后期也不需要复杂的数值计算处理过程,提高了成像的速度。
下面具体介绍利用本发明提供的使用Mach-Zehnder干涉结构的一种基于电控变焦透镜的反射式数字全息显微成像装置进行待测非透明样品的干涉图像采集,并进行相关待测量数据重建的过程:
第一步:通过对装置进行调整,来补偿所选择倍率的显微物镜52造成的相位畸变;
具体地,物光经过显微物镜52后形成物光球面波,对于不同倍率的显微物镜52,利用电控变焦透镜控制软件,通过改变电流来改变电控变焦透镜62的焦距,从而产生与物光球面波相同曲率的参考光球面波,使得无待测物体时的干涉条纹图为直条纹。其中,确定电控变焦透镜62补偿的参数的方法,可以通过干涉条纹图的频谱形状来判断。
第二步:放置待测非透明样品于该反射式数字全息显微成像装置中,利用所述相机8采集一幅干涉图图像I;
第三步:通过傅里叶变换求得所述干涉图图像I的频谱F;
第四步:选取频谱F中的+1级频谱;
第五步:找出+1级频谱中能量最大值位置作为+1级频谱的中心,然后将+1级频谱平移到整幅频谱中央,使得+1级频谱的中心与整幅频谱的中心重合;
第六步:对重合后的频谱进行傅里叶逆变换,得到待测非透明样品8的振幅分布和相位分布信息。
结合图2-3所示,为了测试基于电控变焦透镜的反射式数字全息显微成像装置的有效性,利用该装置对分辨率板进行了实验。其中,图2a是利用数字全息显微成像装置拍摄分辨率板得到的全息图;图2b是对图2a经过傅里叶变换得到的频谱,图中圆框框出的是+1级频谱;图2c是将图2b中的+1级频谱平移到频谱中央的结果;图2d是对图2c中的频谱利用傅里叶逆变换求出的物体相位分布图。
图3是针对分辨率板中不同测量区域的三维轮廓恢复结果,其中,图3a是待测分辨率板的三个不同测量区域,图3b、3c、3d分别是图3a中标号为(1)、(2)、(3)的区域对应的三维轮廓分布曲线。
从图2d和图3可以看出利用该装置可以很好的消除球面波干涉带来的相位误差,获得待测分辨率板较好的光强信息和相位信息,大大提高了系统的准确度,另外还可以适合切换不同倍率物镜的成像。
本发明基于电控变焦透镜,使得物光球面波和参考光球面波在相机成像平面上干涉形成干涉条纹图,避免了传统参考光路使用普通透镜或者同等参数物镜等光学元件需要机械移动的操作,消除了相位畸变,大大提高了系统的准确度。并且由于使用了电控变焦透镜,可以根据需要改变电控变焦透镜的焦距,转动显微物镜转盘来切换不同倍率时,不需要手动拆卸光路更换不同倍率显微物镜,特别是对于紧凑、笼式结构的数字全息显微测量系统,就可结合所述电控变焦透镜灵活补偿不同倍率显微物镜的相位畸变,满足了不同的测量需求,同时也保证了系统的稳定性和实用性,适用于动态测量。后期也不需要复杂的数值计算处理过程,提高了成像的速度。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种基于电控变焦透镜的反射式数字全息显微成像装置,其特征在于,包括:
激光器、第一分束镜、第一光路转向组件、第二光路转向组件、第三光路转向组件、第二分束镜和相机,其中,所述第二分束镜位于所述第一光路转向组件和所述第二光路转向组件之间;
其中,所述激光器用于发出激光,并经过所述第一分束镜;
所述第一分束镜用于将所述激光分离为物光和参考光,所述物光经过所述第一光路转向组件和第二光路转向组件,产生物光球面波,所述参考光经过所述第三光路转向组件,产生参考光球面波;
所述第二分束镜,用于将所述物光球面波和所述参考光球面波输出至所述相机的成像平面;
所述相机,用于记录所述物光球面波和所述参考光球面波在所述相机的成像平面上干涉形成的干涉条纹图;
其中,所述第二光路转向组件包括显微物镜转盘和显微物镜,所述显微物镜置于所述显微物镜转盘中,所述显微物镜转盘用于根据待测非透明样品切换不同倍率的显微物镜;
所述第三光路转向组件包括电控变焦透镜,所述电控变焦透镜用于根据切换的显微物镜的倍率来改变焦距,从而使参考光经过所述电控变焦透镜后形成的参考光球面波的曲率与所述物光球面波的曲率相同。
2.如权利要求1所述的反射式数字全息显微成像装置,其特征在于,所述第一光路转向组件还包括:第一平面镜和成像透镜;
所述第一平面镜与所述物光呈45度角放置,所述第一平面镜用于对物光进行反射,并且反射光依次经过所述成像透镜和第二分束镜后射入所述显微物镜,射出的平行光经过所述待测非透明样品反射后再次射入所述显微物镜,从而形成物光球面波;
所述成像透镜用于汇聚所述物光。
3.如权利要求1或2所述的反射式数字全息显微成像装置,其特征在于,所述第三光路转向组件还包括:第二平面镜;
所述第二平面镜与所述参考光呈45度角放置,所述第二平面镜用于将所述参考光球面波反射到所述第二分束镜。
4.如权利要求3所述的反射式数字全息显微成像装置,其特征在于,所述第三光路转向组件还包括:衰减片;
所述衰减片置于所述第一分束镜和所述电控变焦透镜之间,用于使经过的参考光光路的光强发生衰减。
5.如权利要求1所述的反射式数字全息显微成像装置,其特征在于,所述反射式数字全息显微成像装置还包括:聚光镜;
所述聚光镜置于所述激光器和所述第一分束镜之间,用于使经过的激光变成平行光。
6.如权利要求1所述的反射式数字全息显微成像装置,其特征在于,所述第一分束镜分离的反射光作为物光,分离的透射光作为参考光。
7.如权利要求6所述的反射式数字全息显微成像装置,其特征在于,所述物光和参考光的比例为7:3。
CN201710072893.4A 2017-02-10 2017-02-10 基于电控变焦透镜的反射式数字全息显微成像装置 Pending CN106842878A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710072893.4A CN106842878A (zh) 2017-02-10 2017-02-10 基于电控变焦透镜的反射式数字全息显微成像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710072893.4A CN106842878A (zh) 2017-02-10 2017-02-10 基于电控变焦透镜的反射式数字全息显微成像装置

Publications (1)

Publication Number Publication Date
CN106842878A true CN106842878A (zh) 2017-06-13

Family

ID=59122265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710072893.4A Pending CN106842878A (zh) 2017-02-10 2017-02-10 基于电控变焦透镜的反射式数字全息显微成像装置

Country Status (1)

Country Link
CN (1) CN106842878A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167095A (zh) * 2017-07-10 2017-09-15 天津农学院 基于参考透镜法的数字全息显微相位畸变校正方法
CN108088368A (zh) * 2018-01-08 2018-05-29 哈尔滨工程大学 基于分光瞳的反射式离轴数字全息装置与方法
CN108180833A (zh) * 2018-01-08 2018-06-19 哈尔滨工程大学 基于分光瞳的反射式同步相移数字全息装置与方法
CN108415230A (zh) * 2018-05-15 2018-08-17 许之敏 一种新型可变焦数字全息显微镜
CN108562225A (zh) * 2018-01-08 2018-09-21 哈尔滨工程大学 基于分光瞳的反射式共路数字全息装置与方法
CN111273534A (zh) * 2020-03-19 2020-06-12 嘉应学院 双波长数字全息显微成像方法及装置
CN111458858A (zh) * 2020-04-13 2020-07-28 北京理工大学 一种超分辨率同轴数字全息显微成像系统与方法
WO2023001085A1 (zh) * 2021-07-23 2023-01-26 华为技术有限公司 一种摄像头模组及电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802913A (zh) * 2007-09-17 2010-08-11 三星电子株式会社 记录/再现全息数据的设备和方法以及全息数据存储介质
CN101915555A (zh) * 2010-07-09 2010-12-15 上海理工大学 采用电控变焦透镜作为共焦显微系统轴向扫描方法
CN201820032U (zh) * 2010-09-08 2011-05-04 芜湖市皖江光电仪器有限公司 一种采用物镜转换器的比较显微镜
CN102109672A (zh) * 2011-01-11 2011-06-29 中国电子科技集团公司第四十五研究所 一种物镜快速变倍分离视场显微镜
WO2014034729A1 (ja) * 2012-08-31 2014-03-06 国立大学法人京都工芸繊維大学 デジタルホログラフィ装置およびデジタルホログラフィ再生方法
CN103913830A (zh) * 2014-03-16 2014-07-09 陈琳琳 盒式显微镜
CN105159043A (zh) * 2015-09-29 2015-12-16 南京理工大学 基于远心光学结构的反射式数字全息显微成像装置
CN105549195A (zh) * 2016-02-19 2016-05-04 夏放军 一种可视显微镜

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101802913A (zh) * 2007-09-17 2010-08-11 三星电子株式会社 记录/再现全息数据的设备和方法以及全息数据存储介质
CN101915555A (zh) * 2010-07-09 2010-12-15 上海理工大学 采用电控变焦透镜作为共焦显微系统轴向扫描方法
CN201820032U (zh) * 2010-09-08 2011-05-04 芜湖市皖江光电仪器有限公司 一种采用物镜转换器的比较显微镜
CN102109672A (zh) * 2011-01-11 2011-06-29 中国电子科技集团公司第四十五研究所 一种物镜快速变倍分离视场显微镜
WO2014034729A1 (ja) * 2012-08-31 2014-03-06 国立大学法人京都工芸繊維大学 デジタルホログラフィ装置およびデジタルホログラフィ再生方法
CN103913830A (zh) * 2014-03-16 2014-07-09 陈琳琳 盒式显微镜
CN105159043A (zh) * 2015-09-29 2015-12-16 南京理工大学 基于远心光学结构的反射式数字全息显微成像装置
CN105549195A (zh) * 2016-02-19 2016-05-04 夏放军 一种可视显微镜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王华英等: "等曲率物光和参考光预放大数字全息显微技术中的相位畸变补偿", 《中国激光》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167095A (zh) * 2017-07-10 2017-09-15 天津农学院 基于参考透镜法的数字全息显微相位畸变校正方法
CN108088368A (zh) * 2018-01-08 2018-05-29 哈尔滨工程大学 基于分光瞳的反射式离轴数字全息装置与方法
CN108180833A (zh) * 2018-01-08 2018-06-19 哈尔滨工程大学 基于分光瞳的反射式同步相移数字全息装置与方法
CN108562225A (zh) * 2018-01-08 2018-09-21 哈尔滨工程大学 基于分光瞳的反射式共路数字全息装置与方法
CN108415230A (zh) * 2018-05-15 2018-08-17 许之敏 一种新型可变焦数字全息显微镜
CN111273534A (zh) * 2020-03-19 2020-06-12 嘉应学院 双波长数字全息显微成像方法及装置
CN111273534B (zh) * 2020-03-19 2021-05-04 嘉应学院 双波长数字全息显微成像方法及装置
CN111458858A (zh) * 2020-04-13 2020-07-28 北京理工大学 一种超分辨率同轴数字全息显微成像系统与方法
WO2023001085A1 (zh) * 2021-07-23 2023-01-26 华为技术有限公司 一种摄像头模组及电子设备

Similar Documents

Publication Publication Date Title
CN106842878A (zh) 基于电控变焦透镜的反射式数字全息显微成像装置
CN106773585A (zh) 基于电控变焦透镜的透射式数字全息显微成像装置
EP3065001B1 (en) Holographic microscope and data processing method for high-resolution hologram image
CN110378473B (zh) 基于深度学习和随机图案的相位层析方法及装置
CN107003638B (zh) 数字全息摄像装置以及数字全息图生成方法
CN105973845A (zh) 光学测量装置和光学测量方法
CN101055222A (zh) 眼镜片光学质量测量装置
CN103913127A (zh) 一种基于子孔径相位拼接的数字全息球面面型检测装置
WO2015002614A1 (en) Methods and systems for transport-of-intensity imaging
CN110346340A (zh) 基于波前传感器的机器学习快速像差测量系统与方法
CN105242512A (zh) 基于远心光学结构的透射式数字全息显微成像装置
CN203053862U (zh) 数字全息显微折射率断层成像装置
CN110675451B (zh) 基于相空间光学的数字自适应校正方法及系统
CN103148800B (zh) 一种基于光场传播的非标记三维显微方法和装置
Krauze et al. Reconstruction method for extended depth-of-field optical diffraction tomography
CN103743707A (zh) 可控高速层析相位的显微方法与装置
CN106969702A (zh) 一种可柔性变倍的离轴数字全息测量装置
CN113568153B (zh) 一种显微成像设备以及纳米尺度三维形貌测量系统
CN113418469B (zh) 光谱共焦扫描共光路数字全息测量系统及测量方法
Huang et al. Multiplane digital holography based on extrapolation iterations
CN115930773A (zh) 轻离轴数字全息检测装置
CN107505706B (zh) 基于并行自适应光学校正的多层共轭像差校正系统和方法
CN109238131A (zh) 一种横向超高分辨的光学相干层析方法和系统
CN102878930B (zh) 一种位相物体位相分布的定量测量方法和装置及其应用
CN105159043A (zh) 基于远心光学结构的反射式数字全息显微成像装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170613

RJ01 Rejection of invention patent application after publication