CN109238131A - 一种横向超高分辨的光学相干层析方法和系统 - Google Patents

一种横向超高分辨的光学相干层析方法和系统 Download PDF

Info

Publication number
CN109238131A
CN109238131A CN201810928053.8A CN201810928053A CN109238131A CN 109238131 A CN109238131 A CN 109238131A CN 201810928053 A CN201810928053 A CN 201810928053A CN 109238131 A CN109238131 A CN 109238131A
Authority
CN
China
Prior art keywords
resolution
super
light
coherence tomography
point spread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810928053.8A
Other languages
English (en)
Other versions
CN109238131B (zh
Inventor
马庆
匡翠方
罗向东
杨春雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Du Micro Optics Technology Co Ltd
Original Assignee
Jiangsu Du Micro Optics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Du Micro Optics Technology Co Ltd filed Critical Jiangsu Du Micro Optics Technology Co Ltd
Priority to CN201810928053.8A priority Critical patent/CN109238131B/zh
Publication of CN109238131A publication Critical patent/CN109238131A/zh
Application granted granted Critical
Publication of CN109238131B publication Critical patent/CN109238131B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection

Landscapes

  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种横向超高分辨的光学相干层析方法和系统,通过光场切换控制样品臂的照明光场,获取多组不同照明模式下的二维或三维扫描样品信息,根据不同照明模式对应的点扩散函数数字相干合成超高分辨点扩散函数,加权叠加所有照明模式下的样品信息获得中间处理图像,利用超高分辨点扩散函数反卷积中间处理图像,重构横向超高分辨的光学相干层析图像。与现有光学相干层析技术相比,本发明通过物理上构造不同照明模式调制照明光场,数字上相干合成超高分辨点扩散函数,根据反卷积算法重构出超高横向空间分辨率图像,可以扩大光学相干层析技术和系统的应用范围。

Description

一种横向超高分辨的光学相干层析方法和系统
技术领域
本发明涉及一种光学相干层析技术,尤其是涉及一种横向超高分辨的光学相干层析方法和系统。
背景技术
光学相干层析技术(Optical Coherence Tomography,简称OCT)作为一种新兴的光学成像技术,能够进行非接触、无损伤、快速地、高分辨率成像,主要应用于眼科、心血管等疾病的临床诊断,考古,集成电路、玻璃面板和光伏组件等的无损检测。
空间分辨率作为光学成像技术最重要的技术指标之一,一直受光学成像系统的衍射极限约束。如何突破该极限获得更高的分辨率是促进包括OCT技术在内的各种光学成像技术不断发展的动力。在OCT系统中,横向空间分辨率取决于采样臂光学系统的横向光场分布,而轴向空间分辨率取决于宽带光源的相干长度,即OCT系统的横向和轴向空间分辨率相互独立。因此,可以使用不同的方法分别提高OCT系统的轴向和横向空间分辨率。目前,提高OCT系统轴向分辨率的主要方法是宽带光源技术,如超短脉冲激光技术、非线性超连续光谱技术和光谱合成技术。提高OCT系统横向分辨率最直接的方法是采样臂使用高数值孔径聚焦光学系统。但是,该方法在获得高横向分辨率的同时必然导致光学系统的焦深变短,从而使得远离实际焦点处的横向分辨率迅速下降。鉴于光纤型OCT系统采样臂的光路系统一般是共聚焦光路结构模式,数字信号处理方法可以用来校正或提高OCT系统的横向空间分辨率,如基于点扩散函数的反卷积算法,类似合成孔径成像的综合孔径相干成像技术。然而,这些方法依然要受光学系统衍射极限的限制,横向空间分辨能力的提高能力有限。通过调节照明光束的振幅、相位和偏振态可以改变聚焦光场(即点扩散函数工程),光学成像系统能够突破衍射极限而获得超高空间分辨率,如使用中心遮挡型光瞳滤波器,环形、多级纯相位光瞳滤波器,复振幅滤波器,光瞳掩模等。因此,丁志华等(中国专利:CN200610053327)提出在采样臂插入超分辨光瞳滤波器,利用相干门抑制轴向响应函数的旁瓣,实现轴向超高分辨OCT。另外,丁志华等(中国专利:CN200910154912)引入光程参量作为控制量,提出基于光程编码和相干合成的超高分辨OCT技术,即引入光程编码分束器,获得多种对应不同光程延迟的有效响应函数,通过改变相干合成时的相对系数,数字控制多种有效响应函数的相对贡献,实现不同程度的超分辨效果。
区别以上各种OCT技术,本发明在样品臂引入光场切换功能,实现照明光场的自动切换,获得多个受衍射极限限制的照明点扩散函数;通过各点扩散函数数字相干合成超分辨点扩散函数,加权叠加所有样品空间信息得到中间处理图像;根据数字相干合成超分辨点扩散函数反卷积中间处理图像,过滤像差和噪声的影响,重构出横向超高分辨图像。
发明内容
本发明针对OCT系统横向分辨率与焦深的相互矛盾,即高横向分辨时沿轴向远离照明焦点处横向分辨率迅速下降,提供一种横向超高分辨的光学相干层析方法和系统,通过物理上的空间光场调制和信号处理上的数字相干合成点扩散函数重构横向超高分辨的光学图像。
本发明的目的可以通过以下技术方案来实现:
一种横向超高分辨的光学相干层析方法和系统,其特征在于,包括宽带光源、光纤隔离器、光纤耦合器、光纤偏振控制器、参考臂、探测臂、样品臂和计算机。该方法和系统通过所述的宽带光源提供短相干长度的照明光,其相干长度决定OCT系统的轴向空间分辨率;所述的光纤隔离器防止沿同一光纤反向传输的光信号进入宽带光源;所述的光纤耦合器保证照明光、参考光和信号光沿相应路径传输;所述的光纤偏振控制器放置在参考臂,调节参考光和信号光构成的相干信号对比度;所述的样品臂具有光场切换功能,能够自动调制样品臂的照明光场,获得不同的点扩散函数;所述的样品臂通过扫描模块,能够使照明光场扫描被测样品,获取多组不同照明模式下的二维或三维样品信息;所述的探测臂包含光谱探测器,接收信号光和参考光合成的相干信号,并将测量信号输入计算机;所述的计算机对测量信号进行处理,并根据要求控制照明光场的切换和光束扫描,根据不同照明模式对应点扩散函数数字相干合成超分辨点扩散函数,加权叠加获得的多组样品信息获得中间处理图像,基于超分辨点扩散函数一维或二维卷积运算重构横向超高分辨的图像。
所述的控制照明光场的物理方法是利用振幅调制、相位调制或振幅相位同时调制的方式控制样品臂上照明光束在样品内形成不同分布的照明光场,使得光学相干层析系统具有不同的横向点扩散函数。
所述的数字相干合成方法是根据各照明模式下对应的光学相干层析系统横向点扩散函数,数字相干合成超高分辨的横向点扩散函数,获得各照明模式下样品信号的权重系数,通过反卷积算法过滤噪声和像差影响,重构出横向超高分辨的光学相干层析图像。
所述的光学相干层析系统的样品臂具有光场切换功能和光束扫描功能,利用振幅模板、相位模板、振幅相位复合模板、或空间光调制器控制照明光场,可以计算机控制自动切换不同照明光场,利用扫描振镜实现照明光束的一维或二维扫描。
所述的重构横向超高分辨图像的流程:首先,将不同照明模式下获取的二维或三维相干信号沿轴向进行插值、傅里叶逆变换获得样品空间域信息;然后,数字相干合成超高分辨的横向点扩散函数,根据不同照明模式的权重叠加上述所有样品空间域信息,形成中间处理图像;最后,利用数字相干合成的超高分辨点扩散函数沿横向反卷积中间处理图像,重构出横向超高分辨的光学相干层析图像。
所述的超高横向分辨点扩散函数数字相干合成是根据不同照明模式下光学相干层析系统实际测量的横向点扩散函数,通过归一化处理以后进行加权叠加,综合合成点扩散函数的半高全宽、分布函数、旁瓣大小、光学传递函数的最大截止频率和光学传递函数高频与低频部分比重调节加权系数。
所述的样品臂照明光场自动切换是计算机控制空间光调制器改变照明光束的振幅、相位或振幅与相位,或者计算机控制安装在机械转轮上的不同振幅模板、相位模板或振幅相位复合模板插入照明光路。
与现有技术相比,本发明通过计算机控制自动切换不同的照明光场,获得不同横向点扩散函数照明下样品的深度信息,数字相干合成具有超高横向空间分辨率的点扩散函数,加权叠加不同照明模式下的OCT图像形成中间处理图像,利用超高横向空间点扩散函数反卷积中间处理图像,重构出横向超高分辨的二维或三维光学相干层析图像。相对其他方法,本发明利用利用具有照明光场切换功能的样品臂进行照明,结合数字合成的超高横向点扩散函数进行图像重构,可以实现具有超高的横向空间分辨率,利于OCT系统获得更大的应用范围。
附图说明
图1为本发明系统的结构示意图;
图2为本发明样品臂的结构示意图;
图3为光场切换模块的结构示意图;
图中,1宽带光源;2光纤隔离器;3光纤耦合器;4光纤偏振控制器;5参考臂;6样品臂;7探测臂;8计算机;9光场切换模块;10扫描模块;11成像透镜;12单模保偏光纤;13准直透镜;14光场调控模块15 1/2波片1;16偏振分束器1;17反射镜2;18反射镜1;19 1/2波片2;20偏振分束器2
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
图1所示为一种超高横向分辨光学相干层析系统的示意图:系统包括1宽带光源、2光纤隔离器、3光纤耦合器、4光纤偏振控制器、5参考臂、6样品臂、7探测臂和8计算机。所述2光纤隔离器防止反向传输光信号进入1宽带光源;所述4光纤偏振控制器调节参考光偏振方向控制参考光和样品光相干信号的对比度;所述5参考臂光路系统由光束准直透镜和安装在电控平移台上的平面反射镜组成;所述6样品臂包含9光场切换模块、10扫描模块和11成像透镜,通过光场切换模块自动调节不同的照明光场模式,扫描模块实现照明光束的一维或二维扫描;所述8计算机处理7探测臂接收的信号,并控制参考光信号强度和系统零光程位置,以及照明光场切换和照明光束扫描。
在一种超高横向分辨光学相干层析系统中,1宽带光源发出的低相干光,经2光纤隔离区和3光纤耦合器分光后,分别进入5参考臂和6样品臂。进入5参考臂的光经4光纤偏振控制器、准直透镜和平面反射镜组成光路系统,由平面反射镜(系统零光程参考面)反射后按照原光路返回到3光纤耦合器;进入6样品臂的光首先通过13准直透镜变成平行光束,由151/2波片1、16偏振分束器1和18反射镜1导入含有14光场调制模块的光路,通过光场调制后由20偏振分束器2和191/2波片2导入10扫描模块,经11成像透镜会聚照明样品,照明区域内经样品反射或后向散射的信号光再次通过11成像透镜和10扫描模块,由191/2波片2、20偏振分束2和17反射镜2进入光场切换模块的另一条光路,有经16偏振分束器1和151/2波片1后由13准直透镜会聚进入12单模保偏光纤,通过3光纤耦合器进入7探测臂;6样品臂返回的信号光与5参考臂返回的参考光在7探测臂汇合并发生干涉,产生的干涉信号被探测臂中的光谱探测装置接收,输入8计算机进行处理,沿轴向对采集数据进行插值后傅里叶变换获得不同照明模式下二维或三维图像,根据不同照明模式对应的点扩散函数数字相干合成超高分辨点扩散函数,通过该超高分辨点扩散函数反卷积不同照明模式下样品的加权叠加图像,重构出样品的横向超高分辨图像。
所述的6样品臂如图2所示,由9光场切换模块、10扫描模块和11成像透镜构成,提供不同的扫描照明模式和接收扫描照明区域内的样品信息。其中,9光场切换模板如图3所示,包含13准直透镜、151/2波片1、16偏振分束器1、17反射镜2、18反射镜1、191/2波片2、20偏振分束器2和14光场调制模块组成,12单模保偏光纤输出的照明光束通过13准直透镜变成平行光束,经151/2波片1和16偏振分束器1,把照明光束导入含有14光场调制模块的光路,8计算机控制由空间光调制器或振幅、相位、振幅相位复合模板调节光场,在样品内部获得不同的照明点扩散函数。一维或二维扫描振镜构成的10扫描模块控制照明光束进行一维或二维扫描。11成像透镜将扫描光束聚焦在样品内的不同空间位置。从样品扫描照明区域内后向散射的信号光经11成像透镜和10扫描模块由20偏振分束器2导入光场切换模块内的另一光路,经13准直透镜耦合进入12单模保偏光纤。
作为实施例,图3所述14光场调节模块可以由透射式或反射式空间光调制器构成,也可以由安装在电控机械转轮上的不同振幅模板、相位模板或者振幅相位复合模板构成,通过计算机控制不同的照明模式进行自动切换。
作为实施例,所述的信号处理和重构横向超高分辨图像的流程是:首先,将不同光场照明模式下获取的二维或三维相干信号沿轴向进行插值、傅里叶逆变换获得二维或三维样品空间域信息;然后,根据每种照明模式下实际测量的光学相干层析系统横向点扩散函数,数字相干合成超高分辨的横向点扩散函数;其次,根据不同照明模式的权重叠加上述所有样品空间域信息,形成中间处理图像;最后,利用数字相干合成的超高分辨点扩散函数沿横向反卷积中间处理图像,重构出横向超高分辨的光学相干层析图像。

Claims (7)

1.一种横向超高分辨的光学相干层析方法和系统,其特征在于:包括宽带光源,光纤隔离器,光纤耦合器,光纤偏振控制器,参考臂,探测臂,样品臂和计算机。所述方法和系统利用物理方法调制不同照明模式下的点扩散函数,利用数字方法重构超高分辨的图像。所述方法和系统是宽带光源发出的照明光经过光纤隔离器和光纤耦合器分别进入参考臂和样品臂,所述参考臂提供参考光信号,所述样品臂提供不同照明模式下的样品信号,所述光纤偏振控制器控制参考光信号的偏振态,所述探测臂接收参考光信号和样品光信号的相干信息,所述计算机接收探测臂获取的信号进行相应处理和显示,并发出扫描控制信号和光场控制信号。
2.根据权利要求1所述的一种横向超高分辨的光学相干层析方法和系统,其特征在于,所述的物理方法是利用振幅调制、相位调制或振幅相位同时调制的方式控制照明光束在样品内形成不同分布的照明光场,使得光学相干层析系统具有不同的横向点扩散函数。
3.根据权利要求1所述的一种横向超高分辨的光学相干层析方法和系统,其特征在于,所述的数字方法是根据各照明模式下对应的光学相干层析系统横向点扩散函数,数字相干合成超高分辨的横向点扩散函数,获得各照明模式下样品信号的权重系数,通过反卷积算法重构出横向超高分辨的光学相干层析图像。
4.根据权利要求1所述的一种横向超高分辨的光学相干层析方法和系统,其特征在于,所述的样品臂具有光场切换功能和光束扫描功能,利用振幅模板、相位模板、振幅相位复合模板、或空间光调制器控制照明光场,可以自动切换不同照明光场,利用扫描振镜实现照明光束的一维或二维扫描。
5.根据权利要求1所述的一种横向超高分辨的光学相干层析方法和系统,其特征在于,所述的重构横向超高分辨图像按照以下流程进行:首先,将不同照明模式下获取的二维或三维相干信号沿轴向进行插值、傅里叶逆变换获得样品空间域信息;然后,数字相干合成超高分辨的横向点扩散函数,根据不同照明模式的权重叠加上述所有样品空间域信息,形成中间处理图像;最后,利用数字相干合成的超高分辨点扩散函数沿横向反卷积中间处理图像,重构出横向超高分辨的光学相干层析图像。
6.根据权利要求3所述的数字相干合成超高分辨的横向点扩散函数,其特征在于,所述的数字相干合成是根据不同照明模式下光学相干层析系统实际测量的横向点扩散函数,通过归一化处理以后进行加权叠加,综合合成点扩散函数的半高全宽、分布函数、旁瓣大小、光学传递函数的最大截止频率和光学传递函数高频与低频部分比重调节加权系数。
7.根据权利要求4所述的自动切换不同照明光场,其特征在于,所述的自动切换是计算机控制空间光调制器改变照明光束的振幅、相位或振幅与相位,或者计算机控制安装在机械转轮上的不同振幅模板、相位模板或振幅相位复合模板插入照明光路。
CN201810928053.8A 2018-08-09 2018-08-09 一种横向超高分辨的光学相干层析方法和系统 Active CN109238131B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810928053.8A CN109238131B (zh) 2018-08-09 2018-08-09 一种横向超高分辨的光学相干层析方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810928053.8A CN109238131B (zh) 2018-08-09 2018-08-09 一种横向超高分辨的光学相干层析方法和系统

Publications (2)

Publication Number Publication Date
CN109238131A true CN109238131A (zh) 2019-01-18
CN109238131B CN109238131B (zh) 2020-12-22

Family

ID=65071139

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810928053.8A Active CN109238131B (zh) 2018-08-09 2018-08-09 一种横向超高分辨的光学相干层析方法和系统

Country Status (1)

Country Link
CN (1) CN109238131B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112950482A (zh) * 2019-12-10 2021-06-11 深圳大学 物体信息恢复方法、装置、计算机设备和存储介质
CN114081444A (zh) * 2021-11-15 2022-02-25 北京理工大学 一种基于积分变换原理的oct成像系统及方法
CN114372915A (zh) * 2021-12-07 2022-04-19 图湃(北京)医疗科技有限公司 实现oct轴向超分辨的方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101732035A (zh) * 2009-11-26 2010-06-16 浙江大学 基于光程编码与相干合成的光学超分辨方法及系统
CN103006174A (zh) * 2011-09-20 2013-04-03 佳能株式会社 图像处理设备、眼科摄像设备和图像处理方法
CN103070665A (zh) * 2012-10-12 2013-05-01 中国科学院光电技术研究所 一种基于双波前校正器的自适应扫频光学相干层析成像系统
CN103284687A (zh) * 2009-10-23 2013-09-11 佳能株式会社 眼科成像设备和眼科成像方法
US20140293290A1 (en) * 2010-11-08 2014-10-02 Netra Systems Inc. Method and System for Compact Optical Coherence Tomography
CN104769481A (zh) * 2012-10-12 2015-07-08 统雷有限公司 紧凑、低色散以及低像差自适应光学扫描系统
CN105476605A (zh) * 2015-12-31 2016-04-13 东莞理工学院 高速光学相干层析成像系统和方法
CN107049258A (zh) * 2017-04-26 2017-08-18 北京信息科技大学 光学相干层析成像装置
US20180084993A1 (en) * 2013-06-04 2018-03-29 Bioptigen, Inc. Hybrid Telescope for Optical Beam Delivery and Related Systems
CN107981838A (zh) * 2017-12-20 2018-05-04 清华大学 结构光照明的频域光学相干层析系统及方法
US20180172425A1 (en) * 2016-12-21 2018-06-21 The Penn State Research Foundation High definition optical coherence tomography imaging for non-invasive examination of heritage works
CN108272432A (zh) * 2017-07-20 2018-07-13 中山大学中山眼科中心 一种基于裂隙灯平台的眼科高速高分辨率多功能光学相干断层成像装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103284687A (zh) * 2009-10-23 2013-09-11 佳能株式会社 眼科成像设备和眼科成像方法
CN101732035A (zh) * 2009-11-26 2010-06-16 浙江大学 基于光程编码与相干合成的光学超分辨方法及系统
US20140293290A1 (en) * 2010-11-08 2014-10-02 Netra Systems Inc. Method and System for Compact Optical Coherence Tomography
CN103006174A (zh) * 2011-09-20 2013-04-03 佳能株式会社 图像处理设备、眼科摄像设备和图像处理方法
CN103070665A (zh) * 2012-10-12 2013-05-01 中国科学院光电技术研究所 一种基于双波前校正器的自适应扫频光学相干层析成像系统
CN104769481A (zh) * 2012-10-12 2015-07-08 统雷有限公司 紧凑、低色散以及低像差自适应光学扫描系统
US20180084993A1 (en) * 2013-06-04 2018-03-29 Bioptigen, Inc. Hybrid Telescope for Optical Beam Delivery and Related Systems
CN105476605A (zh) * 2015-12-31 2016-04-13 东莞理工学院 高速光学相干层析成像系统和方法
US20180172425A1 (en) * 2016-12-21 2018-06-21 The Penn State Research Foundation High definition optical coherence tomography imaging for non-invasive examination of heritage works
CN107049258A (zh) * 2017-04-26 2017-08-18 北京信息科技大学 光学相干层析成像装置
CN108272432A (zh) * 2017-07-20 2018-07-13 中山大学中山眼科中心 一种基于裂隙灯平台的眼科高速高分辨率多功能光学相干断层成像装置
CN107981838A (zh) * 2017-12-20 2018-05-04 清华大学 结构光照明的频域光学相干层析系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
丁志华 等: "多普勒光学相干层析成像研究进展", 《激光与光电子学进展》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112950482A (zh) * 2019-12-10 2021-06-11 深圳大学 物体信息恢复方法、装置、计算机设备和存储介质
CN114081444A (zh) * 2021-11-15 2022-02-25 北京理工大学 一种基于积分变换原理的oct成像系统及方法
CN114372915A (zh) * 2021-12-07 2022-04-19 图湃(北京)医疗科技有限公司 实现oct轴向超分辨的方法

Also Published As

Publication number Publication date
CN109238131B (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN105147241B (zh) 基于双空间载频技术拓展oct成像深度的方法与系统
US8570650B2 (en) Method and system for fast three-dimensional structured-illumination-microscopy imaging
US8248614B2 (en) Quantitative phase-imaging systems
CN107615005A (zh) 高分辨率3‑d谱域光学成像设备和方法
CN101884524B (zh) 基于自适应光学技术的宽视场光学相干层析仪
CN106691394B (zh) 一种基于光程编码的高分辨长焦深oct成像系统和方法
JP2009223348A (ja) 解像深度が強化された3次元顕微鏡法のための方法及び装置
CN101869466A (zh) 基于自适应光学技术的共焦扫描与光学相干层析成像仪
CN109804294A (zh) 用于数字全息成像和干涉测量的光纤分路器装置和包括所述光纤分路器装置的光学系统
CN104013383A (zh) 双焦点眼前后节同步成像系统及成像方法
CN109238131A (zh) 一种横向超高分辨的光学相干层析方法和系统
CN111610150B (zh) 全场结构光相干编码断层成像装置及方法
CN101732035B (zh) 基于光程编码与相干合成的光学超分辨方法
WO2020058947A1 (en) Apparatus for parallel fourier domain optical coherence tomography imaging and imaging method using parallel fourier domain optical coherence tomography
KR101356706B1 (ko) 광량 변조와 스캐닝 시스템 기반의 구조 조명 현미경
CN108931478A (zh) 单次采集无色散移相全场光学相干层析成像装置及方法
JP2002517009A (ja) 画像品質向上用多重モードレーザ照射源を用いた画像作成システム
CN104490362A (zh) 基于光子纳米喷射的高横向分辨光学相干层析系统
JP6701322B2 (ja) 点像分布関数の測定装置、測定方法、画像取得装置および画像取得方法
CN207071084U (zh) 一种基于光程编码的高分辨长焦深oct成像系统
CN109341518A (zh) Oct探测装置及微雕设备
KR102272366B1 (ko) 위상 정보 추출과 입체 영상 구성 방법 및 장치
CN111025876B (zh) 基于压电陶瓷的透射式相位显微成像测量系统
CN113984715A (zh) 相干断层扫描装置及方法
CN109489544A (zh) 基于光学微结构的超分辨光学相干层析方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant