CN106839877B - 一种光学多波段复合目标模拟系统的误差补偿方法 - Google Patents

一种光学多波段复合目标模拟系统的误差补偿方法 Download PDF

Info

Publication number
CN106839877B
CN106839877B CN201510883971.XA CN201510883971A CN106839877B CN 106839877 B CN106839877 B CN 106839877B CN 201510883971 A CN201510883971 A CN 201510883971A CN 106839877 B CN106839877 B CN 106839877B
Authority
CN
China
Prior art keywords
target
turntable
optics
error
multiband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510883971.XA
Other languages
English (en)
Other versions
CN106839877A (zh
Inventor
李凡
杨扬
李艳红
李奇
张琰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Electromechanical Engineering
Original Assignee
Shanghai Institute of Electromechanical Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Electromechanical Engineering filed Critical Shanghai Institute of Electromechanical Engineering
Priority to CN201510883971.XA priority Critical patent/CN106839877B/zh
Publication of CN106839877A publication Critical patent/CN106839877A/zh
Application granted granted Critical
Publication of CN106839877B publication Critical patent/CN106839877B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/32Devices for testing or checking

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)

Abstract

本发明涉及一种光学多波段目标模拟系统的误差补偿方法,主要应用于光学多波段复合制导导弹半实物仿真系统中对光学多波段目标模拟器的调试与标校。通过误差补偿方法中规定的步骤,对光学多波段目标完成误差补偿,使得光学多波段目标模拟系统中多个目标光路的光轴一致,同时还保证了光学多波段目标模拟系统的光轴发射的平行光精确到达被测设备入瞳,即目标的光轴与被测设备的光轴保持同轴。

Description

一种光学多波段复合目标模拟系统的误差补偿方法
技术领域
本发明涉及一种光学多波段目标模拟系统的误差补偿方法,主要应用于光学多波段复合制导导弹半实物仿真系统中对光学多波段目标模拟器的调试与标校。
背景技术
随着光电干扰技术、隐身技术的迅猛发展,威胁目标的隐身能力、干扰能力正在大幅度提升,战场环境也变得更加恶劣。光学精确制导技术的不断发展使得光学多模复合制导技术已成为光学精确制导技术发展的重要方向。制导系统半实物仿真技术可以在试验室内为制导系统提供与真实情况较为一致的模拟实战环境,所以,研究光学多波段复合制导半实物仿真系统对顺利开展光学复合制导导弹的研制,提高导弹系统的综合性能有十分重要的意义。而光学多波段复合目标模拟系统是光学多波段复合制导半实物仿真系统中的重要组成部分。
光学多波段目标模拟系统由多个波段目标光路常采用共口径复合方式构成,适用于光学多波段精确制导系统半实物仿真试验。在半实物仿真试验前必须保证光学多波段目标模拟系统中多个目标光路同轴,尤其要保证目标模拟系统与被测制导系统的同轴度。在试验过程中,由于目标模拟系统会承受大过载,也会造成目标模拟系统的光轴与被测制导系统的光轴存在偏差,造成目标模拟系统与被测制导系统的同轴度下降,此外由于安装精度有限,目标模拟系统和被测制导系统的同轴度也无法保证。因此,提出一种利用校准装置(相应波段的探测器)对光学多波段目标模拟系统和被测制导系统的同轴度进行误差补偿的方法。
发明内容
本发明要解决的技术问题是使得光学多波段目标模拟系统中多个目标光路的光轴一致,同时还要保证光学多波段目标模拟系统的光轴发射的平行光精确到达被测设备入瞳,即目标的光轴与被测设备的光轴保持同轴。
为解决上述问题,本发明公开一种光学多波段目标模拟系统的误差补偿方法,包括如下步骤:
(1)记录目标模拟系统初始位置;
(2)标定转台轴系;
(3)空间点误差计算,计算靶标点的位置与转台轴系误差;
(4)目标模拟系统光轴与转台轴系误差补偿;驱动目标模拟器或转台目标臂的按照步骤(3)中的误差进行补偿,将靶标点移动至转台轴系;
(5)判断靶标点是否与轴系重合;
(6)其他目标通道光路误差补偿,将目标模拟系统中其余的目标通道光路中的靶标点位置移动至位置O’。
进一步,所述步骤(2)中驱动转台滚转轴按照顺时针或者逆时针旋转一周,每隔90度用校准装置记录靶标点所在的位置,得到四个位置,将这四个位置中对称的两点相连成线并相交于一点,即为转台轴系。
进一步,所述步骤(3)计算靶标点的位置与转台轴系在水平方向和垂直方向的像素误差,并计算得到每个靶标点在方位和俯仰方向上的空间角位置误差。
进一步,所述步骤(4)的目标模拟系统光轴与转台轴系误差补偿方位包括目标瞬时视场自补偿方法和转台自补偿方法,两者取其一即可。
所述的目标瞬时视场自补偿方法为,驱动目标模拟系统中目标光路的偏航轴和俯仰轴,将靶标点按步骤(3)中计算得到的像素误差移动至转台轴系,使得靶标点与转台轴系重合。所述的转台自补偿方法为,驱动转台目标臂俯仰轴和目标臂偏航轴,将靶标点按步骤(3)中计算得到的空间角位置误差移动至转台轴系,使得靶标点与转台轴系重合。
进一步,所述步骤(5)判断靶标点是否与轴系重合,驱动转台滚转轴按照顺时针或者逆时针旋转一周,每隔90度用校准装置记录靶标点所在的位置;判断该位置是否与转台轴系重合,若不重合则重复步骤(2)至步骤(5),直至转台旋转轴按照顺时针或逆时针旋转一周时,靶标点位置与转台轴系重合。
进一步,所述步骤(6)将目标模拟系统中其余的目标通道光路,按照步骤(5)中靶标点位置进行补偿,驱动目标模拟系统相应通道的目标偏航轴和俯仰轴,使其与转台轴系重合。
附图说明
图1是一种光学多波段复合目标模拟系统的误差补偿方法的流程图;
图2是一种光学多波段复合目标模拟系统误差补偿方法的装置及调试方法示意图;
图3是标定五轴飞行转台轴系位置示意图;
图4是目标模拟系统光轴与转台轴系误差示意图。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
本发明实施例的一种光学多波段复合目标模拟系统误差补偿方法,采用的调试装置包括光学多波段目标模拟器1、校准装置2、五轴飞行转台3,如图2所示。光学多波段目标模拟器装置安装在转台内框4,通过机械加工精度保证校准装置处于转台滚转轴5上;光学多波段目标模拟系统安装在转台的目标臂6上,通过机械加工精度保证目标模拟系统处于转台目标臂滚转轴7上。通过误差补偿方法将目标的光轴8与校准装置的光轴即转台轴系9保持同轴,具体步骤如下,如图1所示:
(1)记录目标模拟系统初始位置。
驱动转台和转台目标臂走到零位,利用校准装置采集当前得到的相应波段的图像,记录该图像,并标记该图像中靶标点为A,如图3所示,坐标信息为(Xa,Ya)=(560,389)。
(2)标定转台轴系。
驱动转台滚转轴安照顺时针或者逆时针旋转一周,每隔90度记录校准装置得到的图像,并分别标记图像中靶标点为B、C、D,如图3所示,记录下该四个靶标点的坐标信息分别为(Xb,Yb)=(529,351)、(Xc,Yc)=(590,325)、(Xd,Yd)=(617,381)。将A点和C点相连成一条直线,将B点和D点相连成一条直线,两条直线的十字交叉点记为O点,如图3所示,该点即为转台轴系,记录该点坐标为(Xo,Yo)=(576,365)。
(3)空间点误差计算。
计算靶标点A、B、C、D与转台轴系O的像素误差,如图4所示,每个把标点的像素误差可按如下公式计算:,每个点的空间角位置坐标方位角Q h 和俯仰角Q v ,计算公式如下:,其中为单个像素对应的空间角度为单个象元尺寸,为目标模拟系统光学焦距,分别得到靶标点A、B、C、D的空间角误差。分别将像素误差和角位置坐标绘制成表格。
(4)目标模拟系统光轴与转台轴系误差补偿。
方法一:目标瞬时视场自补偿方法。在目标的瞬时视场中,选择A、B、C、D任意一个位置进行补偿。驱动目标模拟系统中目标光路的偏航轴和俯仰轴,将靶标点按照像素误差移动至转台轴系O,使得靶标点与转台轴系重合,记录此时的靶标点位置O’,如图4所示,此时的坐标为
方法二:转台自补偿方法。在目标瞬时视场中,选择A、B、C、D任意一个位置进行补偿。驱动转台目标臂俯仰轴10和目标臂偏航轴11,如图2所示,将靶标点按照空间角误差进行补偿,使得目标瞬时视场中靶标点与转台轴系重合,记录此时的靶标点位置O’,如图4所示,此时的坐标为
(5)靶标点与轴系重合。当靶标点处于位置时,驱动转台滚转轴按照顺时针或者逆时针旋转一周,每隔90度用校准装置记录靶标点所在的位置B’、C’、D’ ,如图3所示。判断B’、C’、D’是否与坐标重合。若不重合则重复步骤(2)至步骤(5),直至转台旋转轴按照顺时针或逆时针旋转一周时,靶标点位置B’、C’、D’与O’重合。
(6)其他目标通道光路误差补偿。将目标模拟系统中其余的目标通道光路,按照已标定的位置O’进行补偿,驱动目标模拟系统相应通道的目标偏航轴和俯仰轴,使其与位置O’重合。
本发明虽然已以较佳实施例公开如上,但其并不是用来限定本发明,任何本领域技术人员在不脱离本发明的精神和范围内,都可以利用上述揭示的方法和技术内容对本发明技术方案做出可能的变动和修改,因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化及修饰,均属于本发明技术方案的保护范围。

Claims (8)

1.一种光学多波段目标模拟系统的误差补偿方法,其特征在于,包括如下步骤:
(1)记录目标模拟系统初始位置;
(2)标定转台轴系;
(3)空间点误差计算,计算靶标点的位置与转台轴系误差;
(4)目标模拟系统光轴与转台轴系误差补偿;驱动目标模拟系统或转台目标臂按照步骤(3)中的误差进行补偿,将靶标点移动至转台轴系;
(5)判断靶标点是否与转台轴系重合;
(6)其他目标通道光路误差补偿,将目标模拟系统中其余的目标通道光路中的靶标点位置移动至与转台轴系重合位置。
2.根据权利要求1所述的一种光学多波段目标模拟系统的误差补偿方法,其特征在于,所述步骤(2)中驱动转台滚转轴按照顺时针或者逆时针旋转一周,每隔90度用校准装置记录靶标点所在的位置,得到四个位置,将这四个位置中对称的两点相连成线并相交于一点,即为转台轴系。
3.根据权利要求1所述的一种光学多波段目标模拟系统的误差补偿方法,其特征在于,所述步骤(3)计算靶标点的位置与转台轴系在水平方向和垂直方向的像素误差,并计算得到每个靶标点在方位和俯仰方向上的空间角位置误差。
4.根据权利要求3所述的一种光学多波段目标模拟系统的误差补偿方法,其特征在于,所述步骤(4)的目标模拟系统光轴与转台轴系误差补偿方法包括目标瞬时视场自补偿方法和转台自补偿方法,两者取其一即可。
5.根据权利要求4所述的一种光学多波段目标模拟系统的误差补偿方法,其特征在于,所述的目标瞬时视场自补偿方法为,驱动目标模拟系统中目标光路的偏航轴和俯仰轴,将靶标点按步骤(3)中计算得到的像素误差移动至转台轴系,使得靶标点与转台轴系重合。
6.根据权利要求4所述的一种光学多波段目标模拟系统的误差补偿方法,其特征在于,所述的转台自补偿方法为,驱动转台目标臂俯仰轴和目标臂偏航轴,将靶标点按步骤(3)中计算得到的空间角位置误差移动至转台轴系,使得靶标点与转台轴系重合。
7.根据权利要求1所述的一种光学多波段目标模拟系统的误差补偿方法,其特征在于,所述步骤(5)判断靶标点是否与轴系重合,驱动转台滚转轴按照顺时针或者逆时针旋转一周,每隔90度用校准装置记录靶标点所在的位置;判断该位置是否与转台轴系重合,若不重合则重复步骤(2)至步骤(5),直至转台滚转轴按照顺时针或逆时针旋转一周时,靶标点位置与转台轴系重合。
8.根据权利要求1所述的一种光学多波段目标模拟系统的误差补偿方法,其特征在于,所述步骤(6)将目标模拟系统中其余的目标通道光路,按照步骤(4)中靶标点位置进行补偿,驱动目标模拟系统相应通道的目标偏航轴和俯仰轴,使其与转台轴系重合。
CN201510883971.XA 2015-12-07 2015-12-07 一种光学多波段复合目标模拟系统的误差补偿方法 Active CN106839877B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510883971.XA CN106839877B (zh) 2015-12-07 2015-12-07 一种光学多波段复合目标模拟系统的误差补偿方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510883971.XA CN106839877B (zh) 2015-12-07 2015-12-07 一种光学多波段复合目标模拟系统的误差补偿方法

Publications (2)

Publication Number Publication Date
CN106839877A CN106839877A (zh) 2017-06-13
CN106839877B true CN106839877B (zh) 2018-08-24

Family

ID=59149920

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510883971.XA Active CN106839877B (zh) 2015-12-07 2015-12-07 一种光学多波段复合目标模拟系统的误差补偿方法

Country Status (1)

Country Link
CN (1) CN106839877B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107356913B (zh) * 2017-06-22 2020-06-02 河北汉光重工有限责任公司 一种机械定位式激光目标模拟器及调试方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010071593A (ja) * 2008-09-19 2010-04-02 Hitachi Kokusai Electric Inc レーザ送信器の照準調整装置
CN102207386A (zh) * 2011-03-07 2011-10-05 东南大学 基于方位效应误差补偿的寻北方法
CN104344766B (zh) * 2013-07-29 2016-08-10 上海机电工程研究所 半实物仿真红外点源/成像复合目标校准装置和校准方法
CN103983954B (zh) * 2014-05-05 2016-05-11 上海新跃仪表厂 用于雷达跟瞄高精度地面测试的误差补偿系统及方法
CN104360891B (zh) * 2014-10-10 2018-01-09 中国航天科技集团公司第四研究院第四十一研究所 可见光图像制导导弹仿真简易目标模拟系统及其模拟方法
CN104344836B (zh) * 2014-10-30 2017-04-19 北京航空航天大学 一种基于姿态观测的冗余惯导系统光纤陀螺系统级标定方法

Also Published As

Publication number Publication date
CN106839877A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
CN102279093B (zh) 红外动态三角形目标模拟器
CN108507403B (zh) 基于智能化光电标定技术的自行高炮多轴线一致性检测装置
CN106681170B (zh) 一种半实物制导仿真方法及仿真系统
CN105716582A (zh) 摄像机视场角的测量方法、装置以及摄像机视场角测量仪
CN105074569B (zh) 可旋转的相机模块测试系统
CN103340645B (zh) 一种多系统医疗设备的机械校准方法及装置
CN104360891A (zh) 可见光图像制导导弹仿真简易目标模拟系统及其模拟方法
US9128193B2 (en) Two-axis apparatus with stationary positioning, rotating and/or scanning motion of point or line sources
US20140214358A1 (en) Method and apparatus for directional calibration and tracking
CN109286453A (zh) 用于波束成形测量的具有定位系统的测量系统和测量方法
CN104034261A (zh) 一种曲面法向测量装置和曲面法向测量方法
CN104331091B (zh) 跟瞄转台装调装置、方向轴调整方法及俯仰轴调整方法
CN106959082A (zh) 一种多光轴系统光轴平行度检测方法及系统
CN103499433A (zh) 一种用于f-θ光学系统畸变的标定装置及方法
CN103925938B (zh) 用于光电测量设备性能指标检测的倒摆式模拟目标源
CN103471620A (zh) 计算测角精度和评估跟踪精度的系统和方法
CN107131891B (zh) 一种基于导引头陀螺指向测试的转台偏角修正方法及系统
CN106839877B (zh) 一种光学多波段复合目标模拟系统的误差补偿方法
CN103674058B (zh) 一种摆镜角跟踪精度室内检测方法
CN105954721A (zh) 室内定位方法、装置、设备及系统
CN108489338B (zh) 红外导引头视线角速率精度测试方法及系统
CN103162712B (zh) 圆光栅测角偏差处理及轴系歪斜补偿方法
CN105526907B (zh) 大尺寸空间的空间角度的测量装置及测量方法
CN104361608B (zh) 一种工业用柔性导管内窥镜的定位跟踪方法
CN104344766B (zh) 半实物仿真红外点源/成像复合目标校准装置和校准方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant