CN106839478A - A kind of method of construction of deep geothermal heat heat transfer root system - Google Patents

A kind of method of construction of deep geothermal heat heat transfer root system Download PDF

Info

Publication number
CN106839478A
CN106839478A CN201710050951.3A CN201710050951A CN106839478A CN 106839478 A CN106839478 A CN 106839478A CN 201710050951 A CN201710050951 A CN 201710050951A CN 106839478 A CN106839478 A CN 106839478A
Authority
CN
China
Prior art keywords
heat
geothermal
heat conduction
reservoir
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710050951.3A
Other languages
Chinese (zh)
Inventor
陈军政
付小军
罗智星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xi'an Hao Xin New Energy Co Ltd
Original Assignee
Xi'an Hao Xin New Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xi'an Hao Xin New Energy Co Ltd filed Critical Xi'an Hao Xin New Energy Co Ltd
Priority to CN201710050951.3A priority Critical patent/CN106839478A/en
Publication of CN106839478A publication Critical patent/CN106839478A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/15Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Road Paving Structures (AREA)

Abstract

Can be with the systems technology field of hot dry rock the invention belongs to deep geothermal heat, specifically disclose a kind of method of construction of deep geothermal heat heat transfer root system, the present invention combines downhole perforation and fracturing technique, thermal conducting agent is poured into fracturing fracture, brill is done to well casing after thermal conducting agent solidification and washes operation, then enter expansion tube closure perforation down, make that pipeline interior circulation medium is not permeable to be drained in the middle of stratum using expansion tube Sealing Technology, formation only takes heat and do not adopt underground water and not the interference-free hot systems of polluted underground water;After the thermal conducting agent solidification of pipeline external, geothermal well and deep geothermal heat system is set to form a kind of heat transfer root system, the Fracture System heat conduction energy of geothermal reservoir near wellbore zone is improved, conducting power of the heat energy in underground heat pressure break reservoir is improved, heat is taken in increase geothermal reservoir;The deep geothermal heat conduction-convection problem that the method for the present invention builds, is that a kind of environmentally friendly, efficient and inexpensive thermal conductive utilizes system.

Description

A kind of method of construction of deep geothermal heat heat transfer root system
Technical field
Can be with the systems technology field of hot dry rock the invention belongs to deep geothermal heat, and in particular to a kind of deep geothermal heat heat transfer The method of construction of root system.
Background technology
The relevant new energy report display of the United Nations:Global geothermal energy resources total resources, equivalent to global resources total flow 450,000 times.The decay of radioactive element is the main source of earth heat energy.The earth of motion is constantly stored up and discharges energy Amount.It is annual to be scattered and disappeared by heat transfer, volcanic eruption, earthquake, the substantial amounts of energy of release such as hot spring.Continental crust general thickness is 30 ~ 70 kilometers, geothermic gradient gradually increases from the top down, general every lower 100m, and temperature raises 3 DEG C, geothermal energy type underground heat buried depth to ground Under thousands of rice, inside is in the absence of fluid or the high heat rock mass of only a small amount of underground fluid.Because substantial amounts of geothermal energy type underground heat is obtained Less than effective utilization, a large amount of losses and waste of the energy are caused.
In recent years, hot dry rock causes the extensive concern of various circles of society as a kind of buried cleaning geothermal energy in underground, But country's mid-deep strata geothermal energy production technique and immature at present, then generally obtained using twin-well pressure break infiltration recharge method in the world Geothermal energy is taken, it is low to there is recharge rate, subterranean strata destruction, recirculated water leakage loss is lost, the defect such as water lift energy consumption is high;
Also another utilizes the singel well system of geothermal energy, and the system includes production casing and the production in production casing Pipe;Inside-and-outside ring space is formed between production casing and production pipe.The system is operated using individual well, with high-temperature stratum contact surface Small, the temperature after heating does not often reach requirement, and big flow is small and the low shortcoming of geothermal energy utilization rate to there is pipe resistance.
The content of the invention
In order to solve low recharge rate present in prior art, subterranean strata destruction, the mistake of recirculated water leakage loss, water lift energy consumption Geothermal energy resources are waited caused by height, and the small grade of high-temperature stratum contact surface cannot effectively be utilized, cause a large amount of losses of the energy with The problem of waste, the invention provides a kind of method of construction of deep geothermal heat heat transfer root system.The invention solves the problems that technology ask Topic is achieved through the following technical solutions:
A kind of method of construction of deep geothermal heat heat transfer root system, comprises the following steps:
Step one, completion carry bore after U-shaped well under enter heat conduction production casing, between geothermal reservoir and heat conduction production casing Filling heat-conductive well cementing of cement, by the butted part welded seal of heat conduction production casing, forms the environmentally friendly geothermal system of sealing;
Step 2, ground install perforating apparatus, by the perforating gun of perforating apparatus bring in geothermal reservoir region heat conduction produce set Guan Zhong, opens the igniter on perforating apparatus, perforating bullet is ignited, by heat conduction production casing, the water of deep geothermal heat reservoir area Mud layer and geothermal reservoir are shot through, and equally distributed preforation tunnel is formed on heat conduction production casing, cement layer and geothermal reservoir;
Step 3, using fracturing technology, the geothermal reservoir around perforation is produced crack under the effect of the pressure;
Step 4, thermal conducting agent is poured into fracturing fracture, brill is done to well casing after thermal conducting agent solidification and washes operation;
Step 5, bore wash after well casing under enter expansion tube closure perforation, make pipeline interior circulation using expansion tube Sealing Technology Medium is not permeable to be drained in the middle of stratum;
Step 6, opening ground suction pump, hot fluid is taken in injection in heat conduction production casing, realizes that U-shaped well takes hot fluid circulation Flowing.
Further, the perforation spacing is 0.05 ~ 0.2m, and perforation phase is 60 ° ~ 80 °.
Further, the length in the crack is 10 ~ 100m.
Further, the heat conduction production casing is thermal conductivity factor more than 100W/'s (m.k) and corrosion resistant steel pipe.
Further, the heat conduction cement is that density is 1.89g/cm3, cement mortar of the API dehydrations less than 100ml.
Further, the well is U-shaped well.
Compared with prior art, beneficial effects of the present invention:
The present invention combines downhole perforation and fracturing technique, and thermal conducting agent is poured into fracturing fracture, and well casing is done after thermal conducting agent solidification Brill washes operation, and expansion tube closure perforation is then entered down, makes that pipeline interior circulation medium is not permeable to drain to ground using expansion tube Sealing Technology In the middle of layer, formation only takes heat and does not adopt underground water and not the interference-free hot systems of polluted underground water;The thermal conducting agent of pipeline external is consolidated After change, geothermal well and deep geothermal heat system is formed a kind of heat transfer root system, improve the crack system of geothermal reservoir near wellbore zone System heat conduction energy, improves conducting power of the heat energy in underground heat pressure break reservoir, and heat is taken in increase geothermal reservoir;Solve existing There are low recharge rate present in deep geothermal heat energy production technique, subterranean strata destruction, the mistake of recirculated water leakage loss, water lift high energy consumption, with And geothermal energy resources cannot be utilized effectively caused by high-temperature stratum contact surface small grade etc., cause a large amount of losses and waste of the energy Problem.
The deep geothermal heat conduction-convection problem that the method for the present invention builds, is that a kind of environmentally friendly, efficient and inexpensive underground heat is passed Lead and utilize system.
Brief description of the drawings
The step of Fig. 1 is the inventive method flow chart.
Fig. 2 is the U-shaped well heat transfer root structure schematic diagram that the inventive method is built.
In figure:1st, U-shaped well water inlet pipe;2nd, U-shaped well outlet pipe;3rd, heat conduction root system.
Specific embodiment
Further detailed description is done to the present invention with reference to specific embodiment, but embodiments of the present invention are not limited to This.
The method of construction of deep geothermal heat heat transfer root system as shown in Figure 1, comprises the following steps:
Step one, in the U-shaped well that completion is carried after boring thermal conductivity factor is added more than 100W/'s (m.k) and corrosion resistant along well track The steel pipe of erosion, it is 1.89g/cm3 that density is injected between geothermal reservoir and steel pipe, and cement mortar of the API dehydrations less than 100ml is consolidated Well, by the butted part welded seal of steel pipe, forms the environmentally friendly geothermal system of sealing.
Step 2, perforating apparatus are installed on ground, in bringing the perforating gun of perforating apparatus the steel pipe of geothermal reservoir region in, The igniter on perforating apparatus is opened, perforating bullet is ignited, by the steel pipe of deep geothermal heat reservoir area, cement layer and geothermal reservoir It is shot through, equally distributed preforation tunnel is formed on steel pipe, cement layer and geothermal reservoir;During operation, can first in the vertical of U-shaped well Well section geothermal reservoir region perforation, then carries out reperforation by the net horizontal section that perforating gun brings U-shaped well in again.
Because shot density increases, formation fracture pressure lowers, and shot density is higher than shadow of the hole depth to fracture pressure Ring, in order to reduce construction risk, it is 0.05 ~ 0.2m to set perforation spacing, and perforation phase is 60 ° ~ 80 °.
Step 3, using fracturing technology separate stratum fracfturing geothermal area reservoir, fracturing fluid is pressed into geothermal reservoir along preforation tunnel, Formed along the fracturing fracture being distributed around pit shaft, build the underground heat pressure break reservoir for taking hot fluid seepage flow heat exchange;The length in crack It is 10 ~ 100m to spend.
Step 4, thermal conducting agent is poured into fracturing fracture, deep geothermal heat reservoir is formed a kind of heat transfer after thermal conducting agent solidification Root system, then makees brill and washes operation to well casing.
Step 5, bore wash after well casing under enter expansion tube closure perforation, made in pipeline using expansion tube Sealing Technology Circulatory mediator is not permeable to be drained in the middle of stratum;Expansion tube Sealing Technology uses the existing technology of field of petroleum exploitation.
Step 6, opening ground suction pump, hot fluid is taken in injection in steel pipe, and taking hot fluid will be exploited by high-temperature stratum Geothermal energy therein, realizes that U-shaped well takes hot fluid circulation flowing.
The present invention combines downhole perforation and fracturing technique(Downhole perforation and fracturing technique are showing for field of petroleum exploitation use There is technology, do not do more detailed introduction herein), thermal conducting agent is poured into fracturing fracture, well casing is done after thermal conducting agent solidification Brill washes operation, expansion tube closure perforation is then entered down, using expansion tube Sealing Technology(Expansion tube Sealing Technology is also oil exploitation In the prior art that field uses)Make that pipeline interior circulation medium is not permeable to be drained in the middle of stratum, formation only takes heat and do not adopt underground water and not The interference-free hot systems of polluted underground water;After the thermal conducting agent solidification of pipeline external, form geothermal well and deep geothermal heat system A kind of heat transfer root system, improves the Fracture System heat conduction energy of geothermal reservoir near wellbore zone, improves heat energy and is stored up in underground heat pressure break Conducting power in layer, heat is taken in increase geothermal reservoir;Solve and returned present in existing deep geothermal heat energy production technique Filling rate is low, subterranean strata destruction, recirculated water leakage loss lose, water lift high energy consumption, and the small grade of high-temperature stratum contact surface caused by etc. ground Thermal resource cannot be utilized effectively, cause the problem of a large amount of losses and waste of the energy.
The deep geothermal heat heat transfer root system that the method according to the invention is built, it is adaptable to the U-shaped well system of underground heat exploitation, when In a Vertical Well of U-shaped well(Water inlet pipe 3)Hot fluid is taken in middle injection(Such as water)When, when water passes through the heat accumulation rock stratum of U-shaped well, In the presence of heat accumulation rock stratum heat conduction root system 1, the thermal conducting agent being distributed in all root systems can be by the warm of the geothermal reservoir of deeper In amount conduction to the water in steel pipe, water is heated rapidly, heated water is along another Vertical Well(Outlet pipe 2)It is sucked up to ground Terrestrial cells are heated or carry out other heat utilizations by face in the heating cycle system of ground surface end;Overheated through ground circulation The water of exchange carries out heat transfer again by Vertical Well into deep geothermal heat heat transfer root system system, and being constituted circulated heat with this passes Delivery system.
U-shaped well depth in the method for the present invention is about 3000 meters, and deep geothermal heat conduction root system is located at 2000-3000 meters In xeothermic rock stratum, the fluid in well can be heated to 60 DEG C ~ 150 DEG C by single U-shaped well area of heat-supply service up to 7~100,000 square metres, Life-span is 50 years, and its running cost is far below the operation of the heating systems such as municipal heat supply, natural gas, deep earth source heat pump Expense.Therefore, the deep geothermal heat conduction-convection problem that the method for the present invention builds, is a kind of environmentally friendly, efficient and inexpensive underground heat Conduction utilizes system.
Above content is to combine specific preferred embodiment further description made for the present invention, it is impossible to assert Specific implementation of the invention is confined to these explanations.For general technical staff of the technical field of the invention, On the premise of not departing from present inventive concept, some simple deduction or replace can also be made, should be all considered as belonging to of the invention Protection domain.

Claims (5)

1. a kind of method of construction of deep geothermal heat heat transfer root system, it is characterised in that:Comprise the following steps:
Step one, completion carry bore after U-shaped well under enter heat conduction production casing, between geothermal reservoir and heat conduction production casing Filling heat-conductive well cementing of cement, by the butted part welded seal of heat conduction production casing, forms the environmentally friendly geothermal system of sealing;
Step 2, ground install perforating apparatus, by the perforating gun of perforating apparatus bring in geothermal reservoir region heat conduction produce set Guan Zhong, opens the igniter on perforating apparatus, perforating bullet is ignited, by heat conduction production casing, the water of deep geothermal heat reservoir area Mud layer and geothermal reservoir are shot through, and equally distributed preforation tunnel is formed on heat conduction production casing, cement layer and geothermal reservoir;
Step 3, using fracturing technology, the geothermal reservoir around perforation is produced cracks under the effect of the pressure;
Step 4, thermal conducting agent is poured into fracturing fracture, brill is done to well casing after thermal conducting agent solidification and washes operation;
Step 5, bore wash after well casing under enter expansion tube closure perforation, make pipeline interior circulation using expansion tube Sealing Technology Medium is not permeable to be drained in the middle of stratum;
Step 6, opening ground suction pump, hot fluid is taken in injection in heat conduction production casing, realizes that U-shaped well takes hot fluid circulation Flowing.
2. method of construction according to claim 1, it is characterised in that:The perforation spacing is 0.05 ~ 0.2m, perforation phase It is 60 ° ~ 80 °.
3. method of construction according to claim 2, it is characterised in that:The length in the crack is 10 ~ 100m.
4. method of construction according to claim 3, it is characterised in that:The heat conduction production casing is more than for thermal conductivity factor 100W/'s (m.k) and corrosion resistant steel pipe.
5. method of construction according to claim 1, it is characterised in that:The heat conduction cement is that density is 1.89g/cm3, Cement mortar of the API dehydrations less than 100ml.
CN201710050951.3A 2017-01-23 2017-01-23 A kind of method of construction of deep geothermal heat heat transfer root system Pending CN106839478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710050951.3A CN106839478A (en) 2017-01-23 2017-01-23 A kind of method of construction of deep geothermal heat heat transfer root system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710050951.3A CN106839478A (en) 2017-01-23 2017-01-23 A kind of method of construction of deep geothermal heat heat transfer root system

Publications (1)

Publication Number Publication Date
CN106839478A true CN106839478A (en) 2017-06-13

Family

ID=59120799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710050951.3A Pending CN106839478A (en) 2017-01-23 2017-01-23 A kind of method of construction of deep geothermal heat heat transfer root system

Country Status (1)

Country Link
CN (1) CN106839478A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278787A (en) * 2018-01-04 2018-07-13 河北绿源地热能开发有限公司 A kind of high efficiency of energy based on geothermal exploitation well utilizes winning apparatus and method
CN109721303A (en) * 2019-01-03 2019-05-07 中国煤炭地质总局水文地质局 A kind of well cementing material and geothermal well of mid-deep strata geothermal well
CN109779529A (en) * 2019-01-03 2019-05-21 中国煤炭地质总局水文地质局 A kind of geothermal well drill construction technique and geothermal well
CN110318662A (en) * 2019-07-10 2019-10-11 台州长天能源技术有限公司 Gravity head beats U-shaped well method device product
CN111520110A (en) * 2019-02-02 2020-08-11 中国石油天然气股份有限公司 Supercritical CO of horizontal well2Method and system for developing enhanced geothermal energy by fracturing

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206097A (en) * 1997-07-23 1999-01-27 余新河 Geothermal energy extracting method and equipment
CN1542384A (en) * 2003-04-29 2004-11-03 米砂瓦环境技术株式会社 Heat source installation by utilizing geothermal energy and method for configuring the installation
CN101539335A (en) * 2009-04-16 2009-09-23 吉林大学 Solar energy underground cross-season heat-storing method
CN102105755A (en) * 2008-06-13 2011-06-22 迈克尔·J·帕雷拉 System and method of capturing geothermal heat from within a drilled well to generate electricity
CN102536174A (en) * 2012-03-01 2012-07-04 邱世军 Method for longitudinally mining geothermal energy
CN103867179A (en) * 2012-12-11 2014-06-18 中国石油化工股份有限公司 Hydraulic jet fracturing method for U-shaped well
CN105863569A (en) * 2016-04-14 2016-08-17 中国石油大学(华东) Single-well fracture gravity self-circulation dry-hot-rock geotherm mining method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206097A (en) * 1997-07-23 1999-01-27 余新河 Geothermal energy extracting method and equipment
CN1542384A (en) * 2003-04-29 2004-11-03 米砂瓦环境技术株式会社 Heat source installation by utilizing geothermal energy and method for configuring the installation
CN102105755A (en) * 2008-06-13 2011-06-22 迈克尔·J·帕雷拉 System and method of capturing geothermal heat from within a drilled well to generate electricity
CN101539335A (en) * 2009-04-16 2009-09-23 吉林大学 Solar energy underground cross-season heat-storing method
CN102536174A (en) * 2012-03-01 2012-07-04 邱世军 Method for longitudinally mining geothermal energy
CN103867179A (en) * 2012-12-11 2014-06-18 中国石油化工股份有限公司 Hydraulic jet fracturing method for U-shaped well
CN105863569A (en) * 2016-04-14 2016-08-17 中国石油大学(华东) Single-well fracture gravity self-circulation dry-hot-rock geotherm mining method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108278787A (en) * 2018-01-04 2018-07-13 河北绿源地热能开发有限公司 A kind of high efficiency of energy based on geothermal exploitation well utilizes winning apparatus and method
CN109721303A (en) * 2019-01-03 2019-05-07 中国煤炭地质总局水文地质局 A kind of well cementing material and geothermal well of mid-deep strata geothermal well
CN109779529A (en) * 2019-01-03 2019-05-21 中国煤炭地质总局水文地质局 A kind of geothermal well drill construction technique and geothermal well
CN111520110A (en) * 2019-02-02 2020-08-11 中国石油天然气股份有限公司 Supercritical CO of horizontal well2Method and system for developing enhanced geothermal energy by fracturing
CN111520110B (en) * 2019-02-02 2022-06-03 中国石油天然气股份有限公司 Supercritical CO of horizontal well2Method and system for developing enhanced geothermal energy by fracturing
CN110318662A (en) * 2019-07-10 2019-10-11 台州长天能源技术有限公司 Gravity head beats U-shaped well method device product
CN110318662B (en) * 2019-07-10 2023-12-19 台州长天能源技术有限公司 Gravity head U-shaped well drilling method and equipment product

Similar Documents

Publication Publication Date Title
CN206478882U (en) A kind of U-shaped well deep geothermal heat conduction-convection problem
CN110318675B (en) Deep coal bed gas thermal co-production method
CN106839478A (en) A kind of method of construction of deep geothermal heat heat transfer root system
CN208966316U (en) U-shaped horizontal well
CN105909214A (en) Method for exploiting compact dry heat rock geothermal energy by utilizing long horizontal well self-circulation structure
CN104653148A (en) Well group reforming comprehensive utilization method for waste oil wells
CN204252967U (en) Hot dry rock multi cycle heating system
US12000626B2 (en) Geothermal development system and the construction method thereof
CN104034074A (en) Geothermal energy development system with power-assisted giant heat pipes
CN211177029U (en) Heating system with mode of taking heat and not taking water by using geothermal energy in middle and deep layers
CN112856562A (en) Heating system with mode of taking heat and not taking water by using geothermal energy in middle and deep layers
CN108691527A (en) A kind of method that individual well takes thermal medium exploitation hot water type geothermal energy
CN107989589A (en) A kind of method of heat exchange efficiency after raising hot dry rock pressure break
CN112502687A (en) Artificial heat storage construction system and method for group-hole dry hot rock
CN206803542U (en) A kind of porous geothermal well system of large span
CN110863800A (en) Single-well closed development method for hot dry rock
CN108489124A (en) Multiloop heat-exchange method under a kind of geothermal well
CN107575159A (en) Heat-exchange tube mounting process in a kind of geothermal well well
CN207540178U (en) Regenerative heat exchanger in mid-deep strata geothermal well
CN112066445A (en) Heating system for exploiting terrestrial heat by combining waste oil well with heat pump
CN102278116B (en) Device and method for manufacturing underground frozen wall in cold areas in winter
CN208765297U (en) A kind of mid-deep strata underground pipe horizontal well heat exchange structure
CN207194865U (en) A kind of large span for deep geothermal heat exploitation is horizontal to dock U-shaped well
CN107021705B (en) A kind of deep geothermal heat conduction root system construction thermal conducting agent and preparation method thereof
CN110307658A (en) Closed deep geothermal heat can effectively collect system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170613

RJ01 Rejection of invention patent application after publication