CN106824073A - 一种高性能碳纳米材料吸附剂及其制备与应用 - Google Patents

一种高性能碳纳米材料吸附剂及其制备与应用 Download PDF

Info

Publication number
CN106824073A
CN106824073A CN201710083777.2A CN201710083777A CN106824073A CN 106824073 A CN106824073 A CN 106824073A CN 201710083777 A CN201710083777 A CN 201710083777A CN 106824073 A CN106824073 A CN 106824073A
Authority
CN
China
Prior art keywords
nano material
high performance
bonding agent
carbon nano
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710083777.2A
Other languages
English (en)
Other versions
CN106824073B (zh
Inventor
骞伟中
陈航
田佳瑞
多尼
杨周飞
尹泽芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710083777.2A priority Critical patent/CN106824073B/zh
Publication of CN106824073A publication Critical patent/CN106824073A/zh
Application granted granted Critical
Publication of CN106824073B publication Critical patent/CN106824073B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种高性能碳纳米材料吸附剂及其制备与应用,由碳纳米材料与粘接剂组成,碳纳米材料的质量分数为80‑97%,吸附剂的比表面积为800‑2200m2/g,其微孔、介孔与大孔的孔容占比为(1~3):(1~6):(1~10)。本发明还公开了利用化学气相沉积过程所得碳纳米材料与无机化合物载体的复合物直接制备该吸附剂的方法,该吸附剂具有使用寿命长,处理量大,制备成本低等优点,特别适用于吸附流体中低浓度非极性有机物。

Description

一种高性能碳纳米材料吸附剂及其制备与应用
技术领域
本发明属于纳米材料术领域,涉及一种高性能碳纳米材料吸附剂及其制备与应用,该吸附剂特别适用于吸附流体中低浓度非极性有机物。
背景技术
碳纳米材料是一种具有比表面积大,化学稳定性好,表面呈非极性的新型材料,其代表性产品包括碳纳米管与石墨烯等。上述特性使得碳纳米材料可以吸附气体或液体中的非极性有机物。比如,碳纳米管与石墨烯等材料都可以吸附自身重量10-100倍的有机物,从而显示出比传统活性碳材料更加好的性能。另外,在吸附水中的非极性有机物中,可用海绵状的结构(碳纳米管海绵或石墨烯海绵)吸附水中汽油,柴油或苯酚,对于碳纳米管与石墨烯粉体,有报道用造粒成型的方法,形成大的颗粒,增加了工程操作的方便性。
然而,由于毛细吸附作用,无论何种结构的吸附剂,其吸附都是可以快速完成的。但吸附剂结构不同,将吸附质脱附时,需要升温与消耗大量蒸汽或气体,且耗时非常长。目前快速吸附与慢速脱附不匹配的矛盾,还没有很好地解决。这导致将来放大操作时,吸附与脱附设备的数量要增加,不但增加了造价,也提高了工程操作难度。
另外,气体或液体中的非极性有机物浓度越低,吸附难度越大。这就需要提高吸附剂的有效比表面积,必须使用比表面积大的碳纳米材料(如1-3层的少壁碳纳米管及1-3层的薄层石墨烯)。但这些材料在制备过程中,需要去除载体与干燥,首先就造成了比表面积损失并造成一定的环境污染,制备与环境处理成本高,阻碍了其商业化应用。
发明内容
为了克服上述现有技术的缺点,本发明的目的在于提供一种高性能碳纳米材料吸附剂及其制备与应用,基于化学气相沉积过程中直接制备的碳纳米材料与无机化合物载体的复合物,制备得到成本低、比表面积大与吸附性能高的吸附剂,且简化了制备步骤,减少了废物排放。
为了实现上述目的,本发明采用的技术方案是:
一种高性能碳纳米材料吸附剂,由碳纳米材料与粘接剂组成,碳纳米材料的质量分数为80-97%,吸附剂的比表面积为800-2200m2/g,其微孔、介孔与大孔的孔容占比为(1~3):(1~6):(1~10)。
其中,所述碳纳米材料为少壁(1-3层壁)碳纳米管与薄层(1-3层)石墨烯中的一种或多种,其原生结构为化学气相沉积过程中直接制备的碳纳米材料与无机化合物载体的复合物。
本发明还提供了所述高性能碳纳米材料吸附剂的制备方法,包括如下步骤:
(a)将以无机化合物为载体的催化剂置于反应器中,在800-1000℃下通碳源0.3-4小时,生成碳纳米材料与无机化合物载体的复合物,然后停止加热,停止通碳源,改通氮气或氩气,降温至室温;
(b)将所得复合物与粘接剂在20-100℃下混合0.1-2小时,然后加入到成型机器中,在20-300℃下成型;
(c)用水、酸或碱去除步骤(b)所得产品中的无机化合物载体,过滤后,用去离子水洗涤至中性,在100-150℃干燥1-20小时后,得到最终产品。
所述步骤(a)以无机化合物为载体的催化剂中,无机化合物载体为氧化镁、碳酸镁、碱式碳酸镁、氢氧化镁、氧化钙、氧化硅、氧化铝、氢氧化钙、氯化钠、碳酸钠以及碳酸钾中的一种或多种,当为多种时,比例任意。
所述步骤(a)中,所用碳源为C1-C6烃或醇、C3-C6酮、C2-C6醚、C2-C6酯、CO以及CO2中的一种或多种,当为多种时,比例任意。
所述步骤(b)中,所用粘接剂为无机类粘接剂或有机类粘接剂,复合物与粘接剂的质量比为(8~20):(1~2)。
所述无机类粘接剂为硅溶胶或铝溶胶,所述有机类粘接剂为PVDF、环氧树酯或PTFE。
本发明高性能碳纳米材料吸附剂可用于吸附流体中低浓度非极性有机物的用途。所述流体为液体或气体,非极性有机物含量为4-300PPm。在25-100℃下0.1-1小时内一次性通过装有该吸附剂的床层,吸附后非极性有机物的含量降到3PPm以下。
与现有技术相比,本发明的有益效果是:
(1)本发明使用直接制备的碳纳米材料与无机化合物载体的复合物制备吸附剂。在成型后再去除无机化合物载体,使得碳纳米材料不易聚并,吸附剂的比表面积提高20%,吸附性能提高20-30%。
(2)无机化合物载体在成型时占据一定空间,成型后再将其去除,起到了造孔剂的作用,不用故意填加造孔剂。与先制备纯净的碳纳米材料,再加造孔剂的工艺相比,制备成本下降20-30%,制备时间缩短20-30%,制备过程废物减排30%。
(3)使用本发明的吸附剂,与不使用这类方法成型的吸附剂相比,孔道丰富,能够缩短脱附时间30-50%,减少蒸汽、气体用量30-50%。可使吸附/脱附设备的压力降低20-30%,使流体输送成本降低20-30%。
(4)在成型过程中直接加热,减少了干燥环节与材料转运环节,使制备成本降低0.5-5%。
具体实施方式
下面结合实施例详细说明本发明的实施方式。
实施例1
将以氧化镁为载体的催化剂置于反应器中,在1000℃下通碳源(甲烷)0.3小时,生成单壁碳纳米管与氧化镁载体的复合物。然后停止加热,停止通碳源,改通氮气,降温至室温。
将上述复合物与粘接剂(二者的质量比为8:1.5,粘接剂为硅溶胶)在40℃下混合1小时,然后加入到成型机器中,在250℃下成型。将成型产品中的氧化镁载体用盐酸去除,过滤后,用去离子水洗涤至中性,在150℃干燥1小时后,得到最终产品。其中碳纳米材料的质量分数为85%。吸附剂的比表面积为800m2/g,其微孔、介孔与大孔的孔容占比为3:6:8。
将含4-50PPm(质量分数)苯的水在25℃0.1小时内通过该吸附剂床层,可将苯的质量分数降到3PPm以下。
实施例2
将以碳酸镁和碱式碳酸镁(质量比为1:1)为载体的催化剂置于反应器中,在800℃下通碳源(乙醇与环己烷,质量分数各50%)1小时,碳酸镁与碱式碳酸镁在高温下分解生成氧化镁,碳在载体表面生成单层石墨烯与氧化镁载体的复合物。然后停止加热,停止通碳源,改通氮气,降温至室温。
将上述复合物与粘接剂(二者的质量比为20:1,粘接剂为铝溶胶)在30℃下混合0.5小时,然后加入到成型机器中,在300℃下成型。将成型产品中的氧化镁载体用盐酸去除,过滤后,用去离子水洗涤至中性,在150℃干燥6小时后,得到最终产品。其中碳纳米材料的质量分数为97%。吸附剂的比表面积为2200m2/g,其微孔、介孔与大孔的孔容占比为3:6:1。
将含300PPm(质量分数)汽油的水,在100℃1小时内通过该吸附剂床层,可将汽油的质量分数降到3PPm以下。
实施例3
将以碳酸镁与氧化钙(质量比为4:1)为载体的催化剂置于反应器中,在950℃下通碳源(CO、CO2、甲醇与环己醇,质量分数分别为45%、5%、20%与30%)1.2小时,碳酸镁在高温下分解生成氧化镁,碳在载体表面沉积生成1-3层石墨烯、1-3层碳纳米管与氧化镁、氧化钙载体的复合物。然后停止加热,停止通碳源,改通氩气,降温至室温。
将上述复合物与粘接剂(二者的质量比为10:1,粘接剂为PVDF)在70℃下混合1小时,然后加入到成型机器中,在150℃下成型。将成型产品中的氧化镁载体用盐酸去除,过滤后,用去离子水洗涤至中性,在100℃干燥12小时后,得到最终产品。其中碳纳米材料的质量分数为90%。吸附剂的比表面积为1320m2/g,其微孔、介孔与大孔的孔容占比为1:1:10。
将含80PPm(质量分数)润滑油的乙醇,在40℃0.5小时内通过该吸附剂床层,可将润滑油的质量分数降到3PPm以下。
实施例4
将以氢氧化镁与氧化硅(质量比为1:2)为载体的催化剂置于反应器中,在900℃下通碳源(C1-C5烷烃与C2-C6醚,任意比例混合)2小时,氢氧化镁在高温下分解分别生成氧化镁,碳在载体表面沉积生成1-2层石墨烯与氧化镁、氧化硅载体的复合物。然后停止加热,停止通碳源,改通氩气,降温至室温。
将上述复合物与粘接剂(二者的质量比为8:1,粘接剂为PTFE)在100℃下混合2小时,然后加入到成型机器中,在120℃下成型。将成型产品中的氧化镁、氧化硅载体先用硝酸去除,再用氢氧化钠,过滤后,用去离子水洗涤至中性,在130℃干燥4小时后,得到最终产品。其中碳纳米材料的质量分数为89%。吸附剂的比表面积为1600m2/g,其微孔、介孔与大孔的孔容占比为2:5:10。
将120PPm(质量分数)抽余油的空气在25℃1小时内通过该吸附剂床层,可将抽余油的质量分数降到3PPm以下。
实施例5
将以氧化铝、氯化钠、碳酸钠与碳酸钾(质量比为1:2:3:5)为载体的催化剂置于反应器中,在850℃下通碳源(C3-C6酮与C2-C6酯,任意比例混合)1小时,生成1-2层石墨烯与铝、钠、钾化合物载体的复合物。然后停止加热,停止通碳源,改通氩气,降温至室温。
将上述复合物与粘接剂(二者的质量比为19:2,粘接剂为环氧树脂)在20℃下混合0.1小时,然后加入到成型机器中,在20℃下成型。将成型产品中的钠、钾化合物载体用水去除,过滤后,再用碱(氢氧化钠)把氧化铝载体去除。过滤后,用去离子水洗涤至中性,在100℃干燥20小时后,得到最终产品。其中碳纳米材料的质量分数为91%。吸附剂的比表面积为1780m2/g,其微孔、介孔与大孔的孔容占比为3:6:10。
将含180PPm(质量分数)凝析油的氯化氢气体在35℃0.8小时内通过该吸附剂床层,可将凝析油的质量分数降到3PPm以下。
实施例6
将以氧化镁、碳酸钠与碳酸钾(质量比为5:3:1)为载体的催化剂置于反应器中,在920℃下通碳源(C3-C6烷与二甲醚,任意比例混合)1.5小时,生成1-2层石墨烯、3层碳纳米管与镁、钠、钾化合物载体的复合物。然后停止加热,停止通碳源,改通氩气,降温至室温。
将上述复合物与粘接剂(二者的质量比为17:2,粘接剂为铝溶胶与硅溶胶质量比1:1的混合物)在40℃下混合3小时,然后加入到成型机器中,在280℃下成型。将成型产品中的镁、钠、钾化合物载体用硝酸去除,过滤后,用去离子水洗涤至中性,在110℃干燥5小时后,得到最终产品。其碳纳米材料的质量分数为86%。吸附剂的比表面积为1380m2/g,其微孔、介孔与大孔的孔容占比为3:4:10。
该吸附剂可处理,将含280PPm(质量分数)柴油的氢气在25℃0.3小时内通过该吸附剂床层,可将柴析油的质量分数降到3PPm以下。

Claims (10)

1.一种高性能碳纳米材料吸附剂,其特征在于,由碳纳米材料与粘接剂组成,碳纳米材料的质量分数为80-97%,吸附剂的比表面积为800-2200m2/g,其微孔、介孔与大孔的孔容占比为(1~3):(1~6):(1~10)。
2.根据权利要求1所述高性能碳纳米材料吸附剂,其特征在于,所述碳纳米材料为少壁碳纳米管与薄层石墨烯中的一种或多种,其原生结构为化学气相沉积过程中直接制备的碳纳米材料与无机化合物载体的复合物。
3.根据权利要求2所述高性能碳纳米材料吸附剂,其特征在于,所述少壁碳纳米管的壁层数为1-3层,所述薄层石墨烯的层数为1-3层。
4.权利要求1所述高性能碳纳米材料吸附剂的制备方法,其特征在于,包括如下步骤:
(a)将以无机化合物为载体的催化剂置于反应器中,在800-1000℃下通碳源0.3-4小时,生成碳纳米材料与无机化合物载体的复合物,然后停止加热,停止通碳源,改通氮气或氩气,降温至室温;
(b)将所得复合物与粘接剂在20-100℃下混合0.1-2小时,然后加入到成型机器中,在20-300℃下成型;
(c)用水、酸或碱去除步骤(b)所得产品中的无机化合物载体,过滤后,用去离子水洗涤至中性,在100-150℃干燥1-20小时后,得到最终产品。
5.根据权利要求4所述高性能碳纳米材料吸附剂的制备方法,其特征在于,所述步骤(a)以无机化合物为载体的催化剂中,无机化合物载体为氧化镁、碳酸镁、碱式碳酸镁、氢氧化镁、氧化钙、氧化硅、氧化铝、氢氧化钙、氯化钠、碳酸钠以及碳酸钾中的一种或多种,当为多种时,比例任意。
6.根据权利要求4所述高性能碳纳米材料吸附剂的制备方法,其特征在于,所述步骤(a)中,所用碳源为C1-C6烃或醇、C3-C6酮、C2-C6醚、C2-C6酯、CO以及CO2中的一种或多种,当为多种时,比例任意。
7.根据权利要求4所述高性能碳纳米材料吸附剂的制备方法,其特征在于,所述步骤(b)中,所用粘接剂为无机类粘接剂或有机类粘接剂,复合物与粘接剂的质量比为(8~20):(1~2)。
8.根据权利要求7所述高性能碳纳米材料吸附剂的制备方法,其特征在于,所述无机类粘接剂为硅溶胶或铝溶胶,所述有机类粘接剂为PVDF、环氧树酯或PTFE。
9.权利要求1所述高性能碳纳米材料吸附剂用于吸附流体中低浓度非极性有机物的用途。
10.根据权利要求9所述用途,其特征在于,所述流体为液体或气体,非极性有机物含量为4-300PPm,在25-100℃下0.1-1小时内一次性通过装有该吸附剂的床层,吸附后非极性有机物的含量降到3PPm以下。
CN201710083777.2A 2017-02-16 2017-02-16 一种高性能碳纳米材料吸附剂及其制备与应用 Active CN106824073B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710083777.2A CN106824073B (zh) 2017-02-16 2017-02-16 一种高性能碳纳米材料吸附剂及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710083777.2A CN106824073B (zh) 2017-02-16 2017-02-16 一种高性能碳纳米材料吸附剂及其制备与应用

Publications (2)

Publication Number Publication Date
CN106824073A true CN106824073A (zh) 2017-06-13
CN106824073B CN106824073B (zh) 2019-05-07

Family

ID=59128404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710083777.2A Active CN106824073B (zh) 2017-02-16 2017-02-16 一种高性能碳纳米材料吸附剂及其制备与应用

Country Status (1)

Country Link
CN (1) CN106824073B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111992195A (zh) * 2020-07-09 2020-11-27 中山大学 一种新型固相微萃取涂层粘结剂及其制备的探针涂层
CN112316889A (zh) * 2020-10-22 2021-02-05 北京圣光环保工程股份有限公司 一种脱氯组合物及其制备方法和应用
CN115430398A (zh) * 2022-08-10 2022-12-06 中国石油化工股份有限公司 一种高性能吸附剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993068A (zh) * 2010-10-27 2011-03-30 北京化工大学 一种多级孔结构活性碳的制备方法
CN103588196A (zh) * 2013-11-05 2014-02-19 清华大学 一种多级孔结构的石墨烯纤维及其制备与用途
CN104118861A (zh) * 2014-07-14 2014-10-29 天津工业大学 一种超高比表面积多级孔碳的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101993068A (zh) * 2010-10-27 2011-03-30 北京化工大学 一种多级孔结构活性碳的制备方法
CN103588196A (zh) * 2013-11-05 2014-02-19 清华大学 一种多级孔结构的石墨烯纤维及其制备与用途
CN104118861A (zh) * 2014-07-14 2014-10-29 天津工业大学 一种超高比表面积多级孔碳的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BIN XU ET AL.: "Easy synthesis of a high surface area, hierarchical porous carbon for high-performance supercapacitors", 《RSC ADV.》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111992195A (zh) * 2020-07-09 2020-11-27 中山大学 一种新型固相微萃取涂层粘结剂及其制备的探针涂层
CN111992195B (zh) * 2020-07-09 2023-02-28 中山大学 一种新型固相微萃取涂层粘结剂及其制备的探针涂层
CN112316889A (zh) * 2020-10-22 2021-02-05 北京圣光环保工程股份有限公司 一种脱氯组合物及其制备方法和应用
CN112316889B (zh) * 2020-10-22 2023-10-31 北京圣光环保工程股份有限公司 一种脱氯组合物及其制备方法和应用
CN115430398A (zh) * 2022-08-10 2022-12-06 中国石油化工股份有限公司 一种高性能吸附剂及其制备方法和应用
CN115430398B (zh) * 2022-08-10 2024-02-09 中国石油化工股份有限公司 一种高性能吸附剂及其制备方法和应用

Also Published As

Publication number Publication date
CN106824073B (zh) 2019-05-07

Similar Documents

Publication Publication Date Title
Gan et al. Adsorption and membrane separation for removal and recovery of volatile organic compounds
Zhu et al. A critical review on VOCs adsorption by different porous materials: Species, mechanisms and modification methods
Azmi et al. Mesoporous adsorbent for CO2 capture application under mild condition: a review
Ma et al. Review on porous nanomaterials for adsorption and photocatalytic conversion of CO2
Meng et al. MgO-templated porous carbons-based CO2 adsorbents produced by KOH activation
Lefebvre et al. Adsorption of dye with carbon media supported on polyurethane open cell foam
Shen et al. Construction of hierarchically porous 3D graphene-like carbon material by B, N co-doping for enhanced CO2 capture
Chen et al. Adsorption of volatile organic compounds by mesoporous graphitized carbon: Enhanced organophilicity, humidity resistance, and mass transfer
CN106824073B (zh) 一种高性能碳纳米材料吸附剂及其制备与应用
CN102515145A (zh) 一种高比表面多孔炭材料的制备工艺
Ma et al. High iodine adsorption by lignin-based hierarchically porous flower-like carbon nanosheets
Dong et al. Ultramicroporous carbon granules with narrow pore size distribution for efficient CH4 separation from coal‐bed gases
CN105283245B (zh) 适用于c2-c3烷烃/烯烃分离的新颖碳分子筛和丸粒组合物
Wang et al. Few-layered mesoporous graphene for high-performance toluene adsorption and regeneration
Wu et al. Synthesis and characterization of magnetic K2CO3-activated carbon produced from bamboo shoot for the adsorption of Rhodamine b and CO2 capture
Ge et al. Graphene oxide template-confined fabrication of hierarchical porous carbons derived from lignin for ultrahigh-efficiency and fast removal of ciprofloxacin
CN104492373B (zh) 一种用于挥发性有机污染物吸附的硅藻土基复合多孔陶瓷材料及其制备方法
CN106732378B (zh) 一种基于碳纳米材料的吸附剂及其制备与使用方法
CN112023887B (zh) 一种TNT@Cu-BTC复合吸附剂的制备方法及其在环己烷吸附中的应用
Yan et al. Micro-mesoporous graphitized carbon fiber as hydrophobic adsorbent that removes volatile organic compounds from air
CN107876005A (zh) 一种脱除氯化污染物的吸附剂及其制备方法和应用
Wang et al. Experimental and computational investigation on the organic acid modification of porous carbon for toluene adsorption under humid conditions
Noorpoor et al. High capacity and energy-efficient dehydration of liquid fuel 2-dimethyl amino ethyl azide (DMAZ) over chromium terephthalic (MIL-101) nanoadsorbent
Gong et al. Experimental study on NO removal by surface activated bamboo charcoal
Chen et al. Structurally controllable hollow carbon spheres for gaseous benzene adsorption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant