CN106807375A - 一种催化剂、其制备方法及应用 - Google Patents

一种催化剂、其制备方法及应用 Download PDF

Info

Publication number
CN106807375A
CN106807375A CN201710130834.8A CN201710130834A CN106807375A CN 106807375 A CN106807375 A CN 106807375A CN 201710130834 A CN201710130834 A CN 201710130834A CN 106807375 A CN106807375 A CN 106807375A
Authority
CN
China
Prior art keywords
catalyst
carrier
active
hours
mass percentage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710130834.8A
Other languages
English (en)
Inventor
陈毓敏
郭国聪
徐忠宁
王志巧
陈青松
谭洪梓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to EP17795314.8A priority Critical patent/EP3456411A4/en
Priority to US16/300,120 priority patent/US11104575B2/en
Priority to PCT/CN2017/076793 priority patent/WO2017193696A1/zh
Publication of CN106807375A publication Critical patent/CN106807375A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8906Iron and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/892Nickel and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8946Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1094Promotors or activators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本申请公开了一种催化剂,包括载体和分散在载体上的活性组分,其特征在于,所述载体选自无机氧化物中的至少一种,所述载体包含大孔和介孔;所述活性组分含有活性元素,所述活性元素包括铁系元素;所述铁系元素为铁和/或钴。该催化剂作为二氧化碳重整甲烷反应的高温稳定催化剂,可制造合成气,实现二氧化碳减排和再生利用。在常压、800℃反应条件下,多级孔负载型金属催化剂表现出优异的综合催化性能,除了活性高、选择性好外,该催化剂稳定性非常好,兼具抗烧结和抗积炭性能。

Description

一种催化剂、其制备方法及应用
技术领域
本申请涉及一种催化剂、制备方法及其在二氧化碳甲烷重整反应中的应用,属于化工领域。
背景技术
煤炭、石油和天然气是三大化石能源资源。我国煤炭资源丰富,但近些年煤炭开采和利用过程中对大气、土壤和地下水的污染越来越严重,限制了其大量使用。而我国石油储量少,必须依靠进口,导致石油使用成本偏高。近几年,随着我国页岩气矿储量跃居世界前列,天然气的开发利用越来越受重视,国家出台了相关政策鼓励天然气的综合高效利用,天然气的高效利用上升到国家战略层次。天然气除了可以直接作为燃料外,其主要成分甲烷可以经由合成气高效转化为具有高附加值的化工产品,如生产大吨位需求的氨、甲醇,也可生产烯烃、芳烃等液体燃料的中间体。
目前工业上生产合成气主要采用天然气为原料的方法,主要包括天然气部分氧化法和蒸汽转化法。天然气部分氧化法是一种比较耗能的方法,需要消耗大量氧气或空气作为原料气。如果不使用催化剂,反应温度高达1300~1400℃。即使使用催化剂,催化床层温度高约900~1000℃、而且反应需要在高压(3.0MPa)进行,对设备的耐高温耐高压要求苛刻。天然气间歇转化蒸汽法中反应过程最高温度高达1300℃,过程非常耗能。连续蒸汽转化虽然能耗比较低,但仍然对设备耐高温高压的要求较高。而且不管是间歇转化还是连续转化,原料气水蒸汽在高温条件下对设备的腐蚀会影响到设备的使用寿命,增加工艺成本。这些技术工艺路线普遍存在反应温度高、耗能高、对设备的耐高温耐高压耐水蒸气腐蚀要求苛刻等技术问题。因此,开发无水无氧工艺生产对合成气的工业生产具有重要的意义。
除了甲烷水蒸汽重整、甲烷部分氧化外,甲烷二氧化碳重整是近些来逐渐受到关注的合成气生产技术途径。甲烷二氧化碳重整路线的优势如下:(1)甲烷二氧化碳干重整过程无需氧气和水,对设备要求较低。(2)H2/CO比值可调,更适合后续费托合成原料比例;反应可在650℃以上进行,能耗相对较低。(3)原料二氧化碳来源广泛,相比氧气廉价。该工艺过程在高效利用甲烷的同时实现了二氧化碳减排,具有显著的经济效益和环保效益。二氧化碳是煤炭及其下游产品高效利用的最终产物,如何实现二氧化碳的再生利用,变废为宝是煤炭清洁高效利用中非常重要的内容之一。该工艺有利于减少大气中二氧化碳的总量,缓解温室气体造成的环境压力,为我国减排提供了一种有效的方法。
要使惰性的甲烷和二氧化碳分子活化并进行定向转化,开发具有高活性、高选择性、高稳定性的低成本催化剂是关键。
发明内容
根据本申请的一个方面,提供一种催化剂,以解决现有负载型金属催化剂在高温反应中易烧结和积炭而失活的问题。该催化剂作为二氧化碳重整甲烷反应的高温稳定催化剂,可制造合成气,实现二氧化碳减排和再生利用。在常压、800℃反应条件下,多级孔负载型金属催化剂表现出优异的综合催化性能,除了活性高、选择性好外,该催化剂稳定性非常好,兼具抗烧结和抗积炭性能。
所述催化剂,包括载体和分散在载体上的活性组分,其特征在于,所述载体选自无机氧化物中的至少一种,所述载体包含大孔和介孔;所述活性组分含有活性元素,所述活性元素包括铁系元素;
所述铁系元素为铁和/或钴。
优选地,所述大孔的平均孔径大于50nm,所述介孔的平均孔径为1nm~50nm。
优选地,所述大孔的平均孔径为1μm~2μm。
优选地,所述介孔的平均孔径为5nm~15nm。
优选地,所述载体的比表面积为100m2/g~350m2/g。
优选地,所述铁系元素中还包括镍。
优选地,所述活性元素中还包括贵金属元素。所述贵金属元素选自金、银、钌、铑、钯、锇、铱、铂中的至少一种。进一步优选地,所述贵金属元素为铂、钌、金、铑中的至少一种。
贵金属与非贵金属(铁系金属)协同作用,使得多金属催化剂比非贵金属催化剂具有更优异的综合催化性能。一方面,引入贵金属活性组分,有利于非贵金属组分在载体中更好地分散,进一步降低活性金属组分颗粒的尺寸,增加活性位点数量,从而提高催化转化率。另一方面,活性金属颗粒的尺寸下降,增加了金属-载体相互作用,提升了催化剂的高温稳定性。
所述活性组分在催化剂中的质量百分含量为1%~15%;所述活性组分在催化剂中的质量百分含量以催化剂中含有的活性元素计。进一步优选地,所述活性组分在催化剂中的质量百分含量为3.5%~9%;所述活性组分在催化剂中的质量百分含量以催化剂中含有的活性元素计。
优选地,所述活性元素中铁系元素在催化剂中的质量百分含量下限选自1.0%、1.5%、1.76%、2.0%、2.76%、3.0%、3.5%、3.84%、4.0%、4.09%、4.05%、4.12%、4.16%、4.18%、4.5%、4.74%、4.8%或4.9%,上限选自5.0%、5.1%、5.41%、5.45%、6.24%、6.49%、7.0%、8.0%、9.0%或10%;所述铁系元素在催化剂中的质量百分含量以催化剂中含有的所有铁系元素的质量百分含量之和计。进一步优选地,所述活性元素中铁系元素在催化剂中的质量百分含量为1%~10%。更进一步优选地,所述活性元素中铁系元素在催化剂中的质量百分含量为3%~6%。
优选地,所述活性元素中贵金属元素在催化剂中的质量百分含量下限选自0.1%、0.2%、0.24%、0.29%、0.3%、0.31%、0.33%、0.35%、0.37%、0.38%、0.39%、0.40%、0.42%、0.43%、0.45%、0.5%、0.54%、0.55%、0.6%、0.7%、0.8%或0.9%,上限选自1.0%、1.07%、1.5%、2.0%、2.5%、2.93%、3.0%、3.5%、4.0%、4.5%或5.0%;所述贵金属元素在催化剂中的质量百分含量以催化剂中含有的所有贵金属元素质量百分含量之和计。进一步优选地,所述活性元素中贵金属元素在催化剂中的质量百分含量为0.1%~5%。更进一步优选地,所述活性元素中贵金属元素在催化剂中的质量百分含量为0.5%~3%。
作为一种实施方式,所述催化剂含有分散在载体上的改性组分;所述改性组分含有改性元素,所述改性元素选自碱金属元素、碱土金属元素、稀土金属元素中的至少一种。
作为一种实施方式,所述改性元素在催化剂中的质量百分含量下限选自0.1%、0.2%、0.3%、0.36%、0.4%、0.5%、0.6%、0.7%、0.77%、0.8%、0.85%、0.87%、0.9%、0.95%或1%,上限选自1.28%、1.32%、1.5%、2.0%、2.07%、2.11%、2.5%、2.65%、2.8%、3%、3.5%、4.0%、4.5%、5.0%、5.5%、5.87%、6.0%、6.5%、7.0%、7.5%、8.0%、8.5%或9.0%;所述改性元素在催化剂中的质量百分含量以催化剂中含有的所有改性元素的质量百分含量之和计。
优选地,所述碱金属元素在催化剂中的质量百分含量为0.1%~10%。进一步优选地,所述碱金属元素在催化剂中的质量百分含量下限选自0.1%、0.5%、0.87%、0.97%或1.0%,上限选自1.32%、1.5%、2.0%、2.11%、2.5%、3.0%、3.5%、4.0%、4.5%、4.85%或5.0%。更进一步优选地,所述碱金属元素在催化剂中的质量百分含量为0.1%~5%。优选地,所述碱土金属元素在催化剂中的质量百分含量为0.1%~10%。进一步优选地,所述碱土金属元素在催化剂中的质量百分含量下限选自0.1%、0.5%、0.82%、0.95%或1%,上限选自2.0%、2.11%、2.5%、3.0%、3.5%、4.0%、4.5%、4.77%、4.82%或5.0%。更进一步优选地,所述碱土金属元素在催化剂中的质量百分含量为0.1%~5%。
优选地,所述稀土金属元素在催化剂中的质量百分含量为0.1%~10%。优选地,所述稀土金属元素在催化剂中的质量百分含量下限选自0.1%、0.2%、0.3%、0.36%、0.5%、0.6%、0.8%或1.0%,上限选自1.26%、1.38%、1.39%、1.4%、1.5%、2.0%、2.11%、2.5%、3.0%、3.5%、4.0%、4.5%、5.0%、5.07%或5.87%。更进一步优选地,所述稀土金属元素在催化剂中的质量百分含量为0.1%~6%。
所述活性组分在载体上以活性金属元素的零价金属和/或活性金属元素的化合物形式存在。优选地,所述活性组分在载体上以活性金属元素的零价金属形式存在。
所述改性组分在载体上以改性元素化合物或零价金属的形式存在,优选地,所述改性组分在载体上以改性元素化合物形式存在。
优选地,所述分散在载体上的活性组分的粒径分布在1nm~50nm之间;所述分散在载体上的改性组分的粒径分布在1nm~50nm之间。进一步优选地,所述分散在载体上的活性组分的粒径分布在1nm~15nm之间;所述分散在载体上的改性组分的粒径分布在1nm~15nm之间。
作为一种具体的实施方式,所述活性元素由铂和钴组成,所述改性元素为铒;
其中,以活性元素和改性元素的摩尔数计,铂、钴、铒的摩尔比为铂:钴:铒=0.1%~5%:1%~10%:0.5%~5%。
作为一种具体的实施方式,所述活性元素由铂和钴组成,所述改性元素由铒和钾组成;
其中,以活性元素和改性元素的摩尔数计,铂、钴、铒和钾的摩尔比为铂:钴:铒:钾=0.1%~5%:1%~10%:0.5%~5%:0.2%~5%。
根据本申请的又一方面,提供上述任一催化剂的制备方法,其特征在于,至少包括以下步骤:
a)将载体置于含有活性组分元素的溶液中,或者将载体置于含有活性组分元素和改性元素的溶液中,进行浸渍;
b)步骤a)所得固体经分离、真空干燥、空气中焙烧和氢气还原后,即得所述催化剂。
优选地,步骤a)中所述浸渍方法为超声浸渍,总浸渍时间为24小时~96小时,超声累计时间为2小时~10小时。
优选地,步骤a)中所述超声浸渍是间歇式超声,总浸渍时间为36小时~60小时,超声累计时间为2小时~6小时。
优选地,步骤b)所述真空干燥温度为60℃~200℃。
优选地,步骤b)所述真空干燥是在60℃~100℃下真空干燥8小时~10小时。
优选地,步骤b)所述空气中焙烧是以1℃/min~10℃/min的升温速率将温度从室温升至300℃~800℃间的某一温度,焙烧不少于1小时。
优选地,步骤b)所述空气中焙烧是以1℃/min~5℃/min的升温速率将温度从室温升至500℃~700℃间的某一温度,焙烧2小时~4小时。
优选地,步骤b)中所述氢气还原是以5℃/min~20℃/min的升温速率将温度从室温升至600℃~1000℃间的某一温度,在氢气或氢气与非活性气体的混合物中还原不少于1小时;氢气或氢气与非活性气体的混合物的流速为20mL/min~80mL/min。
优选地,步骤b)中所述氢气还原是以5℃/min~15℃/min的升温速率将温度从室温升至800℃~1000℃间的某一温度,在氢气中还原不少于1小时~2小时;氢气的流速为20mL/min~40mL/min。
优选地,所述非活性气体选自氮气、惰性气体中的至少一种。进一步优选地,所述非活性气体选自氮气、氦气、氩气中的至少一种。
根据本申请的又一方面,提供一种二氧化碳甲烷重整反应制合成气的方法,其特征在于,所述含有甲烷和二氧化碳的原料与催化剂接触,制备合成气;
所述催化剂选自上述任一催化剂、根据上述任一方法制备得到的催化剂中的至少一种。
优选地,所述含有甲烷和二氧化碳的原料在反应温度600℃~900℃、反应压力0.1MPa~0.5MPa的条件下与所述催化剂接触,制备合成气;
所述原料气中二氧化碳和甲烷的摩尔比例为:
二氧化碳:甲烷=0.5~2。
本申请的有益效果包括但不限于:
(1)本申请所提供的催化剂,与常规介孔载体相比,采用具有多级孔道的载体;多级孔载体引入了大孔孔道,增加了介质的扩散和传质速率。多级孔的协同效应使得本申请所述催化剂在高温催化反应中同时具有良好的抗烧结和抗积炭性能。
(2)本申请所提供的催化剂,当含有贵金属时,除了采用非贵金属(铁、钴、镍中的至少一种)作为第一活性组分外,还引入贵金属作为第二活性组分。贵金属与非贵金属协同作用,使得多金属催化剂比非贵金属催化剂具有更优异的综合催化性能。一方面,引入贵金属活性组分,有利于非贵金属组分在载体中更好地分散,进一步降低活性金属组分颗粒的尺寸,获得更多的活性位点从而提高催化转化率。另一方面,小尺寸的金属活性组分颗粒与载体之间具有更强的金属-载体相互作用,可以有效地提高催化剂的高温稳定性。此外,与单纯的贵金属催化剂相比,多金属催化剂通过引入非贵金属,减少了贵金属用量,使得催化剂成本下降。总之,多金属催化剂具有较好的性价比,具有很好的应用前景。本申请所提供的催化剂,可引入改性组分(碱金属盐、碱土金属盐或稀土金属盐),进一步提升催化剂综合性能。
(3)本申请提供的催化剂,作为二氧化碳重整甲烷反应的高温稳定催化剂,可制造合成气,实现二氧化碳减排和再生利用。在常压、800℃反应条件下,多级孔负载型多金属催化剂表现出优异的综合催化性能(活性、选择性和稳定性),且性价比高,具有很好的应用前景。
附图说明
图1是实施例3中催化剂样品CAT-1、CAT-2和CAT-17催化剂稳定性比较图;其中:图1(a)是二氧化碳转化率随时间的变化关系;图1(b)是甲烷转化率随时间的变化关系。
图2是样品CAT-1、样品CAT-17和CAT-18的透射电镜图;图2(a)是样品CAT-1的透射电镜图,图2(b)是样品CAT-17的透射电镜图,图2(c)是CAT-18的透射电镜图。
具体实施方式
下面结合实施例详述本申请,但本申请并不局限于这些实施例。
除非特别指明,本实施例中所用的试剂和原材料均可通过商业途径购买。
实施例中,样品的透射电镜照片在FEI公司F20型透射电镜上采集。
实施例中,载体多级孔氧化铝微球来自沙索(Sasol)公司,比表面积为213.09m2/g;大孔平均孔径为1.57μm;介孔平均孔径为11.08nm。
实施例中,超声浸渍中采用的超声仪是昆山市超声仪器有限公司生产的KQ300ED型。
实施例中,催化剂上铁系元素、贵金属元素、碱金属元素、碱土金属元素和稀土元素的负载量采用等离子体发射光谱(ICP)在法国HORIBA JY公司的Ultima 2型仪器上分析测定。
实施例中,二氧化碳甲烷重整反应制合成气的反应产物检测在岛津GC-2014型色谱仪(TDX-01柱)上进行。
实施例1催化剂样品CAT-1~CAT-14的制备及表征
取一定量的活性组分金属盐溶于10ml水中配成溶液,加入5g多级孔氧化铝,超声浸渍一段时间后,过滤除去溶剂和多余未被吸收的金属盐。将吸附了金属离子的氧化铝在80℃真空干燥8h后,空气氛中焙烧,最后氢气还原,获得多级孔负载型多金属催化剂。如果需要对上述催化剂进行改性,可将改性组分前驱体(比如碱金属盐、碱土金属盐或稀土金属盐)与活性组分金属盐一起配成溶液,然后进行浸渍、干燥、焙烧和还原。
样品编号与具体实验参数、铁系元素、贵金属元素、碱金属元素、碱土金属元素和稀土金属元素在多级孔负载型多金属催化剂中的质量百分含量、金属颗粒的粒径范围的关系详见表1。
表1
实施例2催化剂反应评价
取0.2g催化剂样品CAT-1置于内径1cm固定床反应器中,进行氢气在线还原后,将温度调至反应温度。将气体切换为CO2和CH4混合气,N2为内标。反应后气体经冷却后进入气相色谱检测各物质浓度,计算CO2和CH4的转化率。
表2
CO2和CH4的转化率分别使用下列公式计算:
式中FCO2,in和FCO2,out是原料气和反应尾气中CO2的体积分流量;FCH4,in和FCH4,out分别是反应物和产物中CH4的体积分流量。
相同反应条件下,催化剂样品CAT-2~CAT-29的反应结果与CAT-1类似,根据催化剂制备方法的不同,CO2和CH4的转化率在±20%范围内变化。
实施例3催化剂稳定性评价
分别取0.2g催化剂样品CAT-1、CAT-2和CAT-17置于内径1cm的固定床反应器中,在实施例2的反应条件A下,进行催化剂稳定性评价。
催化剂CAT-1、CAT-2和CAT-17的稳定性测试结果如图1(a)和图1(b)所示。由图1可以看出,活性元素中包含贵金属和铁系元素的多金属催化剂CAT-1和CAT-2,在常压、800℃反应条件下,在反应时间204小时内,二氧化碳和甲烷的转化率维持较好的稳定性。活性元素中未包含贵金属元素的,催化剂稳定性略低。催化剂稳定性:CAT-2>CAT-1>CAT-17,表明添加贵金属提高了钴基催化剂的稳定性。同时,图1(a)和图1(b)中的数据也表明催化剂中引入贵金属后,除了稳定性得以提高外,二氧化碳和甲烷的转化率也显著提高了。进一步再加入少量稀土盐改性后,转化率又略微提高一点。
实施例4催化剂样品的表征
采用等离子体发射光谱ICP测定样品CAT-1~CAT-29中活性金属元素和改性金属元素的含量,结果详见表1。
采用透射电镜观察了样品CAT-1~CAT-29多金属催化剂上的金属颗粒的粒径范围,结果详见表1。其中,以样品CAT-1为典型代表,其透射电镜图如图2(a)所示,由图可以看出,本申请所提供的多金属催化剂上,金属颗粒的粒径均匀,粒径范围在5nm~15nm之间,且金属颗粒在载体上分散均匀。图2(b)和图2(c)分别为样品CAT-17和CAT-18的透射电镜图。对比图2(a)~图2(c)可以看出,在非贵金属催化剂中加入稀土元素后,活性金属颗粒变小;而加入贵金属后颗粒尺寸变小的程度要明显大于添加稀土盐的情况。尺寸效应很好地解释了本发明涉及的多金属催化剂具有更高的二氧化碳和甲烷转化率的本质原因。同时,小尺寸的金属活性组分颗粒与载体之间具有更强的相互作用,有利于提高催化剂的高温稳定性。与添加改性组分(比如稀土元素)相比,添加贵金属活性组分对铁系催化剂综合性能的改善程度要明显大得多。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

1.一种催化剂,包括载体和分散在载体上的活性组分,其特征在于,所述载体选自无机氧化物中的至少一种,所述载体包含大孔和介孔;
所述活性组分含有活性元素,所述活性元素包括铁系元素;所述铁系元素为铁和/或钴。
2.根据权利要求1所述的催化剂,其特征在于,所述大孔的平均孔径大于50nm,所述介孔的平均孔径为1nm~50nm;优选地,所述大孔的平均孔径为1μm~2μm;进一步优选地,所述介孔的平均孔径为5nm~15nm;进一步优选地,所述载体的比表面积为100m2/g~350m2/g。
3.根据权利要求1所述的催化剂,其特征在于,所述铁系元素中包括镍;优选地,所述活性元素中包括贵金属元素;进一步优选地,所述贵金属元素为金、银、钌、铑、钯、锇、铱、铂中的至少一种。
4.根据权利要求1或3所述的催化剂,其特征在于,所述活性元素中铁系元素在催化剂中的质量百分含量为1%~10%;优选地,所述活性元素中铁系元素在催化剂中的质量百分含量为3%~6%;
优选地,所述活性元素中贵金属元素在催化剂中的质量百分含量为0.1%~5%;进一步优选地,所述活性元素中贵金属元素在催化剂中的质量百分含量为0.5%~3%。
5.根据权利要求1所述的催化剂,其特征在于,所述催化剂含有分散在载体上的改性组分;所述改性元素选自碱金属元素、碱土金属元素、稀土金属元素中的至少一种;
优选地,所述碱金属元素在催化剂中的质量百分含量为0.5%~10%;进一步优选地,所述碱金属元素在催化剂中的质量百分含量为0.1%~5%;
优选地,所述碱土金属元素在催化剂中的质量百分含量为0.5%~10%;进一步优选地,所述碱土金属元素在催化剂中的质量百分含量为0.1%~5%;
优选地,所述稀土金属元素在催化剂中的质量百分含量为0.5%~10%;进一步优选地,所述稀土金属元素在催化剂中的质量百分含量为0.1%~6%。
6.根据权利要求1或5所述的催化剂,其特征在于,所述分散在载体上的活性组分、改性组分的粒径分布在1nm~50nm之间;优选地,所述分散在载体上的活性组分、改性组分的粒径分布在1nm~15nm之间。
7.根据权利要求6所述的催化剂,其特征在于,所述活性元素由铂和钴组成,所述改性元素由铒和钾组成;
其中,以元素的摩尔数计,铂、钴、铒和钾的摩尔比为
铂:钴:铒:钾=0.1%~5%:1%~10%:0.3%~5%:0.2%~5%。
8.权利要求1至7任一项所述催化剂的制备方法,其特征在于,至少包括以下步骤:
a)将载体置于含有活性组分元素的溶液中,或者将载体置于含有活性组分元素和改性元素的溶液中,进行浸渍;
b)步骤a)所得固体经分离、真空干燥、空气中焙烧和氢气还原后,即得所述催化剂。
9.根据权利要求8所述的方法,其特征在于,步骤a)中所述浸渍为超声浸渍,总浸渍时间为24小时~96小时,超声累计时间为2小时~10小时;优选地,步骤a)中所述超声浸渍是间歇式超声,总浸渍时间为36小时~60小时,超声累计时间为2小时~6小时;
优选地,步骤b)所述真空干燥温度为60℃~200℃;进一步优选地,步骤b)所述真空干燥是在60℃~100℃下真空干燥8小时~10小时;
优选地,步骤b)所述空气中焙烧是以1℃/min~10℃/min的升温速率将温度从室温升至300℃~800℃间的某一温度,焙烧不少于1小时;进一步优选地,步骤b)所述空气中焙烧是以1℃/min~5℃/min的升温速率将温度从室温升至500℃~700℃间的某一温度,焙烧2小时~4小时;
优选地,步骤b)中所述氢气还原是以5℃/min~20℃/min的升温速率将温度从室温升至600℃~1000℃间的某一温度,在氢气或氢气与非活性气体的混合物中还原不少于1小时;氢气或氢气与非活性气体的混合物的流速为20mL/min~80mL/min;进一步优选地,步骤b)中所述氢气还原是以5℃/min~15℃/min的升温速率将温度从室温升至800℃~1000℃间的某一温度,在氢气中还原不少于1小时~2小时;氢气的流速为20mL/min~40mL/min;
优选地,所述非活性气体选自氮气、惰性气体中的至少一种。
10.二氧化碳甲烷重整反应制合成气的方法,其特征在于,所述含有甲烷和二氧化碳的原料与催化剂接触,制备合成气;
所述催化剂选自权利要求1至7任一项所述的催化剂、根据权利要求8或9所述方法制备得到的催化剂中的至少一种;
优选地,所述含有甲烷和二氧化碳的原料在反应温度600℃~900℃、反应压力0.1MPa~0.5MPa的条件下与所述催化剂接触,制备合成气;
所述原料气中二氧化碳和甲烷的摩尔比例为:
二氧化碳:甲烷=0.5~2。
CN201710130834.8A 2016-05-12 2017-03-07 一种催化剂、其制备方法及应用 Pending CN106807375A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17795314.8A EP3456411A4 (en) 2016-05-12 2017-03-15 CATALYST, ITS PREPARATION METHOD AND ITS APPLICATION IN THE PREPARATION OF SYNTHESIS GAS
US16/300,120 US11104575B2 (en) 2016-05-12 2017-03-15 Nanocatalysts, preparation methods and applications for reforming carbon dioxide and methane to syngas
PCT/CN2017/076793 WO2017193696A1 (zh) 2016-05-12 2017-03-15 一种催化剂、其制备方法及其在合成气制备中的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710059735 2017-01-24
CN2017100597355 2017-01-24

Publications (1)

Publication Number Publication Date
CN106807375A true CN106807375A (zh) 2017-06-09

Family

ID=59115035

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710130834.8A Pending CN106807375A (zh) 2016-05-12 2017-03-07 一种催化剂、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN106807375A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108654641A (zh) * 2018-04-28 2018-10-16 中南大学 一种二氧化碳甲烷重整催化剂及其制备方法
CN112237926A (zh) * 2019-07-18 2021-01-19 中国石油化工股份有限公司 金属负载催化剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279271A (zh) * 2007-04-06 2008-10-08 中国石油天然气股份有限公司 用于甲烷催化部分氧化制备合成气的催化剂及其制备方法
CN101733104A (zh) * 2009-12-07 2010-06-16 中国科学院山西煤炭化学研究所 含二氧化碳合成气进行甲烷化的催化剂及制法和应用
CN102151570A (zh) * 2011-03-01 2011-08-17 上海中科高等研究院 一种甲烷-二氧化碳重整反应催化剂及其制备方法
CN105944733A (zh) * 2016-05-12 2016-09-21 中国科学院福建物质结构研究所 一种稀土改性的多级孔负载型镍基催化剂、制备方法及应用
CN106000405A (zh) * 2016-05-12 2016-10-12 中国科学院福建物质结构研究所 一种多级孔负载型镍基催化剂、制备方法及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101279271A (zh) * 2007-04-06 2008-10-08 中国石油天然气股份有限公司 用于甲烷催化部分氧化制备合成气的催化剂及其制备方法
CN101733104A (zh) * 2009-12-07 2010-06-16 中国科学院山西煤炭化学研究所 含二氧化碳合成气进行甲烷化的催化剂及制法和应用
CN102151570A (zh) * 2011-03-01 2011-08-17 上海中科高等研究院 一种甲烷-二氧化碳重整反应催化剂及其制备方法
CN105944733A (zh) * 2016-05-12 2016-09-21 中国科学院福建物质结构研究所 一种稀土改性的多级孔负载型镍基催化剂、制备方法及应用
CN106000405A (zh) * 2016-05-12 2016-10-12 中国科学院福建物质结构研究所 一种多级孔负载型镍基催化剂、制备方法及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王明智等: ""Ni基甲烷二氧化碳重整催化剂研究进展"", 《化工进展》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108654641A (zh) * 2018-04-28 2018-10-16 中南大学 一种二氧化碳甲烷重整催化剂及其制备方法
CN108654641B (zh) * 2018-04-28 2021-07-06 中南大学 一种二氧化碳甲烷重整催化剂及其制备方法
CN112237926A (zh) * 2019-07-18 2021-01-19 中国石油化工股份有限公司 金属负载催化剂及其制备方法
CN112237926B (zh) * 2019-07-18 2023-10-31 中国石油化工股份有限公司 金属负载催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Hu et al. Facile synthesis of sub‐nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane
Xie et al. Oxygen vacancies of Cr-doped CeO2 nanorods that efficiently enhance the performance of electrocatalytic N2 fixation to NH3 under ambient conditions
Cui et al. Highly selective electrochemical reduction of dinitrogen to ammonia at ambient temperature and pressure over iron oxide catalysts
Shao et al. WXy/g‐C3N4 (WXy= W2C, WS2, or W2N) composites for highly efficient photocatalytic water splitting
Liu et al. Electronic structure regulation of single‐atom catalysts for electrochemical oxygen reduction to H2O2
Chen et al. Hierarchically porous carbons with highly curved surfaces for hosting single metal FeN4 sites as outstanding oxygen reduction catalysts
Chen et al. Rational design of novel catalysts with atomic layer deposition for the reduction of carbon dioxide
CN106000405B (zh) 一种多级孔负载型镍基催化剂、制备方法及应用
Liu et al. Synergetic Dual‐Atom Catalysts: The Next Boom of Atomic Catalysts
Feng et al. Highly dispersed ruthenium nanoparticles on Y2O3 as superior catalyst for ammonia decomposition
Zhang et al. Nitrogen‐Decorated Porous Carbon Supported AgPd Nanoparticles for Boosting Hydrogen Generation from Formic Acid
CN104971763A (zh) 一种基于sba-16的耐硫甲烷化催化剂的制备及其在sng制备中的应用
CN106824189B (zh) 一种钌-二氧化钼纳米结的制备方法及其用途
Li et al. Self‐Supported Electrocatalysts for Efficient Oxygen Evolution Reaction: Hierarchical CuOx@ CoO Nanorods Grown on Cu Foam
Cho et al. Molecule‐Driven Shape Control of Metal Co‐Catalysts for Selective CO2 Conversion Photocatalysis
Wang et al. Microenvironment regulation strategies of single-atom catalysts for advanced electrocatalytic CO2 reduction to CO
Sun et al. Non-noble metal single atom-based catalysts for electrochemical reduction of CO2: Synthesis approaches and performance evaluation
Wang et al. Perspective of p-block single-atom catalysts for electrocatalysis
Wang et al. Metal‐Based Aerogels Catalysts for Electrocatalytic CO2 Reduction
Kaiprathu et al. Mechanisms of electrochemical nitrogen gas reduction to ammonia under ambient conditions: a focused review
CN106807375A (zh) 一种催化剂、其制备方法及应用
Wu et al. Nickel Foam‐Supported Amorphous FeCo (Mn)− O Nanoclusters with Abundant Oxygen Vacancies through Selective Dealloying for Efficient Electrocatalytic Oxygen Evolution
CN104588033A (zh) 一种浆态床费托合成催化剂及其制备方法和应用
Ni et al. Promoting effects of lanthan on Ru/AC for ammonia synthesis: tuning catalytic efficiency and stability simultaneously
Li et al. Pt Decorated Ni− Ni (OH) 2 Nanotube Arrays for Efficient Hydrogen Evolution Reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170609

RJ01 Rejection of invention patent application after publication