CN106824189B - 一种钌-二氧化钼纳米结的制备方法及其用途 - Google Patents

一种钌-二氧化钼纳米结的制备方法及其用途 Download PDF

Info

Publication number
CN106824189B
CN106824189B CN201710036609.8A CN201710036609A CN106824189B CN 106824189 B CN106824189 B CN 106824189B CN 201710036609 A CN201710036609 A CN 201710036609A CN 106824189 B CN106824189 B CN 106824189B
Authority
CN
China
Prior art keywords
ruthenium
nano junction
molybdenum
molybdenum dioxide
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710036609.8A
Other languages
English (en)
Other versions
CN106824189A (zh
Inventor
陈乾旺
江鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201710036609.8A priority Critical patent/CN106824189B/zh
Publication of CN106824189A publication Critical patent/CN106824189A/zh
Application granted granted Critical
Publication of CN106824189B publication Critical patent/CN106824189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种钌‑二氧化钼纳米结的制备方法及其用途,以贵金属钌修饰的钼基金属有机框架材料作为前驱体制备二氧化钼负载的钌纳米结,得到具有高活性和高稳定性的电化学析氢催化剂。本发明通过构建纳米结实现了贵金属用量的降低,获得了酸碱介质中均高活性且稳定的电化学析氢催化剂,在提升催化剂性能的同时降低了贵金属的用量,具有良好的电催化实用前景。

Description

一种钌-二氧化钼纳米结的制备方法及其用途
技术领域
本发明涉及一种纳米结,具体地说是一种钌-二氧化钼纳米结的制备方法及其用途,属于电催化剂技术领域。
背景技术
氢能源是一种零排放的能源,具有能量密度高和来源丰富等优点。由于能源危机和环境污染等问题日益严重,氢能被认为是最有潜力的化石能源替代物。与现有的工业制氢技术相比,电解水产氢不仅无污染,而且具有高效持续的能源转换效率。水的电解在碱性和酸性介质中均可进行,其中使用质子交换膜的碱性析氢已实现商业化应用。然而,电解水需要较高的过电位进而会产生大量的能量消耗,高效稳定的电催化剂能够降低电解水的过电位,因此开发酸性和碱性介质中均能高效析氢的催化剂对现有的工业化技术有重要的研究和应用价值。
铂、钯等贵金属具有良好的电催化水分解性能,但是昂贵的价格和稀缺的储量严重阻碍了它们的大规模工业化应用。过渡金属虽具有一定的电催化活性,但活性及稳定性远不如贵金属基催化剂,不能满足产业化需求。之前的研究表明,将两种不同的材料构建纳米结能够调节界面处的费米能级,进而促进电荷的转移,提高材料的催化性能。纳米结的存在能够促进催化剂表面电荷极化;促进电活性物种更容易吸附;有利于提供电催化过程中的离子扩散路径,促进电荷转移;降低中间物种和产物能垒和促进中间物种的转移。因此,使用少量的贵金属与合适的载体构成纳米结,不仅能够降低催化剂的成本,同时还能显著提升催化活性。
发明内容
本发明旨在提供一种钌-二氧化钼纳米结的制备方法及其用途,以贵金属钌修饰的钼基金属有机框架材料作为前驱体制备二氧化钼负载的钌纳米结,得到具有高活性和高稳定性的电化学析氢催化剂。在提升催化剂性能的同时降低了贵金属的用量,具有良好的电催化实用前景。
本发明通过构建纳米结实现了贵金属用量的降低,获得了酸碱介质中均高活性且稳定的电化学析氢催化剂。
本发明钌-二氧化钼纳米结的制备方法,是在液相中制备钌修饰的钼基金属有机框架材料并在氮气氛围中退火处理,包括如下步骤:
1、将50mg钼-均苯三甲酸配合物颗粒分散在30mL无水乙醇中,随后加入0-4.4mL浓度0.01g/mL的RuCl3溶液,磁力搅拌12小时后离心并真空干燥获得钌修饰的Mo-btc前驱体;
2、将钌修饰的Mo-btc前驱体置于管式炉中,在氮气气氛中升温至700℃并保温3小时,冷却至室温,获得二氧化钼负载的钌纳米结(即钌-二氧化钼纳米结)。
所述钼-均苯三甲酸配合物的分子式为Mo3(btc)2,以下简记为Mo-btc,其制备方法为本领域公知方法。例如可将六羰基钼与均苯三甲酸溶解在N,N-二甲基甲酰胺(DMF)中,之后以氩气作保护气回流制备钼-均苯三甲酸配合物(Kramer M,Schwarz U,KaskelS.Synthesis and properties of the metal-organic framework Mo 3(BTC)2(TUDMOF-1)[J]Journal of MaterialsChemistry,2006,16(23):2245-2248.)。
步骤2中管式炉的升温速率设置为5℃/分钟。
本发明通过调节氯化钌的加入量,可以调节材料的电催化性能,量过高或过低都会引起材料性能的下降,其中加入2.2ml的样品性能最佳。当氯化钌的加入量为零时,产物为二氧化钼。
本发明钌-二氧化钼纳米结的用途,是在酸性或碱性介质中电催化析氢时作为催化剂应用。
与常规的过渡金属氧化物相比,二氧化钼不仅耐酸性腐蚀,而且导带中富含离域的钼电子,具有明显的金属特性,同时边缘的钼和氧均为水分解的活性位点。为此,本发明选择了最便宜的铂族贵金属钌,并且与二氧化钼结合来构建纳米结,进一步降低了材料的成本,同时电子间相互作用的增强提高了材料的电催化性能。另一方面,钌与二氧化钼的协同作用不仅提高了材料的活性与稳定性,而且提供了电子转移的快速通道,提升了材料的导电性。此外,催化剂的活性受到比表面积与颗粒尺寸的影响,纳米级异质结的制备工艺较为复杂。以钌修饰的钼基金属有机框架材料为前驱体制备钌-二氧化钼纳米结,在降低颗粒尺寸的同时增大材料的比表面积。
本发明通过将钌修饰的Mo-btc在氮气气氛中退火,获得了二氧化钼负载的钌纳米结,操作方便、方法简单;该产物在酸性和碱性介质析氢均具有非常高的催化活性,可持续工作时间长、循环稳定性好。本发明可以作为发展低成本、高活性、性能稳定的析氢催化剂。
本发明的有益效果体现在:
本发明所制备的催化剂,通过一步退火法原位生成了二氧化钼负载的钌纳米结,具有突出的催化活性和循环稳定性。在强酸和强碱性溶液中催化析氢均表现出极佳的催化活性,其中碱性介质中的性能超越了商用的Pt/C(Pt,20wt.%)电催化剂。并且在酸性条件下循环12小时之后催化性能并没有明显下降。
附图说明
图1是实施例中制备的样0的X射线衍射图产物为单斜相的MoO2(JCPDS:32-0671)。
图2是实施例中制备的钌-二氧化钼纳米结的X射线衍射图;产物为单斜相的MoO2(JCPDS:32-0671)和密排六方的Ru(JCPDS:06-0663),显示产物为两相共存,基本无其他杂质物相。可以看出随着钌加入量的提高,样1、样2和样3中钌的峰逐渐增强。
图3是实施例中样2的透射电子显微照片;由退火后产物的透射电镜图像可以看出产物为大量颗粒团聚在一起的八面体,其中小颗粒的直径为大约20nm。
图4是实施例中制备的样2的拉曼光谱;拉曼光谱能够揭示材料的局域结构特征,图4中201,227,344,359,457,494,566,585和739cm-1处为MoO2的特征峰,而817,844和953cm-1处的拉曼共振谱为+6价的MoOx,这是由于部分四价的钼被空气氧化成六价的钼。可以明显看出,六价MoOx处的拉曼峰宽且弱,表明钌分散在二氧化钼基底中。
图5是实施例中样2的高分辨透射电镜照片;图5中3.4埃晶面间距数据验证了二氧化钼(110)衍射面的存在,尺寸为5-10nm颗粒的晶面间距数与密排六方钌(101)衍射面的层间距相符。图中可以明显观察到钌纳米颗粒与二氧化钼之间存在明显的界面,这是纳米结存在的一个强有力的证据。
图6是实施例中样2的透射电子显微照片、元素成分成像照片、X射线能谱线扫描照片和选区元素含量比;图6a为产物的透射电镜图像,图6b-6d是元素成分成像照片,从图中可以看到,外部信号较强的是钌元素,内部为钼和氧元素,表面钌纳米颗粒包覆在均匀分散的二氧化钼表面。图6a中红线的X射线能谱扫描更能反映各元素的分布,如图6e显示,二氧化钼被钌纳米颗粒包覆。同时图6f-6g显示产物表面处钌与钼元素的原子比(图6a,A点)要远远高于内部(图6a,B点),表明了钌原子在产物的表面富集,即钌纳米颗粒负载在二氧化钼基底上。
图7是实施例中样2产物中钌元素的X射线电子能谱图;
图8是实施例中样2产物中钼元素的X射线电子能谱图(与样0对比);
图9是实施例中样2产物中氧元素的X射线电子能谱图(与样0对比);
为了进一步获得产物结构方面的信息,图7-9对钌、钼、氧三种元素进行了X射线光电子能谱表征。通过与文献报道的纯单质峰相比,钌的3p峰有偏移,这种偏移可能是由于二氧化钼与钌间的相互作用引起的。同时与样0相比,纳米结产物的钼元素只有+6价,表明钌的引入对钼元素的相对含量有重要影响,该现象与前文所述的拉曼光谱结果相吻合。另外,相对于二氧化钼,异质结产物中钼和氧元素的结合能均发生了偏移。峰位的偏移表明产物中钌与二氧化钼存在相互作用。
图10是实施例中样2产物在酸性溶液(0.5M H2SO4)中电化学阻抗图(与样0对比);两相间的强相互作用将显著提升材料的导电性,图10为酸性溶液中两种材料的电化学阻抗图,纳米结产物的半圆环在中高频区要小于二氧化钼,表明纳米结具有较低的电荷转移阻抗。
图11是实施例中样0与钌-二氧化钼纳米结产物在酸性溶液中电催化析氢LSV曲线;可以看出样2的性能最佳,表明钌的量过高或过低都会引起材料性能的下降。
图12是实施例中样2产物在酸性溶液(0.5M H2SO4)中性能与负载量的关系,可以看出负载量为0.57mg cm-2时样2的性能最佳。
图13是实施例中制备的样2产物在酸性溶液中电催化析氢LSV曲线(与商用铂碳、样0和钌粉对比);
图14是实施例中制备的样2产物在酸性溶液中初次析氢LSV曲线与1000次循环后LSV曲线对比;
图15是实施例中制备的样2产物在酸性溶液恒定电位(80mV)条件下时间-电流曲线;
图16是实施例中制备的样2产物在碱性溶液(1M KOH)中电催化析氢LSV曲线(与商用铂碳、样0和钌粉对比)。
使用三电极体系对产物分别在酸性和碱性溶液中进行电化学析氢性能测试,选用铂丝作对电极和Ag/AgCl作参比电极,玻碳电极作为工作电极,其中催化剂的负载量是0.57mg cm-2。电流密度达到10mA cm-2时所需的过电位是催化剂性能的评判标准。实验测试结果显示,性能最佳的样2在酸性溶液中电流密度达到10mA cm-2时过电位为55mV,而碱性溶液则为29mV,性能均超过本实例中制备的二氧化钼(样0)和商业钌粉(图13和图16)。值得特别指出的是,在碱性溶液中,纳米结催化剂达到大电流密度100mA cm-2时过电位为194mV,这一数值甚至超过了目前性能最好的铂碳电催化剂(图16)。
耐久性是衡量催化剂性能的一个重要指标,在产物的稳定性测试中我们进行了酸性介质中电化学CV循环试验(图14),并测量了恒电位下电流密度随时间变化曲线(图15)。图14表明催化剂循环1000次后电流密度达到10mA cm-2时所需要的过电位比循环前上升了仅5mV,几乎没有影响。图15是纳米结产物在恒定过电位80mV下电流密度随时间变化的曲线,结果显示催化剂可以持续工作12小时且无明显衰减。
产物优越的性能可能源自形成异质结后,钌与二氧化钼界面处电荷分布发生变化,提供了电催化过程中更快的离子扩散路径,降低反应过程的电荷转移阻抗;同时可能引起了材料费米能级的调整,降低了中间物种和产物的能垒,增强了催化剂的活性。
以上催化性能实验结果表明,本发明纳米结产物在酸性和碱性溶液中电催化水制氢具有极高的活性,可持续工作时间长、稳定性好。从商业应用角度考虑,贵金属Ru的价格不到商业Pt的二十分之一,考虑到纳米结的引入极大地降低了贵金属的用量,具有很强的应用前景。
具体实施方式
本发明提供了一种二氧化钼负载钌纳米结,其中二氧化钼为基底,钌纳米颗负载在基底上。
实施例1:
本实施例中钌-二氧化钼纳米结的制备方法如下:
1、将2.26克六羰基钼与1.5克均苯三甲酸溶解在100毫升无氧N,N-二甲基甲酰胺(DMF)中,之后以氩气作保护气156℃回流反应5天,随后降至室温,离心并真空干燥获得Mo-btc。
2、将50mg钼-均苯三甲酸配合物(Mo-btc)颗粒分散在30mL无水乙醇中,随后加入1.1mL浓度0.01g/mL的RuCl3溶液,磁力搅拌12小时后离心并真空干燥获得钌修饰的Mo-btc前驱体;
3、将钌修饰的Mo-btc前驱体置于管式炉中,在氮气气氛中以5℃/分钟的升温速率升温至700℃并保温3小时,冷却至室温,获得二氧化钼负载的钌纳米结(记为样1)。
实施例2:
本实施例中钌-二氧化钼纳米结的制备方法如下:
1、将2.26克六羰基钼与1.5克均苯三甲酸溶解在100毫升无氧N,N-二甲基甲酰胺(DMF)中,之后以氩气作保护气156℃回流反应5天,随后降至室温,离心并真空干燥获得Mo-btc。
2、将50mg钼-均苯三甲酸配合物(Mo-btc)颗粒分散在30mL无水乙醇中,随后加入2.2mL浓度0.01g/mL的RuCl3溶液,磁力搅拌12小时后离心并真空干燥获得钌修饰的Mo-btc前驱体;
3、将钌修饰的Mo-btc前驱体置于管式炉中,在氮气气氛中以5℃/分钟的升温速率升温至700℃并保温3小时,冷却至室温,获得二氧化钼负载的钌纳米结(记为样2)。
实施例3:
本实施例中样3钌-二氧化钼纳米结的制备方法如下:
1、将2.26克六羰基钼与1.5克均苯三甲酸溶解在100毫升无氧N,N-二甲基甲酰胺(DMF)中,之后以氩气作保护气156℃回流反应5天,随后降至室温,离心并真空干燥获得Mo-btc。
2、将50mg钼-均苯三甲酸配合物(Mo-btc)颗粒分散在30mL无水乙醇中,随后加入4.4mL浓度0.01g/mL的RuCl3溶液,磁力搅拌12小时后离心并真空干燥获得钌修饰的Mo-btc前驱体;
3、将钌修饰的Mo-btc前驱体置于管式炉中,在氮气气氛中以5℃/分钟的升温速率升温至700℃并保温3小时,冷却至室温,获得二氧化钼负载的钌纳米结(记为样3)。
实施例4:
本实施例中样0钌-二氧化钼纳米结的制备方法如下:
1、将2.26克六羰基钼与1.5克均苯三甲酸溶解在100毫升无氧N,N-二甲基甲酰胺(DMF)中,之后以氩气作保护气156℃回流反应5天,随后降至室温,离心并真空干燥获得Mo-btc。
2、将制备的Mo-btc前驱体置于管式炉中,在氮气气氛中以5℃/分钟的升温速率升温至700℃并保温3小时,冷却至室温,获得二氧化钼材料(记为样0)。
实施例5:电催化析氢
使用三电极体系对产物分别在酸性和碱性溶液中进行电化学析氢性能测试,选用铂丝作对电极和Ag/AgCl作参比电极,玻碳电极作为工作电极,其中催化剂的负载量是0.57mg cm-2。电流密度达到10mA cm-2时所需的过电位是催化剂性能的评判标准。实验测试结果显示,样2的性能最佳,酸性溶液中电流密度达到10mA cm-2时过电位为55mV,而碱性溶液则为29mV,性能均超过本实例中制备的二氧化钼和商业钌粉(图13和图16)。值得特别指出的是,在碱性溶液中,样2达到大电流密度100mA cm-2时过电位为194mV,这一数值甚至超过了目前性能最好的铂碳电催化剂(图16)。
耐久性是衡量催化剂性能的一个重要指标,在产物的稳定性测试中我们对性能最佳的样2进行了酸性介质中电化学CV循环试验(图14),并测量了恒电位下电流密度随时间变化曲线(图15)。图14表明催化剂循环1000次后电流密度达到10mA cm-2时所需要的过电位比循环前上升了仅5mV,几乎没有影响。图15是纳米结产物在恒定过电位80mV下电流密度随时间变化的曲线,结果显示催化剂可以持续工作12小时且无明显衰减。
产物优越的性能可能源自形成异质结后,钌与二氧化钼界面处电荷分布发生变化,提供了电催化过程中更快的离子扩散路径,降低反应过程的电荷转移阻抗;同时可能引起了材料费米能级的调整,降低了中间物种和产物的能垒,提升了材料的催化性能与稳定性,同时材料的导电性得到大幅度提高。
以上催化性能实验结果表明,本发明纳米结产物在酸性和碱性溶液中电催化水制氢具有极高的活性,可持续工作时间长、稳定性好。从商业应用角度考虑,贵金属Ru的价格不到商业Pt的二十分之一,考虑到纳米结的引入极大地降低了贵金属的用量,具有很强的应用前景。

Claims (4)

1.一种钌-二氧化钼纳米结的制备方法,其特征在于包括如下步骤:
(1)将50mg钼-均苯三甲酸配合物Mo3(btc)2分散在30mL无水乙醇中,随后加入1.1-4.4mL浓度0.01g/mL的RuCl3溶液,磁力搅拌12小时后离心并真空干燥获得钌修饰的Mo-btc前驱体;
(2)将钌修饰的Mo-btc前驱体置于管式炉中,在氮气气氛中升温至700℃并保温3小时,冷却至室温,获得二氧化钼负载的钌纳米结。
2.根据权利要求1所述的制备方法,其特征在于:
步骤(1)中0.01g/mL的RuCl3溶液的添加量为2.2mL。
3.根据权利要求1所述的制备方法,其特征在于:
步骤(2)中管式炉的升温速率设置为5℃/分钟。
4.一种权利要求1制备的钌-二氧化钼纳米结的用途,其特征在于:
所述钌-二氧化钼纳米结在酸性或碱性介质中电催化析氢时作为催化剂应用。
CN201710036609.8A 2017-01-18 2017-01-18 一种钌-二氧化钼纳米结的制备方法及其用途 Active CN106824189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710036609.8A CN106824189B (zh) 2017-01-18 2017-01-18 一种钌-二氧化钼纳米结的制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710036609.8A CN106824189B (zh) 2017-01-18 2017-01-18 一种钌-二氧化钼纳米结的制备方法及其用途

Publications (2)

Publication Number Publication Date
CN106824189A CN106824189A (zh) 2017-06-13
CN106824189B true CN106824189B (zh) 2019-04-26

Family

ID=59124386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710036609.8A Active CN106824189B (zh) 2017-01-18 2017-01-18 一种钌-二氧化钼纳米结的制备方法及其用途

Country Status (1)

Country Link
CN (1) CN106824189B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108754531B (zh) * 2018-05-29 2020-01-07 浙江大学 一种含Co和Ru双金属碳纳米复合电催化材料的制备方法
CN109205567B (zh) * 2018-08-13 2020-06-30 浙江工业大学 一种利用mof衍生双金属氧化物模板制备金属氧化物多级结构的方法
CN109433261B (zh) * 2018-11-29 2021-01-29 哈尔滨工业大学 一种Ru/C纳米组装体的制备方法
CN113430568B (zh) * 2021-07-13 2022-08-02 西北大学 一种铂负载二氧化钼杂化纳米材料及其制备方法和电催化应用
CN115558953B (zh) * 2022-12-05 2023-03-24 四川大学 一种钼基载体负载的铑金属团簇及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994560A (zh) * 2006-12-21 2007-07-11 浙江工业大学 一种碳化钨载铂催化剂及其制备方法
CN104841423A (zh) * 2015-04-08 2015-08-19 天津大学 一种三维大孔结构二氧化钼负载钯颗粒材料及其合成方法
CN105977479A (zh) * 2016-05-24 2016-09-28 中南大学 一种八面体多孔二氧化钼的制备方法及其在锂离子电池中的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1994560A (zh) * 2006-12-21 2007-07-11 浙江工业大学 一种碳化钨载铂催化剂及其制备方法
CN104841423A (zh) * 2015-04-08 2015-08-19 天津大学 一种三维大孔结构二氧化钼负载钯颗粒材料及其合成方法
CN105977479A (zh) * 2016-05-24 2016-09-28 中南大学 一种八面体多孔二氧化钼的制备方法及其在锂离子电池中的应用

Also Published As

Publication number Publication date
CN106824189A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
Wang et al. In-situ synthesis of free-standing FeNi-oxyhydroxide nanosheets as a highly efficient electrocatalyst for water oxidation
CN106824189B (zh) 一种钌-二氧化钼纳米结的制备方法及其用途
US20200164350A1 (en) Low-platinum catalyst based on nitride nanoparticles and preparation method thereof
CN108716008B (zh) 三维镍铁层状双氢氧化物阵列及其室温制备方法与应用
Wang et al. Co3O4 nanosheet arrays treated by defect engineering for enhanced electrocatalytic water oxidation
Rodney et al. Lanthanum doped copper oxide nanoparticles enabled proficient bi-functional electrocatalyst for overall water splitting
Yang et al. Core–shell NiFe-LDH@ NiFe-Bi nanoarray: in situ electrochemical surface derivation preparation toward efficient water oxidation electrocatalysis in near-neutral media
CN103413951A (zh) 氮掺杂石墨烯负载Pt基合金纳米电催化剂及其制备方法
Wang et al. Facile preparation of a Pt/Prussian blue/graphene composite and its application as an enhanced catalyst for methanol oxidation
He et al. Realizing high water splitting activity on Co3O4 nanowire arrays under neutral environment
Yanalak et al. NiO and Co3O4 nanofiber catalysts for the hydrogen evolution reaction at liquid/liquid interfaces
Rahmani et al. Excellent electro-oxidation of methanol and ethanol in alkaline media: Electrodeposition of the NiMoP metallic nano-particles on/in the ERGO layers/CE
Yang et al. The self-activation and synergy of amorphous Re nanoparticle–Si nanowire composites for the electrocatalytic hydrogen evolution
Hao et al. Preparation of nanostructured mesoporous NiCo2O4 and its electrocatalytic activities for water oxidation
Cai et al. Heptanuclear Co, Ni and mixed Co-Ni clusters as high-performance water oxidation electrocatalysts
Al-Enizi et al. CoCr7C3-like nanorods embedded on carbon nanofibers as effective electrocatalyst for methanol electro-oxidation
CN111841616A (zh) 一种双功能原子分散铁氮配位材料催化剂的制备方法
Han et al. Understanding Structure‐activity Relationship on Metal‐Organic‐Framework‐Derived Catalyst for CO2 Electroreduction to C2 Products
Shixuan et al. Oxygen reduction activity of a Pt-N4 single-atom catalyst prepared by electrochemical deposition and its bioelectrochemical application
Yousaf ur Rehman et al. Fabrication of Ni–MOF-derived composite material for efficient electrocatalytic OER
Yang et al. Electrospun IrP2-carbon nanofibers for hydrogen evolution reaction in alkaline medium
Hu et al. One step synthesis of Co-Ni bimetallic organic frameworks as a highly active and durable electrocatalyst for efficient water oxidation
Liu et al. Core-shell AgNWs@ Ni (OH) 2 nanowires anchored on filter paper for efficient hydrogen evolution reaction
CN114214661A (zh) 一种超薄水滑石纳米片耦合金属、氮共掺杂多孔碳阵列的复合材料及其制备方法与应用
Shaaban et al. Tailored engineering of zinc carbide triggered by N‐enriched carbon nanotubes for prospective water splitting

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant