CN106803583A - 一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料及其制备方法 - Google Patents

一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料及其制备方法 Download PDF

Info

Publication number
CN106803583A
CN106803583A CN201710057523.3A CN201710057523A CN106803583A CN 106803583 A CN106803583 A CN 106803583A CN 201710057523 A CN201710057523 A CN 201710057523A CN 106803583 A CN106803583 A CN 106803583A
Authority
CN
China
Prior art keywords
nickel nitrate
double
negative pole
minutes
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710057523.3A
Other languages
English (en)
Inventor
方敏华
水淼
李月
陈超
李弯弯
舒杰
任元龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201710057523.3A priority Critical patent/CN106803583A/zh
Publication of CN106803583A publication Critical patent/CN106803583A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/626Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料及其制备方法,其特征为结合微乳液和喷雾干燥方法在Cr3+、Cu2+掺杂非晶硝酸镍颗粒上包覆ZnO及TiO2层,抵御电解液的侵蚀并提高材料的电子导电能力;而后在高真空条件下,采用特定的热处理步骤去除体系中的结晶水,形成双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料;体系中Cr3+掺杂提高体系的电子电导率并增加体系中的空位缺陷、Cu2+离子使得Ni‑O空间结构产生畸变,扩展锂离子扩散迁移通道,提高其锂离子电导率;特别有益的是材料为非晶体,各向同性,有利于锂离子的快速传导。从而大幅度提高硝酸镍的综合电化学性能。

Description

一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料及其 制备方法
技术领域
本发明涉及一种高性能硝酸镍复合锂电负极材料制造方法技术领域。
背景技术
锂离子二次电池具有体积、重量能量比高、电压高、自放电率低、无记忆效应、循环寿命长、功率密度高等绝对优点,目前在全球移动电源市场有超过300亿美元/年份额并以超过10%的速度逐渐增长。特别是近年来,随着化石能源的逐渐枯竭,太阳能、风能、生物质能等新能源逐渐成为传统能源的替代方式,其中风能、太阳能具有间歇性,为满足持续的电力供应需要同时使用大量的储能电池;汽车尾气带来的城市空气质量问题日益严重,电动车(EV)或混合电动车(HEV)的大力倡导和发展已经到了刻不容缓的地步;这些需求提供了锂离子电池爆发式增长点,同时也对锂离子电池的性能提出了更高的要求。
锂离子电池正负极材料的容量的提高是科技人员研究的首要目标,高容量正负极材料的研发可以缓解目前锂离子电池组体积大、份量重、价格高难以满足高耗电及高功率设备需要的局面。然而自从1991年锂离子电池商业化以来,正极材料的实际比容量始终徘徊在100-180mAh/g之间,正极材料比容量低已经成为提升锂离子电池比能量的瓶颈。相较于正极,负极材料容量的提升空间还很大,如锡及锡合金材料、硅及硅合金材料、各类过渡金属氧化物[Md.Arafat Rahman,Guangsheng Song,Anand I.Bhatt,Yat Choy Wong,andCuie Wen,Nanostructured Silicon Anodes for High-Performance Lithium-IonBatteries,Adv.Funct.Mater.2016,26,647-678]等。但如若要兼顾材料的倍率性能、循环容量保持性能仍旧非常困难。其中主要原因有:1、电极材料在发生氧化还原反应时,同时要具有快速的锂离子嵌入脱嵌及电子传导,即同时具有良好的电子导电性和离子导电性,不少负极材料具有较高的锂离子扩散系数,然而却是电子绝缘体,从而使得电池的极化大幅度增加;2、不少电极材料在锂离子嵌入和脱嵌的过程中有较大的体积变化,从而造成电极材料颗粒的破碎及有效电极材料在循环过程中的损失,大的体积变化同时也带来充放电过程中材料晶格蜕变产生第二相而严重影响电池的性能。3、转化反应机理的锂电负极材料,反应产物锂化合物的电子绝缘性严重影响了材料的可逆性。
合金机理的锂电负极材料及转化反应机理的锂电负极材料往往表现出较高的比容量,近年来金属氧化物、硫化物、磷化物、碳酸盐、氯化物作为典型的转化反应机理锂电负极材料逐渐受到了关注。与传统锂离子电池电极材料的工作原理有所不同,传统的锂离子电池正极和负极都存在锂离子可以嵌入或脱嵌的空间,而电解质中的锂离子在正极和负极之间来回嵌入和脱嵌而放电正如Armand等所提出的“摇椅”电池。而转换材以+2价金属氧化物为例,会发生类似如下的变化:
2Li++MeO+2e-→Li2O+Me0
在这个过程中会释放出超过1000mAh.g-1的比容量,因而获得了材料研究人员高度的重视。然而如前所述,兼顾材料的倍率性能、循环容量保持性能仍旧非常困难。金属氧化物、硫化物、磷化物、碳酸盐、氯化物这些转换负极材料获得了较多的研究,而金属硝酸盐产品的研究和开发目前还非常少。硝酸镍负极转换材料也可以提供接近或超过1000mAh.g-1的比容量,而其倍率特性比金属氧化物、硫化物、磷化物、碳酸盐、氯化物要优越,锂离子进入或脱出的材料体积变化也较小;而其主要问题为:1、硝酸镍含有较多结晶水,而且这些结晶水难以完全去除而容易造成电解液分解对材料表面的侵蚀及材料本身的部分溶解;2、转换反应后的产物硝酸锂是电子绝缘体而其锂离子扩散活化能也较高,造成很大的电化学极化;3、硝酸镍表面不稳定,容易受到电解液的侵蚀。
因此开发一种具有优异电化学性能的改性无水硝酸镍制备方法是硝酸镍材料作为二次锂电池负极材料应用的关键。
发明内容
本发明针对现有背景技术提出了一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料及其制备方法,其特征为结合微乳液和喷雾干燥方法在Cr3+、Cu2+掺杂非晶硝酸镍颗粒上包覆ZnO及TiO2层,抵御电解液的侵蚀并提高材料的电子导电能力;而后在高真空条件下,采用特定的热处理步骤去除体系中的结晶水,形成双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料;体系中Cr3+掺杂提高体系的电子电导率并增加体系中的空位缺陷、Cu2+离子使得Ni-O空间结构产生畸变,扩展锂离子扩散迁移通道,提高其锂离子电导率;特别有益的是材料为非晶体,各向同性,有利于锂离子的快速传导。从而大幅度提高硝酸镍的综合电化学性能。
这种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料,其制备方法为:将六水合硝酸镍、六水合硝酸镍物质的量0.5-5%的三水合硝酸铜、六水合硝酸镍物质的量0.5-5%的九水合硝酸铬溶解在去离子水中形成总金属离子浓度为0.5-1.5mol·L-1的溶液;将等质量的该溶液和环己烷混合,加入混合后液体质量百分比为0.5-3.0%的CTAB、混合后液体质量百分比为0.1-1.0%的正丁醇,以500-900转/分钟的转速搅拌5-15分钟后静置5-10分钟,其后加入六水合硝酸镍物质的量0.5-5%的正钛酸四乙酯同时以120-200转/分钟的转速搅拌2-5分钟后静置3-10小时;其后将该液体体系以1-10mL·min-1的速度通过蠕动泵通入喷雾干燥机的进样口,其他操作条件为:进风量0.5-3.5m3·min-1、进风口温度100℃-130℃、出风口温度80℃-95℃;将收集得到的固体与固体质量百分比0.2-0.8%的钛酸酯偶联剂、固体质量百分比0.5-5%的二水合醋酸锌、固体质量百分比0.2-1%的丙三醇和环己烷以体积比为1∶1的混合液体混合后放入球磨机,球磨子与物料的质量比为20∶1,以200-400转/分钟的速度球磨10-20小时,球磨完毕后取出物料,在60℃-80℃干燥箱内干燥10-20小时后放入管式炉中,抽取管式炉中空气至气体压力小于0.5-3Pa,以2-10℃/分钟的速度升温到75-95℃并在此温度下保持8-15分钟并始终保持压力小于0.5-3Pa;其后通入流量为1-10L·min-1纯度高于体积百分比99.9%的氩气,并同时以20-30℃/分钟的速度升温到120-130℃并在此温度下保持5-15分钟;制得该双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料。
如上所述的制备方法中的钛酸酯偶联剂为异丙基三(焦磷酸二辛酯)钛酸酯、二(二辛基焦磷酰基)合氧乙酸酯钛、四异丙基二(亚磷酸二月桂酯)钛酸酯中的一种。
与现有技术相比,本发明的优点在于:结合微乳液和喷雾干燥方法在Cr3+、Cu2+掺杂非晶硝酸镍颗粒上包覆ZnO及TiO2层,抵御电解液的侵蚀并提高材料的电子导电能力;而后在高真空条件下,采用特定的热处理步骤去除体系中的结晶水,形成双组份包覆Cr3+、Cu2 +掺杂非晶硝酸镍锂电负极材料;体系中Cr3+掺杂提高体系的电子电导率并增加体系中的空位缺陷、Cu2+离子使得Ni-O空间结构产生畸变,扩展锂离子扩散迁移通道,提高其锂离子电导率;特别有益的是材料为非晶体,各向同性,有利于锂离子的快速传导。从而大幅度提高硝酸镍的综合电化学性能。
附图说明
图1该材料的前10次循环的充电容量、放电容量和充放电效率图,电压区间0.1V-3.0V,充放电电流0.5C。
具体实施方式
以下结合实施实例对本发明作进一步详细描述。
实施例1:将六水合硝酸镍、六水合硝酸镍物质的量0.5%的三水合硝酸铜、六水合硝酸镍物质的量0.6%的九水合硝酸铬溶解在去离子水中形成总金属离子浓度为0.6mol·L-1的溶液;将等质量的该溶液和环己烷混合,加入混合后液体质量百分比为0.6%的CTAB、混合后液体质量百分比为0.2%的正丁醇,以500转/分钟的转速搅拌5分钟后静置5分钟,其后加入六水合硝酸镍物质的量0.5%的正钛酸四乙酯同时以125转/分钟的转速搅拌2分钟后静置3小时;其后将该液体体系以2mL·min-1的速度通过蠕动泵通入喷雾干燥机的进样口,其他操作条件为:进风量0.7m3·min-1、进风口温度110℃、出风口温度80℃;将收集得到的固体与固体质量百分比0.3%的异丙基三(焦磷酸二辛酯)钛酸酯、固体质量百分比0.7%的二水合醋酸锌、固体质量百分比0.3%的丙三醇和环己烷以体积比为1∶1的混合液体混合后放入球磨机,球磨子与物料的质量比为20∶1,以320转/分钟的速度球磨12小时,球磨完毕后取出物料,在60℃干燥箱内干燥10小时后放入管式炉中,抽取管式炉中空气至气体压力小于0.7Pa,以3℃/分钟的速度升温到75℃并在此温度下保持9分钟并始终保持压力小于0.7Pa;其后通入流量为2L·min-1纯度高于体积百分比99.9%的氩气,并同时以26℃/分钟的速度升温到125℃并在此温度下保持6分钟;制得该双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料。
实施例2:将六水合硝酸镍、六水合硝酸镍物质的量4.5%的三水合硝酸铜、六水合硝酸镍物质的量4.6%的九水合硝酸铬溶解在去离子水中形成总金属离子浓度为1.5mol·L-1的溶液;将等质量的该溶液和环己烷混合,加入混合后液体质量百分比为3.0%的CTAB、混合后液体质量百分比为1.0%的正丁醇,以600转/分钟的转速搅拌14分钟后静置9分钟,其后加入六水合硝酸镍物质的量5%的正钛酸四乙酯同时以190转/分钟的转速搅拌5分钟后静置10小时;其后将该液体体系以9mL·min-1的速度通过蠕动泵通入喷雾干燥机的进样口,其他操作条件为:进风量3.2m3·min-1、进风口温度128℃、出风口温度92℃;将收集得到的固体与固体质量百分比0.8%的异丙基三(焦磷酸二辛酯)钛酸酯、固体质量百分比4.4%的二水合醋酸锌、固体质量百分比0.8%的丙三醇和环己烷以体积比为1∶1的混合液体混合后放入球磨机,球磨子与物料的质量比为20∶1,以400转/分钟的速度球磨20小时,球磨完毕后取出物料,在80℃干燥箱内干燥18小时后放入管式炉中,抽取管式炉中空气至气体压力小于2.5Pa,以10℃/分钟的速度升温到95℃并在此温度下保持15分钟并始终保持压力小于2.5Pa;其后通入流量为10L·min-1纯度高于体积百分比99.9%的氩气,并同时以30℃/分钟的速度升温到125℃并在此温度下保持15分钟;制得该双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料。
实施例3:将六水合硝酸镍、六水合硝酸镍物质的量3.3%的三水合硝酸铜、六水合硝酸镍物质的量3.5%的九水合硝酸铬溶解在去离子水中形成总金属离子浓度为1.0mol·L-1的溶液;将等质量的该溶液和环己烷混合,加入混合后液体质量百分比为2.4%的CTAB、混合后液体质量百分比为0.8%的正丁醇,以720转/分钟的转速搅拌10分钟后静置7分钟,其后加入六水合硝酸镍物质的量3.6%的正钛酸四乙酯同时以180转/分钟的转速搅拌4分钟后静置7小时;其后将该液体体系以6mL·min-1的速度通过蠕动泵通入喷雾干燥机的进样口,其他操作条件为:进风量2.0m3·min-1、进风口温度120℃、出风口温度87℃;将收集得到的固体与固体质量百分比0.6%的二(二辛基焦磷酰基)合氧乙酸酯钛、固体质量百分比3.2%的二水合醋酸锌、固体质量百分比0.7%的丙三醇和环己烷以体积比为1∶1的混合液体混合后放入球磨机,球磨子与物料的质量比为20∶1,以300转/分钟的速度球磨15小时,球磨完毕后取出物料,在70℃干燥箱内干燥15小时后放入管式炉中,抽取管式炉中空气至气体压力小于2.2Pa,以7℃/分钟的速度升温到85℃并在此温度下保持12分钟并始终保持压力小于2.2Pa;其后通入流量为6L·min-1纯度高于体积百分比99.9%的氩气,并同时以25℃/分钟的速度升温到125℃并在此温度下保持12分钟;制得该双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料。
实施例4:将六水合硝酸镍、六水合硝酸镍物质的量4.5%的三水合硝酸铜、六水合硝酸镍物质的量0.6%的九水合硝酸铬溶解在去离子水中形成总金属离子浓度为1.5mol·L-1的溶液;将等质量的该溶液和环己烷混合,加入混合后液体质量百分比为3.0%的CTAB、混合后液体质量百分比为0.1%的正丁醇,以600转/分钟的转速搅拌10分钟后静置7分钟,其后加入六水合硝酸镍物质的量3.0%的正钛酸四乙酯同时以150转/分钟的转速搅拌4分钟后静置7小时;其后将该液体体系以6mL·min-1的速度通过蠕动泵通入喷雾干燥机的进样口,其他操作条件为:进风量3.0m3·min-1、进风口温度120℃、出风口温度90℃;将收集得到的固体与固体质量百分比0.6%的二(二辛基焦磷酰基)合氧乙酸酯钛、固体质量百分比4%的二水合醋酸锌、固体质量百分比0.2%的丙三醇和环己烷以体积比为1∶1的混合液体混合后放入球磨机,球磨子与物料的质量比为20∶1,以300转/分钟的速度球磨15小时,球磨完毕后取出物料,在75干燥箱内干燥16小时后放入管式炉中,抽取管式炉中空气至气体压力小于0.5Pa,以8℃/分钟的速度升温到80℃并在此温度下保持15分钟并始终保持压力小于0.5Pa;其后通入流量为7L·min-1纯度高于体积百分比99.9%的氩气,并同时以25℃/分钟的速度升温到120℃并在此温度下保持5分钟;制得该双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料。
实施例5:将六水合硝酸镍、六水合硝酸镍物质的量5%的三水合硝酸铜、六水合硝酸镍物质的量0.8%的九水合硝酸铬溶解在去离子水中形成总金属离子浓度为1.2mol·L-1的溶液;将等质量的该溶液和环己烷混合,加入混合后液体质量百分比为2.0%的CTAB、混合后液体质量百分比为0.1%的正丁醇,以500转/分钟的转速搅拌12分钟后静置7分钟,其后加入六水合硝酸镍物质的量0.9%的正钛酸四乙酯同时以130转/分钟的转速搅拌5分钟后静置5小时;其后将该液体体系以2mL·min-1的速度通过蠕动泵通入喷雾干燥机的进样口,其他操作条件为:进风量3.5m3·min-1、进风口温度130℃、出风口温度80℃;将收集得到的固体与固体质量百分比0.2%的四异丙基二(亚磷酸二月桂酯)钛酸酯、固体质量百分比0.5%的二水合醋酸锌、固体质量百分比0.2%的丙三醇和环己烷以体积比为1∶1的混合液体混合后放入球磨机,球磨子与物料的质量比为20∶1,以200转/分钟的速度球磨15小时,球磨完毕后取出物料,在60℃干燥箱内干燥10小时后放入管式炉中,抽取管式炉中空气至气体压力小于0.5Pa,以3℃/分钟的速度升温到85℃并在此温度下保持10分钟并始终保持压力小于0.5Pa;其后通入流量为3L·min-1纯度高于体积百分比99.9%的氩气,并同时以20℃/分钟的速度升温到120℃并在此温度下保持5分钟;制得该双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料。

Claims (2)

1.一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料的制备方法,其特征为:将六水合硝酸镍、六水合硝酸镍物质的量0.5-5%的三水合硝酸铜、六水合硝酸镍物质的量0.5-5%的九水合硝酸铬溶解在去离子水中形成总金属离子浓度为0.5-1.5mol·L-1的溶液;将等质量的该溶液和环己烷混合,加入混合后液体质量百分比为0.5-3.0%的CTAB、混合后液体质量百分比为0.1-1.0%的正丁醇,以500-900转/分钟的转速搅拌5-15分钟后静置5-10分钟,其后加入六水合硝酸镍物质的量0.5-5%的正钛酸四乙酯同时以120-200转/分钟的转速搅拌2-5分钟后静置3-10小时;其后将该液体体系以1-10mL·min-1的速度通过蠕动泵通入喷雾干燥机的进样口,其他操作条件为:进风量0.5-3.5m3·min-1、进风口温度100℃-130℃、出风口温度80℃-95℃;将收集得到的固体与固体质量百分比0.2-0.8%的钛酸酯偶联剂、固体质量百分比0.5-5%的二水合醋酸锌、固体质量百分比0.2-1%的丙三醇和环己烷以体积比为1∶1的混合液体混合后放入球磨机,球磨子与物料的质量比为20∶1,以200-400转/分钟的速度球磨10-20小时,球磨完毕后取出物料,在60℃-80℃干燥箱内干燥10-20小时后放入管式炉中,抽取管式炉中空气至气体压力小于0.5-3Pa,以2-10℃/分钟的速度升温到75-95℃并在此温度下保持8-15分钟并始终保持压力小于0.5-3Pa;其后通入流量为1-10L·min-1纯度高于体积百分比99.9%的氩气,并同时以20-30℃/分钟的速度升温到120-130℃并在此温度下保持5-15分钟;制得该双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料。
2.根据权利要求1所述的双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料的制备方法,其特征在于上述的钛酸酯偶联剂为异丙基三(焦磷酸二辛酯)钛酸酯、二(二辛基焦磷酰基)合氧乙酸酯钛、四异丙基二(亚磷酸二月桂酯)钛酸酯中的一种。
CN201710057523.3A 2017-01-17 2017-01-17 一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料及其制备方法 Pending CN106803583A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710057523.3A CN106803583A (zh) 2017-01-17 2017-01-17 一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710057523.3A CN106803583A (zh) 2017-01-17 2017-01-17 一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料及其制备方法

Publications (1)

Publication Number Publication Date
CN106803583A true CN106803583A (zh) 2017-06-06

Family

ID=58988237

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710057523.3A Pending CN106803583A (zh) 2017-01-17 2017-01-17 一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106803583A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993147A (zh) * 2015-06-08 2015-10-21 宁波大学 一种多级结构硝酸铜负极材料的制备方法
CN104993134A (zh) * 2015-06-08 2015-10-21 宁波大学 一种锂离子电池硝酸铜复合负极材料的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104993147A (zh) * 2015-06-08 2015-10-21 宁波大学 一种多级结构硝酸铜负极材料的制备方法
CN104993134A (zh) * 2015-06-08 2015-10-21 宁波大学 一种锂离子电池硝酸铜复合负极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XI ZHENG等: "Improved electrochemical property of copper nitrate hydrate by multiwall carbon nanotube", 《ELECTROCHIMICA ACTA》 *

Similar Documents

Publication Publication Date Title
CN101855755B (zh) 非水电解液二次电池用Li-Ni类复合氧化物颗粒粉末及其制造方法,和非水电解质二次电池
CN103151504B (zh) 一种银掺杂碳-硅复合负极材料的制备方法
CN106848259A (zh) 一种连续导电原位C/Ag,Zr/ZrF4复合氟化锆锂离子电池正极材料及其制备方法
CN102569757B (zh) 一种铜硅铝纳米多孔锂离子电池负极材料的制备方法
CN104319402A (zh) 一种多层碳空心球负极材料的制备方法
CN107634189A (zh) 一种改性镍钴铝三元正极材料及其制备方法和应用
CN104891570B (zh) 一种液相合成Zr4+掺杂氟化铋锂离子电池正极材料及其制备方法
CN112635698B (zh) 一种锌二次电池的负极极片及其制备方法和用途
Feng et al. Preparation of SnO2 nanoparticle and performance as lithium-ion battery anode
CN106450306A (zh) 一种磷化锡钠离子电池负极材料的制备方法与应用
CN110880596B (zh) 一种钾离子电池正极活性材料及其制备方法和应用
CN112242570B (zh) 碳材料和离子型溴化物的混合物的应用以及水系锌-溴双离子电池
CN109279663B (zh) 一种硼酸盐类钠离子电池负极材料及其制备和应用
CN107046123A (zh) 一种ZnO包覆Ni2+、Cu2+掺杂非晶硝酸钴锂电负极材料及其制备方法
CN104176785B (zh) 一种Cu2+,Co2+,Ce4+,Ag+掺杂氟化铁复合正极材料及制备方法
CN102340042B (zh) 一种太阳能光伏电池
CN106684366A (zh) 一种双组份包覆Co2+、Cu2+掺杂非晶硝酸镍锂电负极材料及其制备方法
CN105390679B (zh) 一种电容型锂离子电池正极复合材料及其制备方法
CN108767236B (zh) 一种锂离子电池Cu/LiF复合正极材料的制备方法
CN106803583A (zh) 一种双组份包覆Cr3+、Cu2+掺杂非晶硝酸镍锂电负极材料及其制备方法
Luo et al. Silica aerogels modified SnSb/CNTs as high cycling performance anode materials for lithium batteries
CN104900854B (zh) 一种液相合成Mn2+掺杂氟化铋锂离子电池正极材料及其制备方法
CN106602042A (zh) 一种液相ZnO包覆Ni2+、Cr3+掺杂非晶硝酸钴锂电负极材料及其制备方法
CN106848304A (zh) 一种双组份包覆Ni2+、Cu2+掺杂非晶硝酸钴锂电负极材料及其制备方法
CN106784733A (zh) 一种ZnO包覆Ni2+、Co2+掺杂非晶硝酸铜锂电负极材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170606

WD01 Invention patent application deemed withdrawn after publication