CN106802994B - 两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法 - Google Patents

两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法 Download PDF

Info

Publication number
CN106802994B
CN106802994B CN201710022805.XA CN201710022805A CN106802994B CN 106802994 B CN106802994 B CN 106802994B CN 201710022805 A CN201710022805 A CN 201710022805A CN 106802994 B CN106802994 B CN 106802994B
Authority
CN
China
Prior art keywords
spring
auxiliary spring
simulation calculation
thickness
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710022805.XA
Other languages
English (en)
Other versions
CN106802994A (zh
Inventor
周长城
汪晓
袁光明
赵雷雷
杨腾飞
王凤娟
邵明磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong University of Technology
Original Assignee
Shandong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong University of Technology filed Critical Shandong University of Technology
Priority to CN201710022805.XA priority Critical patent/CN106802994B/zh
Publication of CN106802994A publication Critical patent/CN106802994A/zh
Application granted granted Critical
Publication of CN106802994B publication Critical patent/CN106802994B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/15Vehicle, aircraft or watercraft design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明涉及两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法,属于悬架钢板弹簧技术领域。本发明可根据各片主簧与各级副簧的结构参数,骑马螺栓夹紧距,弹性模量,初始切线弧高设计值及额定载荷,在接触载荷仿真计算的基础上,对两级副簧式非等偏频型渐变刚度板簧根部最大应力进行仿真计算。通过样机试验可知,所建立根部最大应力的仿真计算法是正确的,为两级副簧式非等偏频型渐变刚度板簧的应力仿真计算提供了可靠的技术方法。利用该方法可得到可靠根部最大应力的仿真计算值,可提高两级副簧式非等偏频型渐变刚度板簧的设计水平和性能及车辆行驶安全性;同时,降低设计和试验测试费用,加快产品开发速度。

Description

两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计 算法
技术领域
本发明涉及车辆悬架钢板弹簧,特别是两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法。
背景技术
为了提高车辆在额定载荷下的行驶平顺性的设计要求,将原一级渐变刚度板簧的副簧拆分设计为两级副簧,即采用两级副簧式渐变刚度板簧;同时,由于受主簧强度的制约,通常通过主簧初始切线弧高、第一级副簧和第二级副簧初始切线弧高及两级渐变间隙,使副簧适当提前承担载荷,从而降低主簧应力,在接触载荷下的悬架偏频不相等,即两级副簧式非等偏频型渐变刚度板簧,其中,主簧和各级副簧的根部应力决定板簧的可靠性和使用寿命,并且影响车辆行驶安全性。然而,由于受两级副簧式非等偏频型渐变刚度板簧的根部重叠部分等效厚度和挠度计算及接触载荷仿真问题的制约,先前一直未能给出两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法,因此,不能满足车辆行业快速发展和悬架弹簧现代化CAD设计及软件开发的要求。随着车辆行驶速度及对车辆行驶平顺性和安全性要求的不断提高,对渐变刚度板簧悬架设计提出了更高要求,因此,必须建立一种精确、可靠的两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法,为两级副簧式非等偏频型渐变刚度板簧的应力仿真验算、强度校核及现代化CAD软件开发奠定可靠的技术基础,满足车辆行业快速发展、车辆行驶安全性及对渐变刚度板簧的设计要求,提高两级副簧式非等偏频型渐变刚度板簧的设计水平、产品质量和可靠性及车辆行驶平顺性和安全性;同时,降低设计及试验费用,加快产品开发速度。
发明内容
针对上述现有技术中存在的缺陷,本发明所要解决的技术问题是提供一种简便、可靠的两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法,仿真计算流程如图1所示。两级副簧式非等偏频型渐变刚度板簧的一半对称结构如图2所示,是由主簧1、第一级副簧2和第二级副簧3组成。采用两级副簧,主簧与第一级副簧之间和第一级副簧与第二级副簧之间设有两级渐变间隙δMA1和δA12,以提高额定载荷下的车辆行驶平顺性;为了确保满足主簧应力强度设计要求,第一级副簧和第二级副簧适当提前承担载荷,悬架渐变载荷偏频不相等,即将板簧设计为非等偏频型渐变刚度板簧。板簧的一半总跨度等于首片主簧的一半作用长度L1T,骑马螺栓夹紧距的一半为L0,宽度为b,弹性模量为E。主簧1的片数为n,主簧各片的厚度为hi,一半作用长度为LiT,一半夹紧长度Li=LiT-L0/2,i=1,2,…,n。第一级副簧片数为m1,第一级副簧各片的厚度为hA1j,一半作用长度为LA1jT,一半夹紧长度LA1j=LA1jT-L0/2,j=1,2,…,m1。第二级副簧片数为m2,第二级副簧各片的厚度为hA2k,一半作用长度为LA2kT,一半夹紧长度LA2k=LA2kT-L0/2,k=1,2,…,m2。主簧和各级副簧的根部应力决定板簧的可靠性和使用寿命,并且影响车辆行驶安全性。根据各片主簧与第一级和第二级副簧的结构参数,骑马螺栓夹紧距,弹性模量,主簧和各级副簧的初始切线弧高设计值,及额定载荷,对两级副簧式非等偏频型渐变刚度板簧根部最大应力进行仿真计算。
为解决上述技术问题,本发明所提供的两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法,其特征在于采用以下仿真计算步骤:
(1)主簧根部重叠部分等效厚度hMe,主簧与第一级副簧的根部重叠部分等效厚度hMA1e,及主簧与第一级和第二级副簧的根部重叠部分等效厚度hMA2e的计算:
根据主簧片数n,主簧各片的厚度hi,i=1,2,…,n;第一级副簧片数m1,第一级副簧各片的厚度hA1j,j=1,2,…,m1;第二级副簧片数m2,第二级副簧各片的厚度hA2k,k=1,2,…,m2;对主簧根部重叠部分的等效厚度hMe、主簧与第一级副簧的根部重叠部分的等效厚度hMA1e、及主簧与第一级和第二级副簧的根部重叠部分的等效厚度hMA2e分别进行计算,即:
(2)主簧和第一级与第二级副簧的最大厚度板簧的厚度hmax、hA1max和hA2max的确定:
A步骤:主簧最大厚度板簧的厚度hmax的确定
根据主簧片数n,各片厚度hi,i=1,2,...,n,确定主簧的最大厚度钢板弹簧的厚度hmax,即
hmax=max(hi),i=1,2,...,n;
B步骤:第一级副簧的最大厚度板簧的厚度hA1max的确定
根据第一级副簧片数m1,各片厚度hA1j,j=1,2,...,m1,确定第一级副簧的最大厚度板簧的厚度hA1max,即
hA1max=max(hA1j),j=1,2,...,m1
C步骤:第二级副簧的最大厚度板簧的厚度hA2max的确定
根据第二级副簧片数m2,各片厚度hA2k,k=1,2,...,m2,确定第二级副簧的最大厚度板簧的厚度hA2max,即
hA2max=max(hA2k),k=1,2,...,m2
(3)第1次和第2次开始接触载荷Pk1和Pk2的仿真计算:
I步骤:主簧末片下表面初始曲率半径RM0b的计算
根据主簧初始切线弧高HgM0,主簧首片的一半夹紧长度L1,主簧片数n,主簧各片的厚度hi,i=1,2,…,n;对主簧末片下表面初始曲率半径RM0b进行计算,即
II步骤:第一级副簧首片上表面初始曲率半径RA10a的计算
根据第一级副簧首片的一半夹紧长度LA11,第一级副簧的初始切线弧高设计值HgA10,对第一级副簧首片上表面初始曲率半径RA10a进行计算,即
III步骤:第一级副簧首片下表面初始曲率半径RA10b的计算
根据第一级副簧片数m1,第一级副簧各片的厚度hA1j,j=1,2,…,m1;及II步骤中计算得到的RA10a,对第一级副簧首片下表面初始曲率半径RA10b进行计算,即
IV步骤:第二级副簧首片上表面初始曲率半径RA20a的计算
根据第二级副簧首片的一半夹紧长度LA21,第二级副簧的初始切线弧高HgA20,对第二级副簧首片上表面初始曲率半径RA20a进行计算,即
V步骤:第1次开始接触载荷Pk1的仿真计算
根据两级副簧式非等偏频型渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧长度L1,步骤(1)中计算得到的hMe,I步骤中计算得到的RM0b,II中计算得到的RA10a,对第1次开始接触载荷Pk1进行仿真计算,即
VI步骤:第2次开始接触载荷Pk2的仿真计算
根据两级副簧式非等偏频型渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧长度L1,步骤(1)中计算得到的hMAe,I步骤中计算得到的RM0b,II步骤中计算得到的RA10a,及V步骤中仿真计算得到的Pk1,对第2次开始接触载荷Pk2进行仿真计算,即
(4)两级副簧式非等偏频型渐变刚度板簧的主簧根部最大应力σMmax的仿真计算:
根据两级副簧式非等偏频型渐变刚度板簧的宽度b,主簧首片的一半夹紧长度L1,额定载荷PN,步骤(1)中仿真计算得到的Pk1和Pk2;步骤(1)中计算得到的hMe、hMA1e和hMA2e,步骤(2)的A步骤中所确定的hmax,对主簧在不同载荷P下的根部最大应力σMmax进行仿真计算,即
(5)两级副簧式非等偏频型渐变刚度板簧的第一级副簧根部最大应力σA1max的仿真计算:
根据两级副簧式非等偏频型渐变刚度板簧的宽度b,主簧首片的一半夹紧长度L1,额定载荷PN,步骤(1)中计算得到的hMA1e和hMA2e,步骤(2)的B步骤中所确定的hA1max,步骤(3)中仿真计算得到的Pk1和Pk2,对第一级副簧在不同载荷P下的根部最大应力σA1max进行仿真计算,即
(6)两级副簧式非等偏频型渐变刚度板簧的第二级副簧根部最大应力σA2max的仿真计算:
根据两级副簧式非等偏频型渐变刚度板簧的宽度b,主簧首片的一半夹紧长度L1,额定载荷PN,步骤(1)中计算得到的hMA2e,步骤(2)的C步骤中所确定的hA2max,步骤(3)中仿真计算得到的Pk2,对第二级副簧在不同载荷P下的根部最大应力σA2max进行计算,即
本发明比现有技术具有的优点
由于受两级副簧式非等偏频型渐变刚度板簧的根部重叠部分等效厚度和挠度计算及接触载荷仿真问题的制约,先前一直未能给出两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法,因此,不能满足车辆行业快速发展和悬架弹簧悬架现代化CAD设计及软件开发的要求。本发明可根据各片主簧和副簧的结构参数、初始切弧高设计值、骑马螺栓夹紧距、弹性模量、额定载荷,在接触载荷仿真计算的接触上,对两级副簧式非等偏频型渐变刚度板簧的主簧和各级副簧的根部最大应力进行仿真计算。通过样机加载应力试验测试可知,本发明所提供的两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法是正确的,为两级副簧式非等偏频型渐变刚度板簧的应力仿真验算提供了可靠的技术方法。利用该方法可得到可靠的在不同载荷下的主簧和各级副簧根部最大应力的仿真计算值,可提高两级副簧式非等偏频型渐变刚度板簧的设计水平和可靠性及车辆行驶安全性;同时,降低设计和试验测试费用,加快产品开发速度。
附图说明
为了更好地理解本发明,下面结合附图做进一步的说明。
图1是两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算流程图;
图2是两级副簧式非等偏频型渐变刚度板簧的一半对称结构示意图;
图2是实施例的仿真计算得到的两级副簧式非等偏频型渐变刚度板簧的挠度特性曲线。
具体实施方式
下面通过实施例对本发明作进一步详细说明。
实施例:某两级副簧式非等偏频型渐变刚度板簧的宽度b=63mm,骑马螺栓夹紧距的一半L0=50mm,弹性模量E=200GPa。主簧片数n=3片,主簧各片的厚度h1=h2=h3=8mm,一半作用长度分别为L1T=525mm,L2T=450mm,L3T=350mm;主簧各片的一半夹紧长度分别为L1=L1T-L0/2=500mm,L2=L2T-L0/2=425mm,L3=L3T-L0/2=325mm。第一级副簧的片数m1=1片,厚度hA11=13mm,一半作用长度为LA11T=250mm,一半夹紧长度为LA11=LA11T-L0/2=225mm。第二级副簧的片数m2=1,厚度hA21=13mm,一半作用长度为LA21T=150mm,一半夹紧长度为LA21=LA21T-L0/2=125mm。空载载荷P0=1715N,额定载荷PN=7227N。主簧初始切线弧高HgM0=85.3mm,第一级副簧的初始切线弧高HgA10=9.1mm,第二级副簧的初始切线弧高HgA20=2.4mm。根据各片板簧的结构参数,骑马螺栓夹紧距,弹性模量,初始切线弧高设计值,及额定载荷,在接触载荷仿真计算的基础上,对该两级副簧式非等偏频型渐变刚度板簧根部最大应力进行仿真计算。
本发明实例所提供的两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法,其仿真计算流程,如图1所示,具体仿真计算步骤如下:
(1)主簧根部重叠部分等效厚度hMe,主簧与第一级副簧的根部重叠部分等效厚度hMA1e,及主簧与第一级和第二级副簧的根部重叠部分等效厚度hMA2e的计算:
根据主簧片数n=3,主簧各片的厚度h1=h2=h3=8mm;第一级副簧片数m1=1,厚度hA11=13mm;第二级副簧片数m2=1,厚度hA21=13mm;对渐变刚度钢板弹簧的主簧根部重叠部分的等效厚度hMe、主簧与第一级副簧的根部重叠部分的等效厚度hMA1e、及主簧与第一级和第二级副簧的根部重叠部分的等效厚度hMA2e进行计算,即:
(2)主簧和第一级与第二级副簧的最大厚度板簧的厚度hmax、hA1max和hA2max的确定:
A步骤:主簧最大厚度板簧的厚度hmax的确定根据片数n=3,主簧各片的厚度hi=8mm,i=1,2,...,n,确定主簧的最大厚度钢板弹簧的厚度hmax,即
hmax=max(hi)=8mm;
B步骤:第一级副簧的最大厚度板簧的厚度hA1max的确定根据第一级副簧片数m1=1,厚度hA11=13mm,确定第一级副簧的最大厚度hA1max,即
hA1max=max(hA11)=13mm;
C步骤:第二级副簧的最大厚度板簧的厚度hA2max的确定根据第二级副簧片数m2=1,厚度hA21=13mm,确定第二级副簧的最大厚度板簧的厚度hA2max,即
hA2max=max(hA21)=13mm。
(3)第1次和第2次开始接触载荷Pk1和Pk2的仿真计算:
I步骤:主簧末片下表面初始曲率半径RM0b的计算
根据主簧初始切线弧高HgM0=85.3mm,主簧首片的一半夹紧长度L1=500mm,主簧片数n=3,主簧各片的厚度h1=h2=h3=8mm,对主簧末片下表面初始曲率半径RM0b进行计算,即
II步骤:第一级副簧首片上表面初始曲率半径RA10a的计算
根据第一级副簧首片的一半夹紧长度LA11=225mm,第一级副簧的初始切线弧高HgA10=9.1mm,对第一级副簧首片上表面初始曲率半径RA10a进行计算,即
III步骤:第一级副簧首片下表面初始曲率半径RA10b的计算
根据第一级副簧片数m1=1,厚度hA11=13mm,及II步骤中计算得到的RA10a=2786.1mm,对第一级副簧首片下表面初始曲率半径RA10b进行计算,即
IV步骤:第二级副簧首片上表面初始曲率半径RA20a的计算
根据第二级副簧首片的一半夹紧长度LA21=125mm,初始切线弧高设计值HgA20=2.4mm,对第二级副簧首片上表面初始曲率半径RA20a进行计算,即
V步骤:第1次开始接触载荷Pk1的仿真计算
根据两级副簧式非等偏频型渐变刚度板簧的宽度b=63mm,弹性模量E=200GPa;首片主簧的一半夹紧长度L1=500mm,步骤(1)中计算得到的hMe=11.5mm,I步骤中计算得到的RM0b=1532.1mm,II中计算得到的RA10a=2786.1mm,对第1次开始接触载荷Pk1进行仿真计算,即
VI步骤:第2次开始接触载荷Pk2的仿真计算
根据两级副簧式非等偏频型渐变刚度板簧的宽度b=63mm,弹性模量E=200GPa,首片主簧的一半夹紧长度L1=500mm,步骤(1)中计算得到的hMA1e=15.5mm,I步骤中计算得到的RM0b=1532.1mm,II中计算得到的RA10a=2786.1mm,V步骤中仿真计算得到的Pk1=1895N,对第2次开始接触载荷Pk2进行仿真计算,即
(4)两级副簧式非等偏频型渐变刚度板簧的主簧根部最大应力σMmax的仿真计算:
根据两级副簧式非等偏频型渐变刚度板簧的宽度b=63mm,第1片主簧的一半夹紧长度L1=500mm,额定载荷PN=7227N,步骤(1)中计算得到的hMe=11.5mm、hMA1e=15.5mm和hMA2e=18.1mm;步骤(2)的A步骤中所确定的hmax=8mm,步骤(3)中仿真计算得到的Pk1=1895N和Pk2=2677N,对主簧在不同载荷P下的根部最大应力σMmax进行仿真计算,即
利用Matlab计算程序,仿真计算所得到的该两级副簧式非等偏频型渐变刚度板簧的主簧根部最大应力σMmax随载荷P的变化曲线,如图3所示;其中,在额定载荷下的主簧根部最大应力σMNmax=421MPa。
(5)两级副簧式非等偏频型渐变刚度板簧的第一级副簧根部最大应力σA1max的仿真计算:
根据两级副簧式非等偏频型渐变刚度板簧的宽度b=63mm,第1片主簧的一半夹紧长度L1=500mm,额定载荷PN=7227N,步骤(1)中计算得到的hMA1e=15.5mm和hMA2e=18.1mm,步骤(2)的B步骤中所确定的hA1max=13mm,步骤(3)中仿真计算得到的Pk1=1895N和Pk2=2677N,对第一级副簧在不同载荷P下的根部最大应力σA1max进行仿真计算,即
利用Matlab计算程序,仿真计算所得到的该两级副簧式非等偏频型渐变刚度板簧的第一级副簧的根部最大应力σA1max随载荷P的变化曲线,如图4所示,其中,在额定载荷下的第一级副簧的根部最大应力σA1Nmax=302MPa。
(6)两级副簧式非等偏频型渐变刚度板簧的第二级副簧根部最大应力σA2max的仿真计算:
根据两级副簧式非等偏频型渐变刚度板簧的宽度b=63mm,第1片主簧的一半夹紧长度L1=500mm,额定载荷PN=7227N,步骤(1)中计算得到的hMA2e=18.1mm,步骤(2)的C步骤中所确定的第二级副簧的最大厚度板簧的厚度hA2max=13mm,步骤(3)中仿真计算得到的Pk2=2677N,对第二级副簧在不同载荷P下的根部最大应力σA2max进行仿真计算,即
利用Matlab计算程序,仿真计算得到的该两级副簧式非等偏频型渐变刚度板簧的第二级副簧的根部最大应力σA2max随载荷P的变化曲线,如图5所示,其中,在额定载荷下的第二级副簧的根部最大应力σA2Nmax=237.4MPa。
通过样机加载挠度试验可知,在相应载荷下的主簧及各级副簧根部最大应力的仿真计算值,与试验测试值相吻合,表明所建立的两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法是正确的,为两级副簧式非等偏频型渐变刚度板簧的应力强度仿真验算,奠定了可靠的技术基础。利用该方法可得到可靠的两级副簧式非等偏频型渐变刚度板簧在不同载荷下的根部最大应力的仿真计算值,可提高两级副簧式非等偏频型渐变刚度板簧的设计水平和性能及车辆行驶平顺性和安全性;同时,降低设计和试验测试费用,加快产品开发速度。

Claims (1)

1.两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法,其特征在于:各片板簧为以中心穿装孔对称的结构,安装夹紧距的一半为骑马螺栓夹紧距的一半;将副簧设计为两级副簧,通过主簧和两级副簧的初始切线弧高及两级渐变间隙,提高车辆在额定载荷下的行驶平顺性;为了确保满足主簧应力强度设计要求,使第一级副簧和第二级副簧适当提前承担载荷,悬架在渐变载荷下的偏频不相等,即非等偏频型渐变刚度板簧;根据各片板簧的结构参数,骑马螺栓夹紧距,弹性模量,主簧和各级副簧的初始切线弧高设计值,及额定载荷,在第1次和第2次开始接触载荷仿真计算的基础上,对两级副簧式非等偏频型渐变刚度板簧根部最大应力进行仿真计算,具体仿真计算步骤如下:
(1)主簧根部重叠部分等效厚度hMe,主簧与第一级副簧的根部重叠部分等效厚度hMA1e,及主簧与第一级和第二级副簧的根部重叠部分等效厚度hMA2e的计算:
根据主簧片数n,主簧各片的厚度hi,i=1,2,…,n;第一级副簧片数m1,第一级副簧各片的厚度hA1j,j=1,2,…,m1;第二级副簧片数m2,第二级副簧各片的厚度hA2k,k=1,2,…,m2;对主簧根部重叠部分的等效厚度hMe、主簧与第一级副簧的根部重叠部分的等效厚度hMA1e、及主簧与第一级和第二级副簧的根部重叠部分的等效厚度hMA2e分别进行计算,即:
(2)主簧和第一级与第二级副簧的最大厚度板簧的厚度hmax、hA1max和hA2max的确定:
A步骤:主簧最大厚度板簧的厚度hmax的确定
根据主簧片数n,各片厚度hi,i=1,2,...,n,确定主簧的最大厚度钢板弹簧的厚度hmax,即
hmax=max(hi),i=1,2,...,n;
B步骤:第一级副簧的最大厚度板簧的厚度hA1max的确定
根据第一级副簧片数m1,各片厚度hA1j,j=1,2,...,m1,确定第一级副簧的最大厚度板簧的厚度hA1max,即
hA1max=max(hA1j),j=1,2,...,m1
C步骤:第二级副簧的最大厚度板簧的厚度hA2max的确定
根据第二级副簧片数m2,各片厚度hA2k,k=1,2,...,m2,确定第二级副簧的最大厚度板簧的厚度hA2max,即
hA2max=max(hA2k),k=1,2,...,m2
(3)第1次和第2次开始接触载荷Pk1和Pk2的仿真计算:
I步骤:主簧末片下表面初始曲率半径RM0b的计算
根据主簧初始切线弧高HgM0,主簧首片的一半夹紧长度L1,主簧片数n,主簧各片的厚度hi,i=1,2,…,n;对主簧末片下表面初始曲率半径RM0b进行计算,即
II步骤:第一级副簧首片上表面初始曲率半径RA10a的计算
根据第一级副簧首片的一半夹紧长度LA11,第一级副簧的初始切线弧高设计值HgA10,对第一级副簧首片上表面初始曲率半径RA10a进行计算,即
III步骤:第一级副簧首片下表面初始曲率半径RA10b的计算
根据第一级副簧片数m1,第一级副簧各片的厚度hA1j,j=1,2,…,m1;及II步骤中计算得到的RA10a,对第一级副簧首片下表面初始曲率半径RA10b进行计算,即
IV步骤:第二级副簧首片上表面初始曲率半径RA20a的计算
根据第二级副簧首片的一半夹紧长度LA21,第二级副簧的初始切线弧高HgA20,对第二级副簧首片上表面初始曲率半径RA20a进行计算,即
V步骤:第1次开始接触载荷Pk1的仿真计算
根据两级副簧式非等偏频型渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧长度L1,步骤(1)中计算得到的hMe,I步骤中计算得到的RM0b,II中计算得到的RA10a,对第1次开始接触载荷Pk1进行仿真计算,即
VI步骤:第2次开始接触载荷Pk2的仿真计算
根据两级副簧式非等偏频型渐变刚度板簧的宽度b,弹性模量E;主簧首片的一半夹紧长度L1,步骤(1)中计算得到的hMAe,I步骤中计算得到的RM0b,II步骤中计算得到的RA10a,及V步骤中仿真计算得到的Pk1,对第2次开始接触载荷Pk2进行仿真计算,即
(4)两级副簧式非等偏频型渐变刚度板簧的主簧根部最大应力σMmax的仿真计算:
根据两级副簧式非等偏频型渐变刚度板簧的宽度b,主簧首片的一半夹紧长度L1,额定载荷PN,步骤(1)中仿真计算得到的Pk1和Pk2;步骤(1)中计算得到的hMe、hMA1e和hMA2e,步骤(2)的A步骤中所确定的hmax,对主簧在不同载荷P下的根部最大应力σMmax进行仿真计算,即
(5)两级副簧式非等偏频型渐变刚度板簧的第一级副簧根部最大应力σA1max的仿真计算:
根据两级副簧式非等偏频型渐变刚度板簧的宽度b,主簧首片的一半夹紧长度L1,额定载荷PN,步骤(1)中计算得到的hMA1e和hMA2e,步骤(2)的B步骤中所确定的hA1max,步骤(3)中仿真计算得到的Pk1和Pk2,对第一级副簧在不同载荷P下的根部最大应力σA1max进行仿真计算,即
(6)两级副簧式非等偏频型渐变刚度板簧的第二级副簧根部最大应力σA2max的仿真计算:
根据两级副簧式非等偏频型渐变刚度板簧的宽度b,主簧首片的一半夹紧长度L1,额定载荷PN,步骤(1)中计算得到的hMA2e,步骤(2)的C步骤中所确定的hA2max,步骤(3)中仿真计算得到的Pk2,对第二级副簧在不同载荷P下的根部最大应力σA2max进行计算,即
CN201710022805.XA 2017-01-12 2017-01-12 两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法 Expired - Fee Related CN106802994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710022805.XA CN106802994B (zh) 2017-01-12 2017-01-12 两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710022805.XA CN106802994B (zh) 2017-01-12 2017-01-12 两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法

Publications (2)

Publication Number Publication Date
CN106802994A CN106802994A (zh) 2017-06-06
CN106802994B true CN106802994B (zh) 2019-11-08

Family

ID=58985605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710022805.XA Expired - Fee Related CN106802994B (zh) 2017-01-12 2017-01-12 两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法

Country Status (1)

Country Link
CN (1) CN106802994B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105975663A (zh) * 2016-04-28 2016-09-28 王炳超 端部接触式少片斜线型主副簧各片应力的计算方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7717410B2 (en) * 2006-10-24 2010-05-18 Wieslaw Julian Oledzki Smooth non-linear springs, particularly smooth progressive rate steel springs, progressive rate vehicle suspensions and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105975663A (zh) * 2016-04-28 2016-09-28 王炳超 端部接触式少片斜线型主副簧各片应力的计算方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Variable Stiffness Joint using Leaf Springs for Robot Manipulators;Junho Choi,et al.;《2009 IEEE International Conference on Robotics and Automation 》;20090512;4363-4368 *
钢板弹簧重叠部分应力及许用厚度计算理论的研究;宋群等;《山东理工大学学报(自然科学版)》;20160731;第30卷(第4期);11-14 *

Also Published As

Publication number Publication date
CN106802994A (zh) 2017-06-06

Similar Documents

Publication Publication Date Title
CN106802994B (zh) 两级副簧式非等偏频型渐变刚度板簧根部最大应力的仿真计算法
CN106802996A (zh) 两级副簧式非等偏频型渐变刚度板簧接触载荷的验算方法
CN106777789B (zh) 非等偏频型渐变刚度板簧接触载荷的仿真计算方法
CN106763384B (zh) 两级副簧式非等偏频型渐变刚度板簧切线弧高的设计方法
CN106844925A (zh) 基于偏频仿真的两级副簧式渐变刚度板簧接触载荷的调整设计法
CN106682356B (zh) 两级副簧式非等偏频型渐变刚度板簧最大限位挠度的仿真验算法
CN106855907B (zh) 两级副簧式非等偏频型渐变刚度板簧悬架偏频特性的仿真计算方法
CN106812849B (zh) 非等偏频型三级渐变刚度板簧的接触载荷的验算方法
CN106682360B (zh) 高强度两级渐变刚度主副簧的最大应力特性的仿真计算法
CN106812846B (zh) 基于偏频仿真的两级主簧式渐变刚度板簧接触载荷调整设计法
CN106777793B (zh) 两级副簧式非等偏频型渐变刚度板簧刚度特性的计算方法
CN106682359B (zh) 两级副簧式非等偏频型渐变刚度板簧主簧挠度的计算方法
CN106682357B (zh) 高强度三级渐变刚度板簧悬架系统偏频特性的仿真计算方法
CN106545609B (zh) 两级副簧式非等偏频渐变刚度板簧刚度特性的仿真计算法
CN106855905A (zh) 两级副簧式非等偏频型渐变刚度板簧挠度特性的仿真计算法
CN106548003B (zh) 非等偏频型三级渐变刚度板簧根部最大应力的仿真计算法
CN106777802B (zh) 非等偏频型三级渐变刚度板簧的各级根部应力的计算方法
CN106763386B (zh) 高强度两级渐变刚度板簧悬架系统偏频特性的仿真计算法
CN106682337B (zh) 基于偏频仿真的一级渐变刚度板簧接触载荷的调整设计法
CN106777791B (zh) 非等偏频型渐变刚度板簧悬架的偏频特性仿真计算方法
CN106895101B (zh) 两级主簧式非等偏频型渐变刚度板簧应力强度的校核方法
CN106777800B (zh) 高强度两级渐变刚度板簧的刚度特性的仿真计算方法
CN106801714B (zh) 两级主簧式非等偏频渐变刚度板簧挠度特性的仿真计算法
CN106585310B (zh) 两级副簧式非等偏频渐变刚度板簧的接触载荷匹配设计法
CN106801715B (zh) 两级主簧式非等偏频型渐变刚度板簧接触载荷的验算方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191108

Termination date: 20220112

CF01 Termination of patent right due to non-payment of annual fee