CN106802477A - 摄像镜头光学成像系统 - Google Patents

摄像镜头光学成像系统 Download PDF

Info

Publication number
CN106802477A
CN106802477A CN201710236524.4A CN201710236524A CN106802477A CN 106802477 A CN106802477 A CN 106802477A CN 201710236524 A CN201710236524 A CN 201710236524A CN 106802477 A CN106802477 A CN 106802477A
Authority
CN
China
Prior art keywords
lens
imaging system
optical imaging
optical
meet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710236524.4A
Other languages
English (en)
Other versions
CN106802477B (zh
Inventor
黄林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN201710236524.4A priority Critical patent/CN106802477B/zh
Publication of CN106802477A publication Critical patent/CN106802477A/zh
Priority to PCT/CN2017/096589 priority patent/WO2018188236A1/zh
Priority to US15/772,860 priority patent/US10921557B2/en
Application granted granted Critical
Publication of CN106802477B publication Critical patent/CN106802477B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses

Abstract

本发明提供了一种摄像镜头光学成像系统,该光学成像系统沿着光轴从物侧至成像侧依次设置有:第一透镜,具有正光焦度,其物侧面凸面,像侧面为凹面;第二透镜,其物侧面凸面,像侧面为凸面;第三透镜,具有负光焦度;以及第四透镜,具有负光焦度;其中,所述第一透镜的有效焦距f1和所述第四透镜的所述有效焦距f4与所述光学成像系统的有效焦距f之间满足:‑0.8<(f1+f4)/f<0。

Description

摄像镜头光学成像系统
技术领域
本申请涉及一种光学成像系统,更具体地,涉及一种包括多片镜片的光学成像系统。
背景技术
近年来,随着科技的发展,便携式电子产品逐步兴起,特别是具有摄像功能的便携式电子产品得到人们更多的青睐。一般光学系统的感光元件不外乎是感光耦合元件(CCD)或互补性氧化金属半导体元件(CMOS)两种,随着半导体制程技术的精进,光学系统趋向于更高像素,芯片的像素尺寸越来越小,对相配套的光学系统的成像质量要求也越来越高。特别是在安防领域,对带有虹膜识别的镜头要求也越来越高,不仅需要保证结构紧凑,还需拥有较高的光亮度和解像力,使得镜头的识别精度大大提高。
发明内容
本申请旨在提供一种高亮度、高解像力的紧凑型光学成像系统。
根据本申请的一个方面,提供了一种光学成像系统。该光学成像系统沿着光轴从物侧至成像侧可依次设置有:第一透镜、第二透镜、第三透镜、第四透镜。其中,第一透镜可具有正光焦度,其物侧面为凸面,像侧面可为凹面;第二透镜的物侧面为凸面,像侧面可为凹面;第三透镜和第四透镜可具有负光焦度;其中,第一透镜的有效焦距f1和所述第四透镜的所述有效焦距f4与所述光学成像系统的有效焦距f之间满足:-0.8<(f1+f4)/f<0,例如:-0.772≤(f1+f4)/f≤-0.356。
根据本申请的另一方面,提供了一种光学成像系统。该光学成像系统沿着光轴从物侧至成像侧可依次设置有:第一透镜、第二透镜、第三透镜、第四透镜。其中,第一透镜可具有正光焦度,其物侧面为凸面,像侧面可为凹面;第二透镜的物侧面为凸面,像侧面可为凹面;第三透镜和第四透镜可具有负光焦度。第一透镜在光轴上的中心厚度CT1与第四透镜在光轴上的中心厚度CT4之间满足:0.4<CT4/CT1<0.8,例如:0.498≤CT4/CT1≤0.634。
根据本申请的实施方式,在被摄物与第二透镜之间设置有孔径光阑。
根据本申请的实施方式,第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足:1<f3/f4<3,例如:1.259≤f3/f4≤2.710。
根据本申请的实施方式,第一透镜物侧面的有效半径DT11与第二透镜物侧面的有效半径DT21之间满足:1.2<DT11/DT21<1.8,例如:1.269≤DT11/DT21≤1.714。
根据本申请的实施方式,第一透镜在光轴上的中心厚度CT1与第三透镜在光轴上的中心厚度CT3之间满足:2.5<CT1/CT3<3.1,例如:2.538≤CT1/CT3≤3.06。
根据本申请的实施方式,第一透镜像侧面的曲率半径R2与第二透镜物侧面的曲率半径R3之间满足:1.3<R2/R3<1.9,例如:1.393≤R2/R3≤1.870。
根据本申请的实施方式,第一透镜像侧面的曲率半径R2与第二透镜像侧面的曲率半径R4之间满足:1<R2/R4<2.1,例如:1.28≤R2/R4≤2.059。
根据本申请的实施方式,第一透镜物侧面至成像面在光轴上的距离TTL与光学成像系统的有效焦距f之间满足:TTL/f<1,例如:TTL/f≤0.941。
根据本申请的实施方式,第三透镜像侧面和光轴的交点至第三透镜像侧面的有效半径顶点之间的轴上距离SAG32与第三透镜在光轴上的中心厚度CT3之间满足:-0.7<SAG32/CT3<-0.3,例如:-0.601≤SAG32/CT3≤-0.413。
此外,第一透镜物侧面至成像面在光轴上的距离TTL与第四透镜在光轴上的中心厚度CT4之间可满足:CT4/TTL<0.1,例如:CT4/TTL≤0.093。
根据本申请的实施方式,第四透镜像侧面的有效半径DT42与电子光感元件有效像素区域对角线长的一半ImgH之间满足:0.5<DT42/ImgH<0.9,例如:0.742≤DT42/ImgH≤0.784。
本申请采用了多片(例如,四片)透镜,通过合理分配各透镜的光焦度、面型、各透镜之间的轴上间距等,可使光学成像系统具有以下至少一个优点:
有效扩大镜头孔径;
缩短镜头总长度;
保证镜头的有效通光直径;
保证系统的紧凑性;
校正了各类像差;以及
提高镜头的解析度与成像品质。
附图说明
通过参照以下附图进行的详细描述,本申请的实施方式的以上及其它优点将变得显而易见,附图旨在示出本申请的示例性实施方式而非对其进行限制。在附图中:
图1示出了本申请的实施例1的光学成像系统的示意性结构图;
图2A示出了实施例1的光学成像系统的轴上色差曲线;
图2B示出了实施例1的光学成像系统的象散曲线;
图2C示出了实施例1的光学成像系统的畸变曲线;
图2D示出了实施例1的光学成像系统的倍率色差曲线;
图2E示出了实施例1的光学成像系统的相对照度曲线;
图3示出了本申请的实施例2的光学成像系统的示意性结构图;
图4A示出了实施例2的光学成像系统的轴上色差曲线;
图4B示出了实施例2的光学成像系统的象散曲线;
图4C示出了实施例2的光学成像系统的畸变曲线;
图4D示出了实施例2的光学成像系统的倍率色差曲线;
图4E示出了实施例2的光学成像系统的相对照度曲线;
图5示出了本申请的实施例3的光学成像系统的示意性结构图;
图6A示出了实施例3的光学成像系统的轴上色差曲线;
图6B示出了实施例3的光学成像系统的象散曲线;
图6C示出了实施例3的光学成像系统的畸变曲线;
图6D示出了实施例3的光学成像系统的倍率色差曲线;
图6E示出了实施例3的光学成像系统的相对照度曲线;
图7示出了本申请的实施例4的光学成像系统的示意性结构图;
图8A示出了实施例4的光学成像系统的轴上色差曲线;
图8B示出了实施例4的光学成像系统的象散曲线;
图8C示出了实施例4的光学成像系统的畸变曲线;
图8D示出了实施例4的光学成像系统的倍率色差曲线;
图8E示出了实施例4的光学成像系统的相对照度曲线;
图9示出了本申请的实施例5的光学成像系统的示意性结构图;
图10A示出了实施例5的光学成像系统的轴上色差曲线;
图10B示出了实施例5的光学成像系统的象散曲线;
图10C示出了实施例5的光学成像系统的畸变曲线;
图10D示出了实施例5的光学成像系统的倍率色差曲线;
图10E示出了实施例5的光学成像系统的相对照度曲线。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
应注意,在本说明书中,第一、第二、第三等的表述仅用于将一个特征与另一个特征区分开来,而不表示对特征的任何限制。因此,在不背离本申请的教导的情况下,下文中讨论的第一透镜也可被称作第二透镜或第三透镜。
在附图中,为了便于说明,已稍微夸大了透镜的厚度、尺寸和形状,但应理解各部件的尺寸不由附图限制,而是可在一定的范围内适当调整。具体来讲,附图中所示的球面或非球面的形状通过示例的方式示出。即,球面或非球面的形状不限于附图中示出的球面或非球面的形状。附图仅为示例而并非严格按比例绘制。
此外,近轴区域是指光轴附近的区域。第一透镜是最靠近物体的透镜而第六透镜是最靠近感光元件的透镜。在本文中,每个透镜中最靠近物体的表面称为物侧面,每个透镜中最靠近成像面的表面称为像侧面。
还应理解的是,用语“包括”、“包括有”、“具有”、“包含”和/或“包含有”,当在本说明书中使用时表示存在所陈述的特征、整体、步骤、操作、元件和/或部件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、部件和/或它们的组合。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,修饰整个所列特征,而不是修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可以/可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有用语(包括技术用语和科学用语)均具有与本发明所属领域普通技术人员的通常理解相同的含义。还应理解的是,用语(例如在常用词典中定义的用语)应被解释为具有与它们在相关技术的上下文中的含义一致的含义,并且将不被以理想化或过度正式意义解释,除非本文中明确如此限定。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
以下对本申请的特征、原理和其他方面进行详细描述。
本申请提供了一种光学成像系统。根据本申请的示例性实施方式,该光学成像系统沿着光轴从物侧至成像侧可依次设置有第一透镜、第二透镜、第三透镜、第四透镜。该光学成像系统可具有有效焦距f。
在示例性实施方式中,第一透镜可具有正光焦度,其物侧面可为凸面,像侧面可为凹面。具有正光焦度的第一透镜具有较大的折光能力,并且将第一透镜的像侧面设置为凹面有利于缩短光学成像系统的整体长度,减小光学成像系统的体积,从而实现镜头的小型化。
第二透镜具有光焦度,其物侧面可为凸面,像侧面可为凹面。具有光焦度的第二透镜可以减小轴外视场在光线与光轴之间的夹角,从而改善轴外视场的象散,提供光学成像系统的成像品质。
第三透镜和第四透镜具有负光焦度。
在示例性实施方式中,根据本申请的光学成像系统,还包括设置在被摄物与第二透镜之间的孔径光阑。根据本申请的光学成像系统,还包括设置在第四透镜与成像面之间的滤光片,该滤光片为IR红外滤光片,滤除的近红外光的波长范围例如为750nm-900nm,这样的配置保证了光学成像系统在有效光谱范围内的有效识别。
在示例性实施方式中,第一透镜物侧面至成像面在光轴上的距离TTL与光学成像系统的有效焦距f之间可满足:TTL/f<1,更具体地,可满足TTL/f≤0.941。在确保光学成像系统有效识别精度的情况下,使光学成像系统的尺寸小型化,同时使光学成像系统保持较长的焦距,具有更宽的焦深。
在示例性实施方式中,第一透镜物侧面至成像面在光轴上的距离TTL与第四透镜在光轴上的中心厚度CT4之间可满足:CT4/TTL<0.1,更具体地,可满足CT4/TTL≤0.093。通过合理配置镜片形状与位置,可有效提升周边相对照度。
在示例性实施方式中,第一透镜物侧面的有效半径DT11与第二透镜物侧面的有效半径DT21之间可满足:1.2<DT11/DT21<1.8,更具体地,可满足1.269≤DT11/DT21≤1.714。这样的配置,在组装时更有利于结构定位稳定性,降低由第一透镜与第二透镜定位口径差造成的弯曲变形,同时还可提升镜头的解像力。
在示例性实施方式中,第一透镜像侧面的曲率半径R2与第二透镜物侧面的曲率半径R3之间可满足:1.3<R2/R3<1.9,更具体地,可满足1.393≤R2/R3≤1.870。通过合理地配置曲率半径和镜片形状,能够提升相对照度,有利于修正像差,特别是减小彗差,从而使得光学成像系统具有高成像品质。
在示例性实施方式中,第一透镜像侧面的曲率半径R2与第二透镜像侧面的曲率半径R4之间可满足:1<R2/R4<2.1,更具体地,可满足1.28≤R2/R4≤2.059。通过合理地配置曲率半径和镜片形状,能够提升相对照度,有利于修正像差,特别是降低像差,从而提高光学成像系统的解像力。
在示例性实施方式中,第一透镜在光轴上的中心厚度CT1与第三透镜在光轴上的中心厚度CT3之间可满足:2.5<CT1/CT3<3.1,更具体地,可满足2.538≤CT1/CT3≤3.06。通过合理配置第一片透镜的中心厚度与第二透镜的中心厚度,能够有效地控制光学成像系统的色球差。
在示例性实施方式中,第一透镜在光轴上的中心厚度CT1与第四透镜在光轴上的中心厚度CT4之间可满足:0.4<CT4/CT1<0.8,更具体地,可满足0.498≤CT4/CT1≤0.634。使第一透镜与第四透镜的形状相互配合,能够有效提升周边的相对照度。
在示例性实施方式中,第一透镜的有效焦距f1和第四透镜的有效焦距f4与光学成像系统的有效焦距f之间可满足:-0.8<(f1+f4)/f<0,更具体地,可满足-0.772≤(f1+f4)/f≤-0.356。通过合理分配第一透镜与第四透镜的光焦度,能有效地控制系统的球差和慧差,从而提高光学成像系统的解像力和成像品质。
在示例性实施方式中,第三透镜的有效焦距f3与第四透镜的有效焦距f4之间可满足:1<f3/f4<3,更具体地,满足1.259≤f3/f4≤2.710。合理分配第三透镜与第四透镜的光焦度,确保光学成像系统在应用范围内放大倍率,以保证有效的识别精度;并且可降低像差,提升光学成像系统的解像力。
在示例性实施方式中,第三透镜像侧面和光轴的交点至第三透镜像侧面的有效半径顶点之间的轴上距离SAG32与第三透镜在光轴上的中心厚度CT3之间可满足:-0.7<SAG32/CT3<-0.3,更具体地,可满足-0.601≤SAG32/CT3≤-0.413。这样配置的第三透镜对轴外视场具有较大的折光能力,从而有利于缩短镜头的整体长度。同时,这样的配置还可降低像差,提升系统的解像力。
在示例性实施方式中,第三透镜的有效焦距f3和第四透镜的有效焦距f4与光学成像系统的有效焦距f之间可满足:-4.5<(f3+f4)/f<-3,更具体地,可满足-4.254≤(f3+f4)/f≤-3.386。合理分配第三透镜、第四透镜的光焦度与成像系统的有效焦距f,确保光学成像系统在应用范围内放大倍率,保证有效的识别精度。
在示例性实施方式中,第四透镜像侧面的有效半径DT42与电子光感元件有效像素区域对角线长的一半ImgH之间可满足:0.5<DT42/ImgH<0.9,更具体地,可满足0.742≤DT42/ImgH≤0.784。通过合理配置光学成像系统的成像面上有效像素区域对角线长的一半ImgH和第四透镜像侧面的有效半径DT42,能够有效地控制主光线入射角度,并提升周边的相对照度。
根据本申请的上述实施方式的光学成像系统可采用多片镜片,例如在本申请中采用4片,但应理解这只是示例而非限制。通过合理设置各透镜的光焦度、中心厚度、面型、各透镜之间的轴上间距等,可提供一种高亮度、高解像力的紧凑型光学成像系统。在本申请的实施方式中,各透镜的镜面中的至少一个为非球面镜面。非球面透镜的特点是:从透镜中心到周边曲率是连续变化的。与从透镜中心到周边有一定曲率的球面透镜不同,非球面透镜具有更佳的曲率半径特性,具有改善歪曲像差及改善像散像差的优点,能够使得视野变得更大而真实。采用非球面透镜后,能够尽可能地消除在成像的时候出现的像差,从而改善成像质量。
然而,本领域的技术人员应当理解,在不背离本申请要求保护的技术方案的情况下,可改变镜头的构成数量,来获得下面描述的各种结果和优点。例如,虽然在第一实施方式中的描述中采用由四个透镜为例进行了描述,但是该光学成像系统不限于包括四个透镜。如果需要,该光学成像系统还可包括其它数量的透镜。
下面参照附图进一步描述可适用于上述实施方式的光学成像系统的具体实施例。
实施例1
以下参照图1至图2E描述本申请上述实施方式的光学成像系统的实施例1。图1示出了根据本申请实施例1的光学成像系统的结构示意图。
如图1所示,光学成像系统的实施例1沿着光轴包括从物侧至成像侧依序排列的四个透镜L1-L4。第一透镜L1具有物侧面S1和像侧面S2;第二透镜L2具有物侧面S3和像侧面S4;第三透镜L3具有物侧面S5和像侧面S6;以及第四透镜L4具有物侧面S7和像侧面S8。在该实施例中,第一透镜可具有正光焦度,且其物侧面为凸面,像侧面可为凹面;第二透镜可具有正光焦度或负光焦度,且其物侧面为凸面,像侧面可为凹面;以及第三透镜和第四透镜均可具有负光焦度。该光学成像系统还可包括设置在被摄物与第二透镜之间的孔径光阑(未示出)。该光学成像系统还又包括具有物侧面S9和像侧面S10的滤光片L5,该滤光片为IR红外滤光片,可对波长范围为750nm-900nm内的近红外光进行滤除。在本实施例的光学成像系统中,还设置有光圈STO以调解进光量。来自物体的光依序穿过各表面S1至S10并最终成像在成像面S11上。
下表1中示出了实施例1中的各透镜的有效焦距f1至f4、光学成像系统的有效焦距f、电子光感元件的有效像素区域的对角线长的一半ImgH、光学成像系统的最大视场角的一半HFOV、光学成像系统的光圈数Fno以及摄像透镜的总长度TTL。
表1
参数 ImgH HFOV Fno f f1 f2 f3 f4 TTL
数值 1.965 23.929 2.19 4.235 3.585 28.471 -8.567 -5.5774 3.980
参照表1,第一透镜物侧面至成像面在光轴上的距离TTL与光学成像系统的有效焦距f之间满足TTL/f=0.940。第一透镜的有效焦距f1和第四透镜的有效焦距f4与光学成像系统的有效焦距f之间满足-0.8<(f1+f4)/f=-0.517。第三透镜的有效焦距f3与第四透镜的有效焦距f4之间满足f3/f4=1.484。第三透镜的有效焦距f3和第四透镜的有效焦距f4与光学成像系统的有效焦距f之间满足(f3+f4)/f=-3.386。
表2示出了该实施例1中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
表2
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 300.0000
STO 球面 无穷 -0.4367
S1 非球面 1.2437 0.5885 1.537/56.11 -0.2834
S2 非球面 2.9347 0.4656 0.9860
S3 非球面 1.9600 0.3478 1.537/56.11 0.4442
S4 非球面 2.1089 0.4092 -0.9566
S5 非球面 -7.2764 0.2300 1.622/23.53 -1.4837
S6 非球面 20.0673 0.8440 -15.6568
S7 非球面 -6.7138 0.3473 1.622/23.53 -86.2082
S8 非球面 7.8582 0.1369 -58.6017
S9 球面 无穷 0.2100 1.517/64.17
S10 球面 无穷 0.4008
S11 球面 无穷
参照表2,第一透镜在光轴上的中心厚度CT1与第三透镜在光轴上的中心厚度CT3之间满足CT1/CT3=2.559。第一透镜在光轴上的中心厚度CT1与第四透镜在光轴上的中心厚度CT4之间满足CT4/CT1=0.59。第一透镜像侧面的曲率半径R2与第二透镜物侧面的曲率半径R3之间满足R2/R3=1.497。第一透镜物侧面至成像面在光轴上的距离TTL与第四透镜在光轴上的中心厚度CT4之间满足CT4/TTL=0.087。第一透镜像侧面的曲率半径R2与第二透镜像侧面的曲率半径R4之间满足R2/R4=1.392。
本实施例采用了4片透镜作为示例,通过合理分配个镜片的焦距与面型,有效扩大镜头的孔径,缩短镜头总长度,保证镜头的大孔径与小型化;同时校正各类像差,提高了镜头的解析度与成像品质。各非球面面型x由以下公式限定:
其中,x为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c为非球面的近轴曲率,c=1/R(即,近轴曲率c为上表2中曲率半径R的倒数);k为圆锥系数(在上表1中已给出);Ai是非球面第i-th阶的修正系数。下表3示出了可用于该实施例1中的各透镜的各球面或非球面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16
表3
面号 A4 A6 A8 A10 A12 A14 A16
S1 4.2598E-03 8.0390E-03 5.6871E-03 -5.7764E-02 1.3728E-01 -1.3709E-01 5.3122E-02
S2 -3.7293E-03 8.0358E-02 -3.8353E-01 1.0679E+00 -1.5990E+00 1.2262E+00 -3.5924E-01
S3 1.5146E-02 -4.5397E-02 3.4813E-01 -3.0285E-01 -1.2592E-01 6.3794E-01 -8.9105E-02
S4 -2.9946E-02 4.6317E-02 -2.9061E-01 6.0316E-01 1.0664E-01 -1.5035E+00 1.1364E+00
S5 -4.7103E-01 -4.2993E-01 8.6790E-01 -3.8100E+00 5.7919E+00 -5.6836E+00 1.9258E+00
S6 -3.0570E-01 1.1354E-01 -3.1033E-01 7.4215E-01 -6.5304E-01 4.8934E-01 -1.6184E-01
S7 -3.2670E-01 3.3255E-01 -2.6684E-01 6.0235E-02 5.4947E-02 -3.3164E-02 5.1649E-03
S8 -3.1214E-01 3.2685E-01 -3.1111E-01 1.8680E-01 -7.0249E-02 1.4816E-02 -1.3134E-03
参照表1至表3,第一透镜物侧面的有效半径DT11与第二透镜物侧面的有效半径DT21之间满足DT11/DT21=1.346。第三透镜像侧面和光轴的交点至第三透镜像侧面的有效半径顶点之间的轴上距离SAG32与第三透镜在光轴上的中心厚度CT3之间满足SAG32/CT3=-0.413。第四透镜像侧面的有效半径DT42与电子光感元件有效像素区域对角线长的一半ImgH之间满足DT42/ImgH=0.747。光学成像系统的成像高度对应的光线入射电子感光组件的最大角度CRAmax满足CRAmax=31.397。
图2A示出了实施例1的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图2B示出了实施例1的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图2C示出了实施例1的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图2D示出了实施例1的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图2E示出了实施例1的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。综上所述并参照图2A至图2E可以看出,根据实施例1的光学成像系统在保证紧凑的情况下可获得高亮度、高解像力的高质量的成像效果。
实施例2
以下参照图3至图4E描述本申请的上述光学成像系统的实施例2。除了光学成像系统的各镜片的参数之外,例如除了各镜片的曲率半径、厚度、圆锥系数、有效焦距、轴上间距、各镜面的高次项系数等之外,在本实施例2及以下各实施例中描述的光学成像系统与实施例1中描述的光学成像系统的布置结构相同。为了简洁起见,将省略部分与实施例1相似的描述。
图3示出了根据本申请实施例2的光学成像系统的结构示意图。如图3所示,根据实施例2的光学成像系统包括分别具有物侧面和像侧面的第一至第四透镜L1-L4。
下表4中示出了实施例2中的各透镜的有效焦距f1至f4、光学成像系统的有效焦距f、电子光感元件的有效像素区域的对角线长的一半ImgH、光学成像系统的最大视场角的一半HFOV、光学成像系统的光圈数Fno以及光学成像系统的总长度TTL。
表4
参数 ImgH HFOV Fno f f1 f2 f3 f4 TTL
数值 1.965 23.985 2.19 4.229 3.641 26.933 -8.321 -6.608 3.980
表5示出了该实施例2中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
表5
表6示出了可用于该实施例2中的各透镜的各球面或非球面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16
表6
面号 A4 A6 A8 A10 A12 A14 A16
S1 6.5522E-03 -1.5398E-02 1.2197E-01 -3.4843E-01 5.3559E-01 -4.2031E-01 1.3626E-01
S2 -6.0400E-03 6.7426E-02 -2.7188E-01 6.7107E-01 -8.6524E-01 5.4634E-01 -1.0163E-01
S3 5.6533E-03 -3.7809E-02 3.3792E-01 -2.9566E-01 -1.0947E-01 6.3365E-01 -4.5668E-02
S4 -3.7367E-02 6.6576E-02 -2.9776E-01 4.7819E-01 3.4924E-01 -1.5035E+00 1.1364E+00
S5 -4.7684E-01 -3.9853E-01 8.2541E-01 -3.6820E+00 5.4735E+00 -5.6836E+00 1.9258E+00
S6 -3.2187E-01 1.4697E-01 -3.2673E-01 6.9018E-01 -6.7204E-01 5.2623E-01 -1.5823E-01
S7 -4.1196E-01 4.8668E-01 -5.0309E-01 3.3139E-01 -1.3026E-01 2.9911E-02 -3.0396E-03
S8 -2.7445E-01 2.5169E-01 -2.1836E-01 1.1398E-01 -3.4204E-02 4.7202E-03 -1.3689E-04
图4A示出了实施例2的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图4B示出了实施例2的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图4C示出了实施例2的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图4D示出了实施例2的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图4E示出了实施例2的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。综上所述并参照图4A至图4E可以看出,根据实施例2的光学成像系统在保证紧凑的情况下可获得高亮度、高解像力的高质量的成像效果。
实施例3
以下参照图5至图6E描述本申请的上述光学成像系统的实施例3。图5示出了根据本申请实施例3的光学成像系统的结构示意图。如图5所示,根据实施例3的光学成像系统包括分别具有物侧面和像侧面的第一至第四透镜L1-L4。
下表7中示出了实施例3中的各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、电子光感元件的有效像素区域的对角线长的一半ImgH、光学成像系统的最大视场角的一半HFOV、光学成像系统的光圈数Fno以及摄像透镜的总长度TTL。
表7
参数 ImgH HFOV Fno f f1 f2 f3 f4 TTL
数值 1.965 23.906 2.20 4.240 3.639 25.370 -8.780 -6.046 3.980
表8示出了该实施例3中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
表8
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 300.0000
STO 球面 无穷 -0.4466
S1 非球面 1.2356 0.5838 1.537/56.11 -0.2729
S2 非球面 2.8072 0.4938 1.0000
S3 非球面 1.8648 0.3456 1.537/56.11 0.1583
S4 非球面 2.0208 0.4173 -1.6793
S5 非球面 -7.8367 0.2300 1.622/23.53 1.0000
S6 非球面 18.1585 0.8396 -99.0000
S7 非球面 -3.2282 0.3699 1.537/56.11 -31.1540
S8 非球面 -639.0051 0.1130 -99.0000
S9 球面 无穷 0.2100 1.517/64.17
S10 球面 无穷 0.3770
S11 球面 无穷
表9示出了可用于该实施例3中的各透镜的各球面或非球面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16
表9
图6A示出了实施例3的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图6B示出了实施例3的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图6C示出了实施例3的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图6D示出了实施例3的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图6E示出了实施例3的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。综上所述并参照图6A至图6E可以看出,根据实施例3的光学成像系统在保证紧凑的情况下可获得高亮度、高解像力的高质量的成像效果。
实施例4
以下参照图7至图8E描述本申请的上述光学成像系统的实施例4。图7示出了根据本申请实施例4的光学成像系统的结构示意图。如图7所示,根据实施例4的光学成像系统包括分别具有物侧面和像侧面的第一至第四透镜L1-L4。
下表10中示出了实施例4中的各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、电子光感元件的有效像素区域的对角线长的一半ImgH、光学成像系统的最大视场角的一半HFOV、光学成像系统的光圈数Fno以及摄像透镜的总长度TTL。
表10
参数 ImgH HFOV Fno f f1 f2 f3 f4 TTL
数值 1.965 24.022 2.19 4.232 3.344 194.998 -13.152 -4.853 3.980
表11示出了该实施例4中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
表11
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 260.0000
S1 非球面 1.3317 0.6214 1.537/56.11 -0.0576
S2 非球面 4.3172 0.3788 -28.3241
STO 球面 无穷 0.2622
S3 非球面 2.3086 0.2300 1.537/56.11 0.3280
S4 非球面 2.2785 0.4669 0.3446
S5 非球面 -4.2961 0.2300 1.622/23.53 1.0000
S6 非球面 -9.2442 0.7684 -46.8962
S7 非球面 -2.0717 0.3222 1.537/56.11 -3.0032
S8 非球面 -10.6683 0.1052 -30.9666
S9 球面 无穷 0.2100 1.517/64.17
S10 球面 无穷 0.3848
S11 球面 无穷
表12示出了可用于该实施例4中的各透镜的各球面或非球面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16
表12
面号 A4 A6 A8 A10 A12 A14 A16
S1 -1.2762E-02 -2.1151E-02 1.6782E-02 -2.4137E-02 7.1846E-03 -1.5325E-03 0.0000E+00
S2 3.1977E-02 -5.7865E-02 8.3184E-02 -1.0469E-01 7.3509E-02 -1.9755E-02 0.0000E+00
S3 -6.7136E-02 -3.4551E-01 2.1253E+00 -6.2494E+00 9.7710E+00 -6.2966E+00 0.0000E+00
S4 -1.4229E-01 -2.8744E-01 1.2418E+00 -4.0581E+00 6.8061E+00 -5.3201E+00 0.0000E+00
S5 -3.1293E-01 -7.9039E-01 2.0954E+00 -7.3127E+00 1.1542E+01 -9.3772E+00 0.0000E+00
S6 -1.2963E-01 -2.3996E-01 4.8940E-01 -6.2835E-01 6.7012E-01 -2.6628E-01 0.0000E+00
S7 -8.7783E-02 1.0282E-01 -3.9235E-02 7.8333E-03 -8.4456E-04 4.5935E-05 -9.8600E-07
S8 -1.2169E-01 6.2009E-02 -2.3881E-02 4.2808E-03 -3.9067E-04 1.8220E-05 -3.5013E-07
图8A示出了实施例4的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图8B示出了实施例4的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图8C示出了实施例4的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图8D示出了实施例4的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图8E示出了实施例4的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。综上所述并参照图8A至图8E可以看出,根据实施例4的光学成像系统在保证紧凑的情况下可获得高亮度、高解像力的高质量的成像效果。
实施例5
以下参照图9至图10E描述本申请的上述光学成像系统的实施例5。图9示出了根据本申请实施例5的光学成像系统的结构示意图。如图9所示,根据实施例5的光学成像系统包括分别具有物侧面和像侧面的第一至第四透镜L1-L4。
下表13中示出了实施例5中的各透镜的有效焦距f1至f4、光学成像系统的总有效焦距f、电子光感元件的有效像素区域的对角线长的一半ImgH、光学成像系统的最大视场角的一半HFOV、光学成像系统的光圈数Fno以及摄像透镜的总长度TTL。
表13
参数 ImgH HFOV Fno f f1 f2 f3 f4 TTL
数值 1.815 22.529 2.24 4.256 3.193 -30.418 -9.793 -6.477 3.973
表14示出了该实施例5中的各透镜的表面类型、曲率半径、厚度、材料和圆锥系数。
表14
面号 表面类型 曲率半径 厚度 材料 圆锥系数
OBJ 球面 无穷 260.0000
S1 非球面 1.2778 0.7436 1.528/55.78 -0.3259
S2 非球面 4.2149 0.5728 6.7683
STO 球面 无穷 -0.0629
S3 非球面 2.4455 0.2500 1.528/55.78 2.5172
S4 非球面 2.0473 0.3953 2.8462
S5 非球面 -7.2354 0.2430 1.622/23.53 25.0132
S6 非球面 38.7520 0.6982 50.0000
S7 非球面 -32.1547 0.3700 1.528/55.78 50.0000
S8 非球面 3.8425 0.0530 -99.9900
S9 球面 无穷 0.2100 1.517/64.17
S10 球面 无穷 0.5000
S11 球面 无穷
表15示出了可用于该实施例5中的各透镜的各球面或非球面S1-S8的高次项系数A4、A6、A8、A10、A12、A14和A16
表15
面号 A4 A6 A8 A10 A12 A14 A16
S1 1.8752E-02 -5.1040E-02 1.2377E-01 -1.3354E-01 5.6256E-02 1.1079E-02 -1.1860E-02
S2 -1.4825E-03 4.4649E-04 1.1817E-02 -3.3963E-02 3.7787E-02 -2.8131E-02 6.7750E-03
S3 6.5526E-02 -2.9416E-01 1.7133E+00 -2.6488E+00 -2.1044E+00 1.1070E+01 -8.9033E+00
S4 -2.8042E-02 4.9982E-01 -2.0348E+00 5.1222E+00 2.1632E+00 -2.7349E+01 3.2299E+01
S5 -2.7561E-01 -1.0730E+00 7.1781E+00 -3.0890E+01 7.7208E+01 -1.0338E+02 5.4734E+01
S6 -2.6455E-01 4.3708E-01 -1.8219E+00 5.3347E+00 -8.3698E+00 6.6714E+00 -2.1750E+00
S7 -4.0948E-01 7.3790E-01 -1.1939E+00 1.2722E+00 -7.6319E-01 2.3757E-01 -3.0083E-02
S8 -2.2991E-01 2.1209E-01 -1.9481E-01 8.9887E-02 -9.9298E-03 -5.2622E-03 1.2885E-03
图10A示出了实施例5的光学成像系统的轴上色差曲线,其表示不同波长的光线经由光学系统后的会聚焦点偏离。图10B示出了实施例5的光学成像系统的象散曲线,其表示子午像面弯曲和弧矢像面弯曲。图10C示出了实施例5的光学成像系统的畸变曲线,其表示不同视角情况下的畸变大小值。图10D示出了实施例5的光学成像系统的倍率色差曲线,其表示光线经由光学成像系统后在成像面上的不同的像高的偏差。图10E示出了实施例5的光学成像系统的相对照度曲线,其表示在镜头的光轴上,也就是画面中心的影像的明亮程度。综上所述并参照图10A至图10E可以看出,根据实施例5的光学成像系统在保证紧凑的情况下可获得高亮度、高解像力的高质量的成像效果。
综上所述,参照表1至表15,实施例1至实施例5的各参数之间分别可满足下表16所示的关系。
表16
以上参照附图对本申请的示例性实施例进行了描述。本领域技术人员应该理解,上述实施例仅是为了说明的目的而所举的示例,而不是用来限制本申请的范围。凡在本申请的教导和权利要求保护范围下所作的任何修改、等同替换等,均应包含在本申请要求保护的范围内。

Claims (15)

1.一种光学成像系统,所述光学成像系统沿着光轴从物侧至成像侧依次设置有第一透镜、第二透镜、第三透镜和第四透镜,
其特征在于,
所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
所述第二透镜的物侧面为凸面,像侧面为凹面;
所述第三透镜和所述第四透镜具有负光焦度;
其中,所述第一透镜的有效焦距f1和所述第四透镜的所述有效焦距f4与所述光学成像系统的有效焦距f之间满足:-0.8<(f1+f4)/f<0。
2.如权利要求1所述的光学成像系统,其特征在于,所述第一透镜物侧面至成像面在光轴上的距离TTL与所述第四透镜在光轴上的中心厚度CT4之间可满足:CT4/TTL<0.1。
3.如权利要求1所述的光学成像系统,其特征在于,所述第一透镜像侧面的曲率半径R2与所述第二透镜物侧面的曲率半径R3之间满足:1.3<R2/R3<1.9。
4.如权利要求3所述的光学成像系统,其特征在于,所述第一透镜像侧面的所述曲率半径R2与所述第二透镜像侧面的曲率半径R4之间满足:1<R2/R4<2.1。
5.如权利要求1所述的光学成像系统,其特征在于,所述第三透镜的有效焦距f3与所述第四透镜的有效焦距f4之间满足:1<f3/f4<3。
6.如权利要求1-4中任一项所述的光学成像系统,其特征在于,所述第一透镜物侧面的有效半径DT11与所述第二透镜物侧面的有效半径DT21之间满足:1.2<DT11/DT21<1.8。
7.如权利要求1-4中任一项所述的光学成像系统,其特征在于,所述第四透镜像侧面的有效半径DT42与电子光感元件有效像素区域对角线长的一半ImgH之间满足:0.5<DT42/ImgH<0.9。
8.如权利要求1-4中任一项所述的光学成像系统,其特征在于,所述第三透镜像侧面和光轴的交点至所第三透镜像侧面的有效半径顶点之间的轴上距离SAG32与所述第三透镜在光轴上的所述中心厚度CT3之间满足:-0.7<SAG32/CT3<-0.3。
9.如权利要求1所述的光学成像系统,其特征在于,所述第三透镜的所述有效焦距f3和所述第四透镜的所述有效焦距f4与所述光学成像系统的所述有效焦距f之间满足:-4.5<(f3+f4)/f<-3。
10.如权利要求1-4中任一项所述的光学成像系统,其特征在于,所述第一透镜在光轴上的中心厚度CT1与所述第三透镜在光轴上的中心厚度CT3之间满足:2.5<CT1/CT3<3.1。
11.如权利要求1所述的光学成像系统,其特征在于,所述第四透镜与成像面之间设置有滤光片,所述滤光片为IR红外滤光片。
12.如权利要求11所述的光学成像系统,所述IR红外滤光片滤除的近红外光的波长范围为750nm-900nm。
13.如权利要求1-4中任一项所述的光学成像系统,其特征在于,所述第一透镜物侧面至成像面在光轴上的所述距离TTL与所述光学成像系统的所述有效焦距f之间满足:TTL/f<1。
14.如权利要求1-4中任一项所述的光学成像系统,其特征在于,所述第一透镜在光轴上的所述中心厚度CT1与所述第四透镜在光轴上的所述中心厚度CT4之间满足:0.4<CT4/CT1<0.8。
15.一种光学成像系统,所述光学成像系统沿着光轴从物侧至成像侧依次设置有第一透镜、第二透镜、第三透镜和第四透镜,
其特征在于,
所述第一透镜具有正光焦度,其物侧面为凸面,像侧面为凹面;
所述第二透镜的物侧面为凸面,像侧面为凹面;
所述第三透镜和所述第四透镜具有负光焦度;
其中,所述第一透镜在光轴上的所述中心厚度CT1与所述第四透镜在光轴上的所述中心厚度CT4之间满足:0.4<CT4/CT1<0.8。
CN201710236524.4A 2017-04-12 2017-04-12 摄像镜头光学成像系统 Active CN106802477B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710236524.4A CN106802477B (zh) 2017-04-12 2017-04-12 摄像镜头光学成像系统
PCT/CN2017/096589 WO2018188236A1 (zh) 2017-04-12 2017-08-09 摄像镜头光学成像系统
US15/772,860 US10921557B2 (en) 2017-04-12 2017-08-09 Optical imaging system of camera lens assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710236524.4A CN106802477B (zh) 2017-04-12 2017-04-12 摄像镜头光学成像系统

Publications (2)

Publication Number Publication Date
CN106802477A true CN106802477A (zh) 2017-06-06
CN106802477B CN106802477B (zh) 2019-02-12

Family

ID=58981838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710236524.4A Active CN106802477B (zh) 2017-04-12 2017-04-12 摄像镜头光学成像系统

Country Status (1)

Country Link
CN (1) CN106802477B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107831588A (zh) * 2017-11-29 2018-03-23 浙江舜宇光学有限公司 光学成像镜头
WO2018188236A1 (zh) * 2017-04-12 2018-10-18 浙江舜宇光学有限公司 摄像镜头光学成像系统
CN110531496A (zh) * 2019-09-05 2019-12-03 哈尔滨理工大学 一种用于虹膜识别的光学镜头
WO2021020760A1 (ko) * 2019-08-01 2021-02-04 주식회사 제이투씨 렌즈 광학계
CN113009671A (zh) * 2019-12-20 2021-06-22 大立光电股份有限公司 光学镜头组、取像装置及电子装置
CN113126259A (zh) * 2021-04-27 2021-07-16 广东旭业光电科技股份有限公司 一种光学扫描镜头及扫描设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744570B1 (en) * 2003-01-30 2004-06-01 Minolta Co., Ltd. Taking lens system
US20090128927A1 (en) * 2007-11-16 2009-05-21 Chen Chun Shan Optical Lens System for Taking Image
JP2009288377A (ja) * 2008-05-28 2009-12-10 Hitachi Maxell Ltd レンズユニット及びカメラモジュール
CN202256843U (zh) * 2011-05-16 2012-05-30 大立光电股份有限公司 光学影像镜头
CN106154493A (zh) * 2016-03-18 2016-11-23 玉晶光电(厦门)有限公司 光学镜片组
CN206990886U (zh) * 2017-04-12 2018-02-09 浙江舜宇光学有限公司 摄像镜头光学成像系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744570B1 (en) * 2003-01-30 2004-06-01 Minolta Co., Ltd. Taking lens system
US20090128927A1 (en) * 2007-11-16 2009-05-21 Chen Chun Shan Optical Lens System for Taking Image
JP2009288377A (ja) * 2008-05-28 2009-12-10 Hitachi Maxell Ltd レンズユニット及びカメラモジュール
CN202256843U (zh) * 2011-05-16 2012-05-30 大立光电股份有限公司 光学影像镜头
CN106154493A (zh) * 2016-03-18 2016-11-23 玉晶光电(厦门)有限公司 光学镜片组
CN206990886U (zh) * 2017-04-12 2018-02-09 浙江舜宇光学有限公司 摄像镜头光学成像系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018188236A1 (zh) * 2017-04-12 2018-10-18 浙江舜宇光学有限公司 摄像镜头光学成像系统
US10921557B2 (en) 2017-04-12 2021-02-16 Zhejiang Sunny Optical Co., Ltd Optical imaging system of camera lens assembly
CN107831588A (zh) * 2017-11-29 2018-03-23 浙江舜宇光学有限公司 光学成像镜头
WO2021020760A1 (ko) * 2019-08-01 2021-02-04 주식회사 제이투씨 렌즈 광학계
KR20210015288A (ko) * 2019-08-01 2021-02-10 주식회사 제이투씨 렌즈 광학계
KR102388071B1 (ko) * 2019-08-01 2022-04-19 주식회사 제이투씨 렌즈 광학계
CN110531496A (zh) * 2019-09-05 2019-12-03 哈尔滨理工大学 一种用于虹膜识别的光学镜头
CN113009671A (zh) * 2019-12-20 2021-06-22 大立光电股份有限公司 光学镜头组、取像装置及电子装置
CN113009671B (zh) * 2019-12-20 2022-07-05 大立光电股份有限公司 光学镜头组、取像装置及电子装置
CN113126259A (zh) * 2021-04-27 2021-07-16 广东旭业光电科技股份有限公司 一种光学扫描镜头及扫描设备
CN113126259B (zh) * 2021-04-27 2022-09-20 广东旭业光电科技股份有限公司 一种光学扫描镜头及扫描设备

Also Published As

Publication number Publication date
CN106802477B (zh) 2019-02-12

Similar Documents

Publication Publication Date Title
CN107315236B (zh) 摄像透镜组
CN106950681A (zh) 摄像镜头
CN107367827A (zh) 光学成像镜头
CN106802477B (zh) 摄像镜头光学成像系统
CN107085285A (zh) 光学成像镜头
CN108873272A (zh) 光学成像镜头
CN207123646U (zh) 光学成像镜头
CN108445610A (zh) 光学成像镜片组
CN107621683A (zh) 光学成像镜头
CN106842511A (zh) 摄像镜头
CN107065141A (zh) 成像镜头
CN106680976B (zh) 摄像镜头
CN107153257A (zh) 光学成像系统
CN106990511A (zh) 成像镜头
CN206710689U (zh) 摄像镜头
CN107121756A (zh) 光学成像系统
CN106997089B (zh) 光学镜片组
CN106842513B (zh) 成像镜头
CN107436485A (zh) 光学成像系统
CN209640581U (zh) 光学成像镜头
CN108398770A (zh) 光学成像镜头
CN107167902A (zh) 光学成像镜头
CN107608057A (zh) 摄像透镜组
CN106990512A (zh) 虹膜镜头
CN109828346A (zh) 光学成像镜头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant