CN106787890B - 一种cdsm-mmc桥臂电磁暂态建模方法和装置 - Google Patents

一种cdsm-mmc桥臂电磁暂态建模方法和装置 Download PDF

Info

Publication number
CN106787890B
CN106787890B CN201710023969.4A CN201710023969A CN106787890B CN 106787890 B CN106787890 B CN 106787890B CN 201710023969 A CN201710023969 A CN 201710023969A CN 106787890 B CN106787890 B CN 106787890B
Authority
CN
China
Prior art keywords
resistance
cdsm
equivalent
capacitor
voltage source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710023969.4A
Other languages
English (en)
Other versions
CN106787890A (zh
Inventor
田鹏飞
张星
徐得超
彭红英
刘敏
孙丽香
穆清
王峰
陈绪江
徐树文
林因
吴丹岳
黄道姗
黄霆
刘智煖
苏清梅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, Electric Power Research Institute of State Grid Fujian Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710023969.4A priority Critical patent/CN106787890B/zh
Publication of CN106787890A publication Critical patent/CN106787890A/zh
Application granted granted Critical
Publication of CN106787890B publication Critical patent/CN106787890B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Abstract

本发明提供一种CDSM‑MMC桥臂电磁暂态建模方法和装置,方法包括:确定CDSM的状态;若所述CDSM的状态是非闭锁状态,建立非闭锁状态且非故障工况下CDSM‑MMC桥臂电磁暂态模型,以及根据CDSM的故障特性建立非闭锁状态且故障工况下的CDSM‑MMC桥臂电磁暂态模型;若所述CDSM的状态是闭锁状态,建立闭锁状态下CDSM‑MMC桥臂电磁暂态模型。本发明利用Domemel等值方法,将CDSM中的电容等值成电流源和电阻的诺顿电路,然后根据CDSM正常和故障情况的电路工作原理,建立了考虑CDSM内部故障情况下的CDSM‑MMC桥臂电磁暂态模型,等效过程简单可靠,实用性强;与传统的由二极管和IGBT搭建的模型相比,本发明在取得同样精度的情况下,既能模拟CDSM内部故障,又能大幅提高仿真效率。

Description

一种CDSM-MMC桥臂电磁暂态建模方法和装置
技术领域
本发明涉及一种建模方法,具体涉及一种CDSM-MMC桥臂电磁暂态建模方法和装置。
背景技术
基于模块化多电平换流器(modularized multilevel converter,MMC)的高压直流输电是电压源换流器(voltage sourced converter,VSC)型直流输电(high-voltagedirect current,HVDC)技术向高电压大功率方向发展的最新成果,相比两电平、三电平VSC-HVDC,MMC-HVDC有众多优势,比如容量更大,换流阀制造难度下降,波形质量更高,损耗更低等。模块化多电平换流器的基本组成单元即子模块可以有多种变化,其中半桥子模块(half bridge sub-module,HBSM)最为成熟,在多个柔性直流输电工程中得到应用。但半桥子模块在柔直工程没有配置直流断路器的情况下发生直流侧故障,无法通过换流阀隔离故障。因此有关学者提出了钳位双子模块(clamp double sub-module,CDSM)和全桥子模块(full bridge sub-module,FBSM),使得柔性直流输电工程使用架空线成为可能。而CDSM型MMC在实现同样电平数的情况下,使用的电力电子器件数量比FBSM型换流器减少很多,成为一种满足经济性和良好故障特性的解决方案。
目前,利用电磁暂态软件对CDSM-MMC进行研究时,二极管和IGBT元件搭建的仿真系统运行非常慢,极大的影响了研究人员的工作效率。
发明内容
为了提高CDSM-MMC的仿真效率的同时又能精确模拟CDSM子模块内部的故障,本发明提供一种CDSM-MMC桥臂电磁暂态建模方法和装置,根据CDSM的正常和故障情况下的原理,利用Dommel等值方法,考虑子模块内部故障的情况下大幅提高仿真效率。
为了实现上述发明目的,本发明采取如下技术方案:
本发明提供一种CDSM-MMC桥臂电磁暂态建模方法,所述CDSM为钳位双子模块,所述方法包括:
确定CDSM的状态;
若所述CDSM的状态是非闭锁状态,建立非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型,以及根据CDSM的故障特性建立非闭锁状态且故障工况下的CDSM-MMC桥臂电磁暂态模型;
若所述CDSM的状态是闭锁状态,建立闭锁状态下CDSM-MMC桥臂电磁暂态模型。
本发明还提供一种CDSM-MMC桥臂电磁暂态建模装置,所述CDSM为钳位双子模块,其特征在于,所述装置包括:
确定模块,用于确定CDSM的状态;
第一建模模块,用于建立非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型和非闭锁状态且故障工况下的CDSM-MMC桥臂电磁暂态模型;以及
第二建模模块,用于建立闭锁状态下CDSM-MMC桥臂电磁暂态模型。
与最接近的现有技术相比,本发明提供的技术方案具有以下有益效果:
1)本发明根据CDSM的工作原理,建立CDSM处于非闭锁状态且非故障工况下、非闭锁状态且故障工况下以及闭锁状态下的CDSM-MMC桥臂电磁暂态模型,考虑了CDSM的非闭锁状态和闭锁状态,同时考虑了CDSM的非故障工况和包括电容击穿故障、IGBT击穿故障和IGBT拒动故障的故障工况,考虑的较为全面;
2)本发明基于CDSM的非闭锁状态建立包括双投入状态、双旁路状态、单投单旁状态和单旁单投状态的非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型;
3)本发明根据CDSM的故障特性建立非闭锁状态且故障工况下的CDSM-MMC桥臂电磁暂态模型,具体为根据CDSM内部的电容击穿故障特性,建立非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型;根据CDSM内部的IGBT击穿故障特性,建立非闭锁状态且IGBT击穿故障下的CDSM-MMC桥臂电磁暂态模型;并根据CDSM内部的IGBT拒动故障,建立非闭锁状态且IGBT拒动故障下的CDSM-MMC桥臂电磁暂态模型;
4)本发明根据CDSM的闭锁状态建立闭锁状态下CDSM-MMC桥臂电磁暂态模型;
5)本发明利用Domemel等值方法,将CDSM中的电容等值成电流源和电阻的诺顿电路,然后根据CDSM正常和故障情况的电路工作原理,建立了考虑CDSM内部故障情况下的CDSM-MMC桥臂电磁暂态模型,等效过程简单可靠,实用性强;
6)与传统的由二极管和IGBT搭建的模型相比,本发明在取得同样精度的情况下,既能模拟CDSM内部故障,又能大幅提高仿真效率。
附图说明
图1是本发明实施例中CDSM-MMC桥臂电磁暂态建模方法流程图;
图2是本发明实施例中CDSM拓扑结构图;
图3是本发明实施例中开关组利用电阻替代后CDSM拓扑结构图;
图4是本发明实施例中将电容利用诺顿等值后CDSM等值电路图;
图5是本发明实施例中CDSM用戴维南等值后CDSM等值电路图;
图6是本发明实施例中电容C1发生击穿后CDSM等值电路图;
图7是本发明实施例中IGBT1发生击穿故障后CDSM等值电路图;
图8是本发明实施例中IGBT1发生拒动故障后CDSM等值电路图;
图9是本发明实施例中闭锁状态下CDSM等值电路图;
图10是本发明实施例中整个桥臂闭锁状态下CDSM型桥臂等值电路图;
图11是本发明实施例中交流故障后A相上桥臂第2个子模块电容C1电压曲线对比图;
图12是本发明实施例中交流故障后换流系统有功曲线对比图;
图13是本发明实施例中交流故障后换流系统无功曲线对比图;
图14是本发明实施例中电容击穿后A相上桥臂第2个子模块电容C1电压曲线对比图;
图15是本发明实施例中电容击穿后换流系统有功曲线对比图;
图16是本发明实施例中电容击穿后换流系统无功曲线对比图;
图17是本发明实施例中0.1秒前闭锁A相上桥臂第2个子模块电容C1电压曲线对比图;
图18是本发明实施例中0.1秒前闭锁换流系统有功曲线对比图;
图19是本发明实施例中0.1秒前闭锁换流系统无功曲线对比图。
具体实施方式
下面结合附图对本发明作进一步详细说明。
本发明提供一种CDSM-MMC桥臂电磁暂态建模方法,在本发明实施例提出的技术方案中,所涉及的CDSM为钳位双子模块,该方法具体处理流程如图1所示,具体为:
步骤11,确定CDSM的状态,CDSM的状态包括非闭锁状态和闭锁状态,其中,非闭锁状态包括双投入状态、双旁路状态、单投单旁状态和单旁单投状态;
在本发明实施例提出的技术方案中,如图2所示,CDSM包括多个IGBT,分别标识为IGBT1、IGBT2、IGBT3、IGBT4、IGBT5;多个二极管,分别标识为二极管D1、二极管D2、二极管D3、二极管D4、二极管D5、二极管D6、二极管D7,以及多个电容,分别标识为:电容C1和电容C2;
其中,二极管D1、二极管D2、二极管D3、二极管D4、二极管D5的阳极分别与IGBT1、IGBT2、IGBT3、IGBT4、IGBT5的发射极连接,二极管D1、二极管D2、二极管D3、二极管D4、二极管D5的阴极分别与IGBT1、IGBT2、IGBT3、IGBT4、IGBT5的集电极连接,形成开关组T1、开关组T2、开关组T3、开关组T4和开关组T5;
具体地,IGBT1的集电极连接二极管D6的阴极,二极管D6的阳极同时连接IGBT3的集电极、IGBT5的集电极以及电容C2的第一端,IGBT3的发射极连接IGBT4的集电极,IGBT4的发射极同时连接电容C2的第二端和二极管D7的阳极,二极管D7的阴极同时连接IGBT2的发射极和IGBT5的发射极,IGBT2的集电极连接IGBT1的发射极,电容C1的第一端连接二极管D6阴极,其第二端连接二极管D7阴极;将CDSM的端口记为N1和N2,其中,N1连接IGBT1的发射极,N2连接IGBT4集电极。
正常运行时,IGBT5保持开通,二极管D6和二极管D7处于关断状态,电容C1和C2均可以独立的充电、放电或者被旁路,电容C1和C2的投入和旁路组合运行,配合出双投入、双切除,以及单投单旁和单旁单投的状态。IGBT1、IGBT2、IGBT3、IGBT4、IGBT5均关断时,CDSM处于闭锁状态,闭锁状态下二极管D1到D7根据网络电气量的变化,自然导通或关断。由于二极管自然关断点可能发生在定步长仿真的两个步长之间,所以需要对二极管开断这样的开关事件进行插值处理。
具体地,CDSM的状态包括:
若CDSM中的IGBT5导通,IGBT1和IGBT4导通,同时IGBT2和IGBT3关断,CDSM的状态为双投入状态;
若IGBT5导通,IGBT1和IGBT4关断,同时IGBT2和IGBT3也导通,CDSM的状态为双旁路状态;
若IGBT5导通,IGBT1和IGBT3也导通,同时IGBT2和IGBT4关断,CDSM的状态为单投单旁状态;
若IGBT5导通,IGBT2和IGBT4也导通,同时IGBT1和IGBT3关断,CDSM的状态为单旁单投状态;
若IGBT1、IGBT2、IGBT3、IGBT4、IGBT5均关断,CDSM的状态为闭锁状态。
步骤12:根据CDSM的状态建立CDSM-MMC桥臂电磁暂态模型,具体包括:
步骤121,若CDSM的状态是非闭锁状态,建立非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型,以及根据CDSM的故障特性建立非闭锁状态且故障工况下的CDSM-MMC桥臂电磁暂态模型;
步骤122:若所述CDSM的状态是闭锁状态,建立闭锁状态下CDSM-MMC桥臂电磁暂态模型。
步骤121中,建立非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型可以包括:
将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5,二极管D6和二极管D7等效为电阻RD6和电阻RD7,由于IGBT5一直导通,D6和D7一直关断,所以RT5=0,RD6和RD7为无穷大,如图3所示,将电容C1和电容C2的电流按照差分方程表示为:
Figure GDA0002902118030000051
Figure GDA0002902118030000052
其中,C1和C2分别为电容C1和电容C2的容值,Δt为仿真步长,iC1(t)和iC2(t)分别为t时刻电容C1和电容C2的电流,iC1(t-Δt)和iC2(t-Δt)分别为t-Δt时刻电容C1和电容C2的电流,uC1(t)和uC2(t)分别为t时刻电容C1和电容C2的电压,uC1(t-Δt)和uC2(t-Δt)分别为t-Δt时刻电容C1和电容C2的电压;
CDSM处于非闭锁状态下,二极管D6和二极管D7一直关断,电阻RD6和电阻RD7为无穷大,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式,如图4,电阻RC1的阻值和电阻RC2的阻值分别表示为:
Figure GDA0002902118030000053
Figure GDA0002902118030000054
且有:
Figure GDA0002902118030000055
Figure GDA0002902118030000056
其中,ICS1(t-Δt)和ICS2(t-Δt)分别为t-Δt时刻电流源ICS1和电流源ICS2的电流;
将电流源ICS1、电阻RC1、电阻RT1、电阻RT2等效为电压源Ueq1和电阻Req1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源Ueq1、电阻Req1、电阻RT5、电压源Ueq2和电阻Req2串联的形式,如图5,且有:
Figure GDA0002902118030000061
Figure GDA0002902118030000062
Figure GDA0002902118030000063
Figure GDA0002902118030000064
其中,Ueq1(t)、Ueq2(t)分别为t时刻电压源Ueq1、电压源Ueq2的电压,Req1(t)、Req2(t)分别为电阻Req1、电阻Req2的阻值,RT1(t)、RT2(t)、RT3(t)、RT4(t)和RT5(t)分别为电阻RT1、电阻RT2、电阻RT3、电阻RT4的阻值。
将每个CDSM的电磁暂态等效模型中电阻和电压源分别求和得到非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型。
步骤121中,根据CDSM的故障特性建立非闭锁状态且故障工况下的CDSM-MMC桥臂电磁暂态模型可以包括:
若CDSM的故障工况为电容击穿故障,根据CDSM内部的电容击穿故障特性,建立非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型;
建立非闭锁状态且电容C1击穿故障下的CDSM-MMC桥臂电磁暂态模型可以包括:
将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5;电容C1发生击穿故障时,将电容C2等效为电流源ICS2和电阻RC2并联的形式,如图6;
将电阻RT1、电阻RT2等效为电压源U′eq1和电阻R′eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U′eq1、电阻R′eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
U′eq1(t)=0
Figure GDA0002902118030000071
Figure GDA0002902118030000072
Figure GDA0002902118030000073
其中,U′eq1(t)为t时刻电压源U′eq1的电压,R′eq1(t)为电阻R′eq1的阻值。
根据上述方法得到非闭锁状态且电容击穿故障下每个CDSM的电磁暂态模型,并将发生电容击穿故障的CDSM中电阻和电压源分别求和得到非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型。
建立非闭锁状态且电容C2击穿故障下的CDSM-MMC桥臂电磁暂态模型可以包括:
将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5;电容C2发生击穿故障时,将电容C1等效为电流源ICS1和电阻RC1并联的形式;
将电阻RT3、电阻RT4等效为电压源U′eq2和电阻R′eq2串联的形式,并将电流源ICS1、电阻RC1、电阻RT1、电阻RT2等效为电压源Ueq1和电阻Req1串联的形式,于是形成电压源U′eq2、电阻R′eq2、电阻RT5、电压源Ueq1和电阻Req1串联的形式;且有:
Figure GDA0002902118030000074
U′eq2(t)=0
Figure GDA0002902118030000075
Figure GDA0002902118030000076
其中,U′eq2(t)为t时刻电压源U′eq2的电压,R′eq2(t)为电阻R′eq2的阻值。
根据上述方法得到非闭锁状态且电容击穿故障下每个CDSM的电磁暂态模型,并将发生电容击穿故障的CDSM中电阻和电压源分别求和得到非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型。
若CDSM的故障工况为IGBT1击穿故障,根据CDSM内部的IGBT1击穿故障特性,建立非闭锁状态且IGBT1击穿故障下的CDSM-MMC桥臂电磁暂态模型;
建立非闭锁状态且IGBT1击穿故障下的CDSM-MMC桥臂电磁暂态模型可以包括:
IGBT1发生击穿故障时,电阻RT1的阻值为0,将开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式,如图7;
将电流源ICS1、电阻RC1、电阻RT2等效为电压源U″eq1和电阻R″eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U″eq1、电阻R″eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure GDA0002902118030000081
Figure GDA0002902118030000082
Figure GDA0002902118030000083
Figure GDA0002902118030000084
其中,U″eq1(t)为t时刻电压源U″eq1的电压,R″eq1(t)为电阻R″eq1的阻值。
根据上述方法得到非闭锁状态且IGBT击穿故障下每个CDSM的电磁暂态模型,并将发生IGBT击穿故障的CDSM中电阻和电压源分别求和得到非闭锁状态且IGBT击穿故障下的CDSM-MMC桥臂电磁暂态模型。
若CDSM的故障工况为IGBT1拒动故障,根据CDSM内部的IGBT1拒动故障,建立非闭锁状态且IGBT1拒动故障下的CDSM-MMC桥臂电磁暂态模型。
建立非闭锁状态且IGBT1拒动故障下的CDSM-MMC桥臂电磁暂态模型可以包括:
IGBT1发生拒动故障时,将二极管D1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RD1、电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式,如图8;
将电流源ICS1、电阻RC1、电阻RD1、电阻RT2等效为电压源U″′eq1和电阻R″′eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U″′eq1、电阻R″′eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure GDA0002902118030000091
Figure GDA0002902118030000092
Figure GDA0002902118030000093
Figure GDA0002902118030000094
其中,U″′eq1(t)为t时刻电压源U″′eq1的电压,R″′eq1(t)为电阻R″′eq1的阻值,RD1(t)为电阻RD1的阻值;
RD1(t)和RT2(t)的取值情况具体包括:
当IGBT2关断且桥臂电流为正时,二极管D1导通,此时RD1(t)=0=0,RT2(t)=∞;
当IGBT2关断且桥臂电流为负时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0;
当IGBT2导通且桥臂电流为正时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0;
当IGBT2导通且桥臂电流为负时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0。
根据上述方法得到非闭锁状态且IGBT拒动故障下每个CDSM的电磁暂态模型,并将发生IGBT拒动故障的CDSM中电阻和电压源分别求和得到非闭锁状态且IGBT拒动故障下的CDSM-MMC桥臂电磁暂态模型。
步骤122中,建立闭锁状态下CDSM-MMC桥臂电磁暂态模型可以包括:
CDSM闭锁状态下,将二极管D1、二极管D2、二极管D3、二极管D4分别等效为电阻RD1、电阻RD2、电阻RD3、电阻RD4,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式,如图9;
将电流源ICS1、电阻RC1、电阻RD1、电阻RD2等效为电压源U″″eq1和电阻R″″eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RD3、电阻RD4等效为电压源U″eq2和电阻R″eq2串联的形式,于是形成电压源U″″eq1、电阻R″″eq1、电阻RT5、电压源U″eq2和电阻R″eq2串联的形式;且有:
Figure GDA0002902118030000101
Figure GDA0002902118030000102
Figure GDA0002902118030000103
Figure GDA0002902118030000104
其中,U″″eq1(t)为t时刻电压源U″″eq1的电压,R″″eq1(t)为电阻R″″eq1的阻值,U″eq2(t)为t时刻电压源U″eq2的电压,R″eq2(t)为电阻R″eq2的阻值。
根据CDSM型MMC桥臂整体闭锁时的工作原理可知,闭锁时同一桥臂上每个子模块二极管的导通与关断状态相同且仅与桥臂电流相关,因此可以将一个桥臂的闭锁状态用附图10所示电路代替,其中,Uarm1和Rarm1为一个桥臂中所有子模块中电容C1的戴维南等值电压源Ueq1和电阻Req1串联求和后的结果,Uarm2和Rarm2为一个桥臂中所有子模块中电容C2的戴维南等值电路电压源Ueq2和电阻Req2串联后的结果。上述等值方法只能处理一个桥臂中所有子模块同时闭锁的工况,如果要做单个子模块的模拟,可以将一个桥臂中N-1个子模块利用上述方法进行集中建模,然后串联一个利用器件搭建模型的单个子模块做闭锁模拟,即将每个CDSM的电磁暂态等效模型的电阻和电压源分别求和得到闭锁状态下CDSM-MMC桥臂电磁暂态模型。
为了考察非闭锁状态子模块内部无故障情况下,本发明等效模型和器件模型故障之间的差异,设置t=2.0s交流系统发生A相接地故障,持续0.1秒。故障前后,A相上桥臂第2个子模块上电容C1的电压、换流系统有功功率和无功功率曲线对比如附图11到附图13。
由图中对比结果可发现,本发明所建立CDSM等效模型与器件模型在非闭锁状态,发生交流系统故障时,子模块电容电压、换流系统有功和无功变化趋势完全一致。同时,等效模型在相同的控制器作用下运行效果与器件搭建模型保持高度一致,说明了等效模型和器件模型具有同样的特性和精度。
为了考察非闭锁状态下CDSM发生子模块内部故障时,本发明等效模型和器件模型故障之间的差异,设置t=2.0s时A相上桥臂第2个子模块内电容C1发生击穿。故障前后,器件模型与本发明等效模型的A相上桥臂第2个子模块上电容C1的电压、换流系统有功功率和无功功率曲线对比如附图14到附图16。
由图中对比结果可发现,本发明所建立CDSM等效模型与器件模型在非闭锁状态,发生发生子模块内部故障时,故障子模块电容电压、换流系统有功和无功变化趋势完全一致,说明本发明提供的方法在发生子模块内部故障时同器件模型具有一样的特性和精度。
闭锁状态下,本发明等效模型和器件模型故障之间的差异,让柔直系统从0到0.1s所有子模块处于闭锁状态,柔直系统进行不控充电启动。器件模型与本发明等效模型的A相上桥臂第2个子模块上电容C1的电压、换流系统有功功率和无功功率曲线对比如附图17到附图19。
由图中对比结果可发现,本发明所建立CDSM等效模型与器件模型在闭锁状态(0到0.1秒),子模块电容电压和换流系统有功变化趋势完全一致,无功变化基本一致。说明本发明方法在桥臂整体闭锁状态同器件模型具有基本一致的特性和精度。
同时,本实例中总仿真时间设置为5秒,其中器件模型仿真用时539.53秒,本发明所建立模型仿真用时24.12秒。可见,本发明在取得同器件模型基本一致的精度下,能大幅提高仿真效率。
另一方面,本发明还提供一种CDSM-MMC桥臂电磁暂态建模装置,其中的CDSM为钳位双子模块,装置具体包括:
确定模块,用于确定CDSM的状态;
第一建模模块,用于建立非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型和非闭锁状态且故障工况下的CDSM-MMC桥臂电磁暂态模型;以及
第二建模模块,用于建立闭锁状态下CDSM-MMC桥臂电磁暂态模型。
具体地,确定模块确定的CDSM包括IGBT1、IGBT2、IGBT3、IGBT4、IGBT5、二极管D1、二极管D2、二极管D3、二极管D4、二极管D5、二极管D6、二极管D7、电容C1和电容C2;
其中,二极管D1、二极管D2、二极管D3、二极管D4、二极管D5的阳极分别与IGBT1、IGBT2、IGBT3、IGBT4、IGBT5的发射极连接,二极管D1、二极管D2、二极管D3、二极管D4、二极管D5的阴极分别与IGBT1、IGBT2、IGBT3、IGBT4、IGBT5的集电极连接,形成开关组T1、开关组T2、开关组T3、开关组T4和开关组T5;
IGBT1的集电极连接二极管D6的阴极,二极管D6的阳极同时连接IGBT3的集电极、IGBT5的集电极以及电容C2的第一端,IGBT3的发射极连接IGBT4的集电极,IGBT4的发射极同时连接电容C2的第二端和二极管D7的阳极,二极管D7的阴极同时连接IGBT2的发射极和IGBT5的发射极,IGBT2的集电极连接IGBT1的发射极,电容C1的第一端连接二极管D6阴极,其第二端连接二极管D7阴极;CDSM的端口记为N1和N2,N1连接IGBT1的发射极,N2连接IGBT4集电极。
确定模块,具体用于:
若CDSM中的IGBT5导通,IGBT1和IGBT4导通,同时IGBT2和IGBT3关断,CDSM为双投入状态;
若IGBT5导通,IGBT1和IGBT4关断,同时IGBT2和IGBT3导通,CDSM为双旁路状态;
若IGBT5导通,IGBT1和IGBT3导通,同时IGBT2和IGBT4关断,CDSM为单投单旁状态;
若IGBT5导通,IGBT2和IGBT4导通,同时IGBT1和IGBT3关断,CDSM为单旁单投状态;
若IGBT1、IGBT2、IGBT3、IGBT4、IGBT5均关断,CDSM为闭锁状态。
第一建模模块,具体用于建立非闭锁状态且非故障工况下CDSM-MMC桥臂中每个CDSM的电磁暂态等效模型;将每个CDSM的电磁暂态等效模型中电阻和电压源分别求和得到非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型。
第一建模模块,用于建立非闭锁状态且非故障工况下CDSM-MMC桥臂中每个CDSM的电磁暂态等效模型,具体地,将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1和电容C2的电流按照差分方程表示为:
Figure GDA0002902118030000121
Figure GDA0002902118030000122
其中,C1和C2分别为电容C1和电容C2的容值,Δt为仿真步长,iC1(t)和iC2(t)分别为t时刻电容C1和电容C2的电流,iC1(t-Δt)和iC2(t-Δt)分别为t-Δt时刻电容C1和电容C2的电流,uC1(t)和uC2(t)分别为t时刻电容C1和电容C2的电压,uC1(t-Δt)和uC2(t-Δt)分别为t-Δt时刻电容C1和电容C2的电压;
CDSM处于非闭锁状态下,二极管D6和二极管D7一直关断,电阻RD6和电阻RD7为无穷大,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式,电阻RC1的阻值和电阻RC2的阻值分别表示为:
Figure GDA0002902118030000131
Figure GDA0002902118030000132
且有:
Figure GDA0002902118030000133
Figure GDA0002902118030000134
其中,ICS1(t-Δt)和ICS2(t-Δt)分别为t-Δt时刻电流源ICS1和电流源ICS2的电流;
将电流源ICS1、电阻RC1、电阻RT1、电阻RT2等效为电压源Ueq1和电阻Req1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源Ueq1、电阻Req1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure GDA0002902118030000135
Figure GDA0002902118030000136
Figure GDA0002902118030000137
Figure GDA0002902118030000138
其中,Ueq1(t)、Ueq2(t)分别为t时刻电压源Ueq1、电压源Ueq2的电压,Req1(t)、Req2(t)分别为电阻Req1、电阻Req2的阻值,RT1(t)、RT2(t)、RT3(t)、RT4(t)和RT5(t)分别为电阻RT1、电阻RT2、电阻RT3、电阻RT4的阻值。
第一建模模块,用于建立非闭锁状态且故障工况下的CDSM-MMC桥臂电磁暂态模型,由于CDSM的故障工况包括电容击穿故障、IGBT击穿故障以及IGBT拒动故障,所以第一建模模块具体用于:
若CDSM的故障工况为电容击穿故障,根据CDSM内部的电容击穿故障特性,建立非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型;
若CDSM的故障工况为IGBT击穿故障,根据CDSM内部的IGBT击穿故障特性,建立非闭锁状态且IGBT击穿故障下的CDSM-MMC桥臂电磁暂态模型;
若CDSM的故障工况为IGBT拒动故障,根据CDSM内部的IGBT拒动故障,建立非闭锁状态且IGBT拒动故障下的CDSM-MMC桥臂电磁暂态模型。
其中,若CDSM的故障工况为C1电容击穿故障,根据CDSM内部的电容击穿故障特性,建立非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型具体包括:
将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5;电容C1发生击穿故障时,将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电阻RT1、电阻RT2等效为电压源U′eq1和电阻R′eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U′eq1、电阻R′eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
U′eq1(t)=0
Figure GDA0002902118030000141
Figure GDA0002902118030000142
Figure GDA0002902118030000143
其中,U′eq1(t)为t时刻电压源U′eq1的电压,R′eq1(t)为电阻R′eq1的阻值。
其中,若CDSM的故障工况为C2电容击穿故障,根据CDSM内部的电容击穿故障特性,建立非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型具体包括:
将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5;电容C2发生击穿故障时,将电容C1等效为电流源ICS1和电阻RC1并联的形式;
将电阻RT3、电阻RT4等效为电压源U′eq2和电阻R′eq2串联的形式,并将电流源ICS1、电阻RC1、电阻RT1、电阻RT2等效为电压源Ueq1和电阻Req1串联的形式,于是形成电压源U′eq2、电阻R′eq2、电阻RT5、电压源Ueq1和电阻Req1串联的形式;且有:
Figure GDA0002902118030000151
U′eq2(t)=0
Figure GDA0002902118030000152
Figure GDA0002902118030000153
其中,U′eq2(t)为t时刻电压源U′eq2的电压,R′eq2(t)为电阻R′eq2的阻值。
其中,若CDSM的故障工况为IGBT1击穿故障,根据CDSM内部的IGBT1击穿故障特性,建立非闭锁状态且IGBT1击穿故障下的CDSM-MMC桥臂电磁暂态模型具体包括:
IGBT1发生击穿故障时,电阻RT1的阻值为0,将开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电流源ICS1、电阻RC1、电阻RT2等效为电压源U″eq1和电阻R″eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U″eq1、电阻R″eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure GDA0002902118030000154
Figure GDA0002902118030000155
Figure GDA0002902118030000156
Figure GDA0002902118030000157
其中,U″eq1(t)为t时刻电压源U″eq1的电压,R″eq1(t)为电阻R″eq1的阻值。
其中,若CDSM的故障工况为IGBT1拒动故障,根据CDSM内部的IGBT拒动故障1,建立非闭锁状态且IGBT1拒动故障下的CDSM-MMC桥臂电磁暂态模型具体包括:
IGBT1发生拒动故障时,将二极管D1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RD1、电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电流源ICS1、电阻RC1、电阻RD1、电阻RT2等效为电压源U″′eq1和电阻R″′eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U″′eq1、电阻R″′eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure GDA0002902118030000161
Figure GDA0002902118030000162
Figure GDA0002902118030000163
Figure GDA0002902118030000164
其中,U″′eq1(t)为t时刻电压源U″′eq1的电压,R″′eq1(t)为电阻R″′eq1的阻值,RD1(t)为电阻RD1的阻值;RD1(t)和RT2(t)的取值情况具体包括:
当IGBT2关断且桥臂电流为正时,二极管D1导通,此时RD1(t)=0=0,RT2(t)=∞;
当IGBT2关断且桥臂电流为负时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0;
当IGBT2导通且桥臂电流为正时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0;
当IGBT2导通且桥臂电流为负时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0。
第二建模模块,具体用于
建立闭锁状态下CDSM-MMC桥臂中每个CDSM的电磁暂态等效模型;将每个CDSM的电磁暂态等效模型中的电阻和电压源分别求和得到闭锁状态下CDSM-MMC桥臂电磁暂态模型。
第二建模模块,用于建立闭锁状态下CDSM-MMC桥臂中每个CDSM的电磁暂态等效模型,具体包括:
CDSM闭锁状态下,将二极管D1、二极管D2、二极管D3、二极管D4分别等效为电阻RD1、电阻RD2、电阻RD3、电阻RD4,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电流源ICS1、电阻RC1、电阻RD1、电阻RD2等效为电压源U″″eq1和电阻R″″eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RD3、电阻RD4等效为电压源U″eq2和电阻R″eq2串联的形式,于是形成电压源U″″eq1、电阻R″″eq1、电阻RT5、电压源U″eq2和电阻R″eq2串联的形式;且有:
Figure GDA0002902118030000171
Figure GDA0002902118030000172
Figure GDA0002902118030000173
Figure GDA0002902118030000174
其中,U″″eq1(t)为t时刻电压源U″″eq1的电压,R″″eq1(t)为电阻R″″eq1的阻值,U″eq2(t)为t时刻电压源U″eq2的电压,R″eq2(t)为电阻R″eq2的阻值。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (16)

1.一种CDSM-MMC桥臂电磁暂态建模方法,所述CDSM为钳位双子模块,其特征在于,所述方法包括:
确定CDSM的状态;
若所述CDSM的状态是非闭锁状态,建立非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型,以及根据CDSM的故障特性建立非闭锁状态且故障工况下的CDSM-MMC桥臂电磁暂态模型;
若所述CDSM的状态是闭锁状态,建立闭锁状态下CDSM-MMC桥臂电磁暂态模型;
所述CDSM包括IGBT1、IGBT2、IGBT3、IGBT4、IGBT5、二极管D1、二极管D2、二极管D3、二极管D4、二极管D5、二极管D6、二极管D7、电容C1和电容C2;
所述二极管D1、二极管D2、二极管D3、二极管D4、二极管D5的阳极分别与IGBT1、IGBT2、IGBT3、IGBT4、IGBT5的发射极连接,二极管D1、二极管D2、二极管D3、二极管D4、二极管D5的阴极分别与IGBT1、IGBT2、IGBT3、IGBT4、IGBT5的集电极连接,形成开关组T1、开关组T2、开关组T3、开关组T4和开关组T5;
IGBT1的集电极连接二极管D6的阴极,二极管D6的阳极同时连接IGBT3的集电极、IGBT5的集电极以及电容C2的第一端,IGBT3的发射极连接IGBT4的集电极,IGBT4的发射极同时连接电容C2的第二端和二极管D7的阳极,二极管D7的阴极同时连接IGBT2的发射极和IGBT5的发射极,IGBT2的集电极连接IGBT1的发射极,电容C1的第一端连接二极管D6阴极,其第二端连接二极管D7阴极;所述CDSM的端口记为N1和N2,N1连接IGBT1的发射极,N2连接IGBT4集电极;
所述确定CDSM的状态包括:
若CDSM中的IGBT5导通,IGBT1和IGBT4导通,同时IGBT2和IGBT3关断,CDSM为双投入状态;
若IGBT5导通,IGBT1和IGBT4关断,同时IGBT2和IGBT3导通,CDSM为双旁路状态;
若IGBT5导通,IGBT1和IGBT3导通,同时IGBT2和IGBT4关断,CDSM为单投单旁状态;
若IGBT5导通,IGBT2和IGBT4导通,同时IGBT1和IGBT3关断,CDSM为单旁单投状态;
若IGBT1、IGBT2、IGBT3、IGBT4、IGBT5均关断,CDSM为闭锁状态;
所述建立非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型包括:
建立非闭锁状态且非故障工况下CDSM-MMC桥臂中每个CDSM的电磁暂态等效模型;
将每个CDSM的电磁暂态等效模型中电阻和电压源分别求和得到非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型;
所述建立非闭锁状态且非故障工况下CDSM-MMC桥臂中每个CDSM的电磁暂态等效模型包括:
将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1和电容C2的电流按照差分方程表示为:
Figure FDA0002902118020000021
Figure FDA0002902118020000022
其中,C1和C2分别为电容C1和电容C2的容值,Δt为仿真步长,iC1(t)和iC2(t)分别为t时刻电容C1和电容C2的电流,iC1(t-Δt)和iC2(t-Δt)分别为t-Δt时刻电容C1和电容C2的电流,uC1(t)和uC2(t)分别为t时刻电容C1和电容C2的电压,uC1(t-Δt)和uC2(t-Δt)分别为t-Δt时刻电容C1和电容C2的电压;
CDSM处于非闭锁状态下,二极管D6和二极管D7一直关断,二极管D6的等效电阻RD6和二极管D7的等效电阻RD7为无穷大,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式,电阻RC1的阻值和电阻RC2的阻值分别表示为:
Figure FDA0002902118020000023
Figure FDA0002902118020000024
且有:
Figure FDA0002902118020000025
Figure FDA0002902118020000026
其中,ICS1(t-Δt)和ICS2(t-Δt)分别为t-Δt时刻电流源ICS1和电流源ICS2的电流;
将电流源ICS1、电阻RC1、电阻RT1、电阻RT2等效为电压源Ueq1和电阻Req1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源Ueq1、电阻Req1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure FDA0002902118020000031
Figure FDA0002902118020000032
Figure FDA0002902118020000033
Figure FDA0002902118020000034
其中,Ueq1(t)、Ueq2(t)分别为t时刻电压源Ueq1、电压源Ueq2的电压,Req1(t)、Req2(t)分别为电阻Req1、电阻Req2的阻值,RT1(t)、RT2(t)、RT3(t)、RT4(t)和RT5(t)分别为电阻RT1、电阻RT2、电阻RT3、电阻RT4的阻值。
2.根据权利要求1所述的方法,其特征在于,所述根据CDSM的故障特性建立非闭锁状态且故障工况下的CDSM-MMC桥臂电磁暂态模型包括:
若CDSM的故障工况为电容击穿故障,根据CDSM内部的电容击穿故障特性,建立非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型;
若CDSM的故障工况为IGBT击穿故障,根据CDSM内部的IGBT击穿故障特性,建立非闭锁状态且IGBT击穿故障下的CDSM-MMC桥臂电磁暂态模型;
若CDSM的故障工况为IGBT拒动故障,根据CDSM内部的IGBT拒动故障,建立非闭锁状态且IGBT拒动故障下的CDSM-MMC桥臂电磁暂态模型。
3.根据权利要求2所述的方法,其特征在于,所述建立非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型包括:
将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5;电容C1发生击穿故障时,将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电阻RT1、电阻RT2等效为电压源U′eq1和电阻R′eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U′eq1、电阻R′eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
U′eq1(t)=0
Figure FDA0002902118020000041
Figure FDA0002902118020000042
Figure FDA0002902118020000043
其中,U′eq1(t)为t时刻电压源U′eq1的电压,R′eq1(t)为电阻R′eq1的阻值。
4.根据权利要求2所述的方法,其特征在于,所述建立非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型包括:
将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5;电容C2发生击穿故障时,将电容C1等效为电流源ICS1和电阻RC1并联的形式;
将电阻RT3、电阻RT4等效为电压源U′eq2和电阻R′eq2串联的形式,并将电流源ICS1、电阻RC1、电阻RT1、电阻RT2等效为电压源Ueq1和电阻Req1串联的形式,于是形成电压源U′eq2、电阻R′eq2、电阻RT5、电压源Ueq1和电阻Req1串联的形式;且有:
Figure FDA0002902118020000044
U′eq2(t)=0
Figure FDA0002902118020000045
Figure FDA0002902118020000046
其中,U′eq2(t)为t时刻电压源U′eq2的电压,R′eq2(t)为电阻R′eq2的阻值。
5.根据权利要求2所述的方法,其特征在于,所述建立非闭锁状态且IGBT击穿故障下的CDSM-MMC桥臂电磁暂态模型包括:
IGBT1发生击穿故障时,电阻RT1的阻值为0,将开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电流源ICS1、电阻RC1、电阻RT2等效为电压源U″eq1和电阻R″eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U″eq1、电阻R″eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure FDA0002902118020000051
Figure FDA0002902118020000052
Figure FDA0002902118020000053
Figure FDA0002902118020000054
其中,U″eq1(t)为t时刻电压源U″eq1的电压,R″eq1(t)为电阻R″eq1的阻值。
6.根据权利要求2所述的方法,其特征在于,所述建立非闭锁状态且IGBT拒动故障下的CDSM-MMC桥臂电磁暂态模型包括:
IGBT1发生拒动故障时,将二极管D1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RD1、电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电流源ICS1、电阻RC1、电阻RD1、电阻RT2等效为电压源U″′eq1和电阻R″′eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U″′eq1、电阻R″′eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure FDA0002902118020000055
Figure FDA0002902118020000061
Figure FDA0002902118020000062
Figure FDA0002902118020000063
其中,U″′eq1(t)为t时刻电压源U″′eq1的电压,R″′eq1(t)为电阻R″′eq1的阻值,RD1(t)为电阻RD1的阻值;
当IGBT2关断且桥臂电流为正时,二极管D1导通,此时RD1(t)=0=0,RT2(t)=∞;
当IGBT2关断且桥臂电流为负时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0;
当IGBT2导通且桥臂电流为正时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0;
当IGBT2导通且桥臂电流为负时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0。
7.根据权利要求1所述的方法,其特征在于,所述建立闭锁状态下CDSM-MMC桥臂电磁暂态模型包括:
建立闭锁状态下CDSM-MMC桥臂中每个CDSM的电磁暂态等效模型;
将每个CDSM的电磁暂态等效模型中的电阻和电压源分别求和得到闭锁状态下CDSM-MMC桥臂电磁暂态模型。
8.根据权利要求7所述的方法,其特征在于,所述建立闭锁状态下CDSM-MMC桥臂中每个CDSM的电磁暂态等效模型包括:
CDSM闭锁状态下,将二极管D1、二极管D2、二极管D3、二极管D4分别等效为电阻RD1、电阻RD2、电阻RD3、电阻RD4,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电流源ICS1、电阻RC1、电阻RD1、电阻RD2等效为电压源U″″eq1和电阻R″″eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RD3、电阻RD4等效为电压源U″eq2和电阻R″eq2串联的形式,于是形成电压源U″″eq1、电阻R″″eq1、电阻RT5、电压源U″eq2和电阻R″eq2串联的形式;且有:
Figure FDA0002902118020000064
Figure FDA0002902118020000071
Figure FDA0002902118020000072
Figure FDA0002902118020000073
其中,U″″eq1(t)为t时刻电压源U″″eq1的电压,R″″eq1(t)为电阻R″″eq1的阻值,U″eq2(t)为t时刻电压源U″eq2的电压,R″eq2(t)为电阻R″eq2的阻值。
9.一种CDSM-MMC桥臂电磁暂态建模装置,所述CDSM为钳位双子模块,其特征在于,所述装置包括:
确定模块,用于确定CDSM的状态;
第一建模模块,用于建立非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型和非闭锁状态且故障工况下的CDSM-MMC桥臂电磁暂态模型;以及
第二建模模块,用于建立闭锁状态下CDSM-MMC桥臂电磁暂态模型;
所述确定模块确定的CDSM包括IGBT1、IGBT2、IGBT3、IGBT4、IGBT5、二极管D1、二极管D2、二极管D3、二极管D4、二极管D5、二极管D6、二极管D7、电容C1和电容C2;
所述二极管D1、二极管D2、二极管D3、二极管D4、二极管D5的阳极分别与IGBT1、IGBT2、IGBT3、IGBT4、IGBT5的发射极连接,二极管D1、二极管D2、二极管D3、二极管D4、二极管D5的阴极分别与IGBT1、IGBT2、IGBT3、IGBT4、IGBT5的集电极连接,形成开关组T1、开关组T2、开关组T3、开关组T4和开关组T5;
IGBT1的集电极连接二极管D6的阴极,二极管D6的阳极同时连接IGBT3的集电极、IGBT5的集电极以及电容C2的第一端,IGBT3的发射极连接IGBT4的集电极,IGBT4的发射极同时连接电容C2的第二端和二极管D7的阳极,二极管D7的阴极同时连接IGBT2的发射极和IGBT5的发射极,IGBT2的集电极连接IGBT1的发射极,电容C1的第一端连接二极管D6阴极,其第二端连接二极管D7阴极;所述CDSM的端口记为N1和N2,N1连接IGBT1的发射极,N2连接IGBT4集电极;
所述确定模块,具体用于若CDSM中的IGBT5导通,IGBT1和IGBT4导通,同时IGBT2和IGBT3关断,CDSM为双投入状态;若IGBT5导通,IGBT1和IGBT4关断,同时IGBT2和IGBT3导通,CDSM为双旁路状态;若IGBT5导通,IGBT1和IGBT3导通,同时IGBT2和IGBT4关断,CDSM为单投单旁状态;若IGBT5导通,IGBT2和IGBT4导通,同时IGBT1和IGBT3关断,CDSM为单旁单投状态;若IGBT1、IGBT2、IGBT3、IGBT4、IGBT5均关断,CDSM为闭锁状态;
所述第一建模模块,具体用于建立非闭锁状态且非故障工况下CDSM-MMC桥臂中每个CDSM的电磁暂态等效模型;将每个CDSM的电磁暂态等效模型中电阻和电压源分别求和得到非闭锁状态且非故障工况下CDSM-MMC桥臂电磁暂态模型;
所述第一建模模块,具体用于将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1和电容C2的电流按照差分方程表示为:
Figure FDA0002902118020000081
Figure FDA0002902118020000082
其中,C1和C2分别为电容C1和电容C2的容值,Δt为仿真步长,iC1(t)和iC2(t)分别为t时刻电容C1和电容C2的电流,iC1(t-Δt)和iC2(t-Δt)分别为t-Δt时刻电容C1和电容C2的电流,uC1(t)和uC2(t)分别为t时刻电容C1和电容C2的电压,uC1(t-Δt)和uC2(t-Δt)分别为t-Δt时刻电容C1和电容C2的电压;
CDSM处于非闭锁状态下,二极管D6和二极管D7一直关断,二极管D6的等效电阻RD6和二极管D7的等效电阻RD7为无穷大,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式,电阻RC1的阻值和电阻RC2的阻值分别表示为:
Figure FDA0002902118020000083
Figure FDA0002902118020000084
且有:
Figure FDA0002902118020000085
Figure FDA0002902118020000086
其中,ICS1(t-Δt)和ICS2(t-Δt)分别为t-Δt时刻电流源ICS1和电流源ICS2的电流;
将电流源ICS1、电阻RC1、电阻RT1、电阻RT2等效为电压源Ueq1和电阻Req1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源Ueq1、电阻Req1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure FDA0002902118020000091
Figure FDA0002902118020000092
Figure FDA0002902118020000093
Figure FDA0002902118020000094
其中,Ueq1(t)、Ueq2(t)分别为t时刻电压源Ueq1、电压源Ueq2的电压,Req1(t)、Req2(t)分别为电阻Req1、电阻Req2的阻值,RT1(t)、RT2(t)、RT3(t)、RT4(t)和RT5(t)分别为电阻RT1、电阻RT2、电阻RT3、电阻RT4的阻值。
10.根据权利要求9所述的装置,其特征在于,所述第一建模模块,具体用于
若CDSM的故障工况为电容击穿故障,根据CDSM内部的电容击穿故障特性,建立非闭锁状态且电容击穿故障下的CDSM-MMC桥臂电磁暂态模型;
若CDSM的故障工况为IGBT击穿故障,根据CDSM内部的IGBT击穿故障特性,建立非闭锁状态且IGBT击穿故障下的CDSM-MMC桥臂电磁暂态模型;
若CDSM的故障工况为IGBT拒动故障,根据CDSM内部的IGBT拒动故障,建立非闭锁状态且IGBT拒动故障下的CDSM-MMC桥臂电磁暂态模型。
11.根据权利要求10所述的装置,其特征在于,所述第一建模模块,具体用于
将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5;电容C1发生击穿故障时,将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电阻RT1、电阻RT2等效为电压源U′eq1和电阻R′eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U′eq1、电阻R′eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
U′eq1(t)=0
Figure FDA0002902118020000101
Figure FDA0002902118020000102
Figure FDA0002902118020000103
其中,U′eq1(t)为t时刻电压源U′eq1的电压,R′eq1(t)为电阻R′eq1的阻值。
12.根据权利要求10所述的装置,其特征在于,所述第一建模模块,具体用于
将开关组T1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT1、电阻RT2、电阻RT3、电阻RT4和电阻RT5;电容C2发生击穿故障时,将电容C1等效为电流源ICS1和电阻RC1并联的形式;
将电阻RT3、电阻RT4等效为电压源U′eq2和电阻R′eq2串联的形式,并将电流源ICS1、电阻RC1、电阻RT1、电阻RT2等效为电压源Ueq1和电阻Req1串联的形式,于是形成电压源U′eq2、电阻R′eq2、电阻RT5、电压源Ueq1和电阻Req1串联的形式;且有:
Figure FDA0002902118020000104
U′eq2(t)=0
Figure FDA0002902118020000105
Figure FDA0002902118020000106
其中,U′eq2(t)为t时刻电压源U′eq2的电压,R′eq2(t)为电阻R′eq2的阻值。
13.根据权利要求10所述的装置,其特征在于,所述第一建模模块,具体用于
IGBT1发生击穿故障时,电阻RT1的阻值为0,将开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电流源ICS1、电阻RC1、电阻RT2等效为电压源U″eq1和电阻R″eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U″eq1、电阻R″eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure FDA0002902118020000111
Figure FDA0002902118020000112
Figure FDA0002902118020000113
Figure FDA0002902118020000114
其中,U″eq1(t)为t时刻电压源U″eq1的电压,R″eq1(t)为电阻R″eq1的阻值。
14.根据权利要求10所述的装置,其特征在于,所述第一建模模块,具体用于
IGBT1发生拒动故障时,将二极管D1、开关组T2、开关组T3、开关组T4和开关组T5分别等效为电阻RD1、电阻RT2、电阻RT3、电阻RT4和电阻RT5,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电流源ICS1、电阻RC1、电阻RD1、电阻RT2等效为电压源U″′eq1和电阻R″′eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RT3、电阻RT4等效为电压源Ueq2和电阻Req2串联的形式,于是形成电压源U″′eq1、电阻R″′eq1、电阻RT5、电压源Ueq2和电阻Req2串联的形式;且有:
Figure FDA0002902118020000115
Figure FDA0002902118020000116
Figure FDA0002902118020000117
Figure FDA0002902118020000121
其中,U″′eq1(t)为t时刻电压源U″′eq1的电压,R″′eq1(t)为电阻R″′eq1的阻值,RD1(t)为电阻RD1的阻值;
当IGBT2关断且桥臂电流为正时,二极管D1导通,此时RD1(t)=0=0,RT2(t)=∞;
当IGBT2关断且桥臂电流为负时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0;
当IGBT2导通且桥臂电流为正时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0;
当IGBT2导通且桥臂电流为负时,二极管D1导通,此时RD1(t)=∞,RT2(t)=0。
15.根据权利要求9所述的装置,其特征在于,所述第二建模模块,具体用于
建立闭锁状态下CDSM-MMC桥臂中每个CDSM的电磁暂态等效模型;将每个CDSM的电磁暂态等效模型中的电阻和电压源分别求和得到闭锁状态下CDSM-MMC桥臂电磁暂态模型。
16.根据权利要求15所述的装置,其特征在于,所述第二建模模块,具体用于
CDSM闭锁状态下,将二极管D1、二极管D2、二极管D3、二极管D4分别等效为电阻RD1、电阻RD2、电阻RD3、电阻RD4,将电容C1等效为电流源ICS1和电阻RC1并联的形式,并将电容C2等效为电流源ICS2和电阻RC2并联的形式;
将电流源ICS1、电阻RC1、电阻RD1、电阻RD2等效为电压源U″″eq1和电阻R″″eq1串联的形式,并将电流源ICS2、电阻RC2、电阻RD3、电阻RD4等效为电压源U″eq2和电阻R″eq2串联的形式,于是形成电压源U″″eq1、电阻R″″eq1、电阻RT5、电压源U″eq2和电阻R″eq2串联的形式;且有:
Figure FDA0002902118020000122
Figure FDA0002902118020000123
Figure FDA0002902118020000124
Figure FDA0002902118020000125
其中,U″″eq1(t)为t时刻电压源U″″eq1的电压,R″″eq1(t)为电阻R″″eq1的阻值,U″eq2(t)为t时刻电压源U″eq2的电压,R″eq2(t)为电阻R″eq2的阻值。
CN201710023969.4A 2017-01-13 2017-01-13 一种cdsm-mmc桥臂电磁暂态建模方法和装置 Active CN106787890B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710023969.4A CN106787890B (zh) 2017-01-13 2017-01-13 一种cdsm-mmc桥臂电磁暂态建模方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710023969.4A CN106787890B (zh) 2017-01-13 2017-01-13 一种cdsm-mmc桥臂电磁暂态建模方法和装置

Publications (2)

Publication Number Publication Date
CN106787890A CN106787890A (zh) 2017-05-31
CN106787890B true CN106787890B (zh) 2021-05-18

Family

ID=58948191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710023969.4A Active CN106787890B (zh) 2017-01-13 2017-01-13 一种cdsm-mmc桥臂电磁暂态建模方法和装置

Country Status (1)

Country Link
CN (1) CN106787890B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428340B (zh) * 2017-08-30 2021-10-29 中国电力科学研究院 一种柔性直流输电装置的仿真方法及系统
CN108920856B (zh) * 2018-07-12 2022-11-08 东北电力大学 一种改进式模块化多电平换流器等效方法
CN110532630B (zh) * 2019-08-01 2020-11-03 清华四川能源互联网研究院 开关组、寄生开关状态及电磁暂态仿真方法及装置
CN111682523B (zh) * 2020-05-21 2022-02-01 中国南方电网有限责任公司超高压输电公司检修试验中心 考虑桥臂闭锁时二极管续流作用的mmc快速仿真模型和方法
CN114123812A (zh) * 2021-10-29 2022-03-01 西安交通大学 一种基于逆导igbt的mmc钳位双子模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104199997A (zh) * 2014-07-16 2014-12-10 华北电力大学 一种mmc多子模块自定义集成元件的设计方法
CN104300569A (zh) * 2014-09-29 2015-01-21 华中科技大学 基于混合型mmc的hvdc直流侧短路故障穿越和恢复方法
CN104953873A (zh) * 2015-06-15 2015-09-30 中国科学院电工研究所 一种混合结构模块化多电平换流器仿真模型
CN105117549A (zh) * 2015-08-25 2015-12-02 浙江大学 一种考虑多种闭锁模态的基于箝位双子模块mmc的等效仿真方法
CN105956323A (zh) * 2016-05-23 2016-09-21 华北电力大学 钳位双子模块型mmc电磁暂态等效方法
EP3098958B1 (de) * 2015-05-29 2019-03-27 Siemens Aktiengesellschaft Spannungswandleranordnung mit kapazitiver kopplung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104199997A (zh) * 2014-07-16 2014-12-10 华北电力大学 一种mmc多子模块自定义集成元件的设计方法
CN104300569A (zh) * 2014-09-29 2015-01-21 华中科技大学 基于混合型mmc的hvdc直流侧短路故障穿越和恢复方法
EP3098958B1 (de) * 2015-05-29 2019-03-27 Siemens Aktiengesellschaft Spannungswandleranordnung mit kapazitiver kopplung
CN104953873A (zh) * 2015-06-15 2015-09-30 中国科学院电工研究所 一种混合结构模块化多电平换流器仿真模型
CN105117549A (zh) * 2015-08-25 2015-12-02 浙江大学 一种考虑多种闭锁模态的基于箝位双子模块mmc的等效仿真方法
CN105956323A (zh) * 2016-05-23 2016-09-21 华北电力大学 钳位双子模块型mmc电磁暂态等效方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Real-time simulation of CDSM modular multilevel converter for HIL test applications;Wei Li;《IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society》;20161222;第2372-2377页 *
基于PSCAD的大规模钳位双子模块-模块化多电平换流器高效仿真建模方法;刘崇茹等;《电工技术学报》;20160929;第30卷;摘要,第114-115页,图1-4 *

Also Published As

Publication number Publication date
CN106787890A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106787890B (zh) 一种cdsm-mmc桥臂电磁暂态建模方法和装置
Hassanpoor et al. Evaluation of different carrier-based PWM methods for modular multilevel converters for HVDC application
CN109391166B (zh) 一种变换电路、控制方法和供电设备
US20220045623A1 (en) Multi-level circuit, three-phase multi-level circuit, and control method
JP6098248B2 (ja) 3レベルt型npc電力変換装置の制御装置および制御方法
CA2942007A1 (en) Hybrid three-level npc thyristor converter with chain-link strings as inner ac switches
CN111555651A (zh) 多电平飞跨电容器转换器模块
Khoshkbar-Sadigh et al. Thermal and performance comparison of active neutral-point-clamped (anpc) and dual flyingcapacitor anpc (dfc-anpc) inverters
Rech Modified five-level ANPC inverter with output voltage boosting capability
Babaei et al. New 8-level basic structure for cascaded multilevel inverters with reduced number of switches and DC voltage sources
Li et al. Active-forced-commutated bridge using hybrid devices for high efficiency voltage source converters
CN111398772A (zh) 用于换流阀过电流关断试验的电路、方法和装置
Sandeep et al. Seven-level active-neutral-point-clamped inverter topology with voltage boosting capability
Kim et al. New pre-charging scheme for MMC-based back-to-back HVDC system operated in nearest level control
Lee et al. Tolerance control for the inner open-switch faults of a t-type three-level rectifier
Naderi et al. A correction to the state-machine-decoder for Stacked Multicell converters
Li et al. Start-up control with constant precharge current for the modular multilevel converter
Dargahi et al. Capacitors voltage balancing modeling in three phase flying capacitor converters with booster
CN108604797B (zh) 多电平功率变流器及用于控制多电平功率变流器的方法
Muniz et al. A hybrid PWM strategy for Z-source neutral-point-clamped inverter
Jin et al. Control of a four-level active neutral point clamped converter with neutral point voltage balance
CN115425861A (zh) 多电平逆变电路的控制方法和并网逆变器
Gao et al. Startup strategy of VSC-HVDC system based on modular multilevel converter
Jin et al. Analysis and control of a hybrid-clamped four-level π-type converter
CN113228452B (zh) 多级变流器的操作

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant