CN106784885A - 一种氮磷共掺的卷曲纳米碳片制备以及作为非金属催化剂在氧还原反应的应用 - Google Patents
一种氮磷共掺的卷曲纳米碳片制备以及作为非金属催化剂在氧还原反应的应用 Download PDFInfo
- Publication number
- CN106784885A CN106784885A CN201611076089.5A CN201611076089A CN106784885A CN 106784885 A CN106784885 A CN 106784885A CN 201611076089 A CN201611076089 A CN 201611076089A CN 106784885 A CN106784885 A CN 106784885A
- Authority
- CN
- China
- Prior art keywords
- curling
- doped
- catalyst
- nitrogen phosphorus
- oxygen reduction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9075—Catalytic material supported on carriers, e.g. powder carriers
- H01M4/9083—Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/96—Carbon-based electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
- Inert Electrodes (AREA)
Abstract
本发明所涉及的是一种将阴离子功能化后的聚离子液体当作前驱体来制备具有卷曲炭纳米片结构的氮磷共掺的炭材料作为氧还原催化剂,在传统上类似前驱体多是普通的离子液体,并且一般不能进行聚合,在阴离子方面也并未对其进行功能化。这类传统催化剂虽然有一定的催化性能,但性能还需要提高。利用本专利中的方法,则能得到一种卷曲碳纳米片催化剂,使其比表面得以显著提高,并能使其活性位点数明显增多,从而使其催化性能实现明显提高。
Description
1.技术领域
氮磷共掺卷曲碳纳米片的制备及作为非金属催化剂在氧还原反应的应用。
2.背景技术
在当今社会环境污染,能源短缺等问题受到越来越多人的关注,因此我们必须寻找出一种新型绿色的能源来解决这一问题。而金属-空气电池以及燃料电池以其具有较高的能量密度和较低的污染物排放等特点被人们认为是一种极具潜力的替代电源。对于这两种电池而言,其中一种重要的电极反应就是氧还原反应(Fu,X.G.Choi,J.Y.Zamani,P.Jiang,G.P.Hoque,M.A.Hassan,F.M.Chen,Z.W.,T.Co-N Decorated HierarchicallyPorous Graphene Aerogel for Efficient Oxygen Reduction Reaction in Acid.AcsApplied Materials&Interfaces.),并且在电池反应中占据着及其重要的因素。但由于其反应的活化能较大,导致其反应难度偏大,所以为了促进电极反应使其得以发生,在大多数情况下需要大量贵金属催化剂,尤其是Pt催化剂,从而保证电池得以正常工作。但众所周知贵金属催化剂不仅价格高昂且在地壳中储量稀少,导致电源成本很高,使得这类电源的广泛应用受到了极大的限制。在此之前已有诸多研究人员进行了大量工作试图降低贵金属用量已解决这一问题。但从长远来说,寻找非贵金属催化剂来代替贵金属催化剂才能使这个问题得以最终解决(Wang,Bin Hu,Chuangang Dai,Liming Functionalized carbonnanotubes and graphene-based materials for energy storage.Chemicalcommunications.2016,4,1364-548X)。
对于非贵金属催化剂的研究开始于上世纪60年代(Jasinski.A new fuel cellcathode catalyst.Nature 1964,201,1212),目前已经得到了多种可行的非贵金属催化剂,其中最有希望的则是一种基于金属氧化物的掺氮碳材料非贵金属催化剂,但这类催化剂性能仍需要进一步提高。此外还有一类无金属掺氮碳材料催化剂也受到众多关注,其性能受到多种因素影响,其中较为重要的影响因素是催化剂前驱体、催化剂的微观结构等。
近些年,具有一定微观结构的掺氮碳材料来作为氧还原的非金属催化剂受到许多关注如掺氮碳纳米管,掺氮石墨烯等(Gong,K.,Du,F.,Xia,Z.,Durstock,M.&Dai,L.Nitrogen-doped carbon nanotube arrays with high electrocatalytic activityfor oxygen reduction.Science 323,760-764(2009).Liu,R.,Wu,D.,Feng,X.&Müllen,K.Nitrogen-doped ordered mesoporous graphitic arrays with highelectrocatalytic activity for oxygen reduction.Angew.Chem.Int.Ed.49,2565-2569(2010).Wang,S.et al.BCN graphene as efficient metal-free electrocatalyst forthe oxygen reduction reaction.Angew.Chem.Int.Ed.51,209-4212(2012).但是这些碳材料也有一定缺点如不易制备,价格不便宜等。因此,开发一类廉价易得性能可观的碳材料用作氧还原的催化剂就变得十分必要。
在离子液体用作新型催化剂前驱体而受到了广泛关注的背景下,聚离子液体作为离子液体中重要的一类,拥有离子液体和聚合物的共同优势,最近也有将其作为催化剂前躯体的研究(Gao,Jian Ma,Na,Zhai,Junfeng,Li,Tianyan,Qin,Wei,Zhang,Tingting Yin,Zhen,Polymerizable Ionic Liquid as Nitrogen-Doping Precursor for Co-N-CCatalyst with Enhanced Oxygen Reduction Activity,Ind.Eng.Chem.Res,2015,54,7984)。但在现有的研究中离子液体多用于含金属的催化剂。
本专利的目的是提出一种功能化聚离子液体的制备方法,并将其用作前驱体来制备有卷曲结构的非金属氮磷共掺炭纳米片。利用这种方法制得的样品具有卷曲的微观形貌,不但能使比表面得到提高,而且利用N,P的的协同效应,可以有效地增加其活性位点数目,使之具有良好的催化活性。并且,通过实验还发现此催化剂还具有产氧的催化性能,可作为一种催化氧还原和产氧两种反应的双功能催化剂。
3发明内容
本发明目的在于开发一种低成本、环境友好能用作非金属催化剂前驱体的碳材料。
本发明通过以下方式实现。
一种造孔功能化的聚离子液体,它包括以下步骤:
步骤1.将乙烯基咪唑与硝酸及磷酸1∶0.5∶0.5反应,制备聚离子液体单体;
步骤2.将上述固体在900~1000℃环境中、惰性气体保护下进行煅烧3~4h,冷却后获得碳化产物
步骤3.将上述产物研磨成粉末,获得最终产物。
4附图说明
图1为线性扫描测试结果,可见其起实电位可以达到0.92VRHE,已经很接近常用的炭载铂(Pt/C)催化剂的起始电位(~1V)。
5具体实施方式
以下给出本发明的4个最佳实施例。
实施例一:
(1)在单口烧瓶中加入0.1mol甲基咪唑,随后分别滴加0.05mol磷酸和0.05mol硝酸,常温搅拌1小时后,升温至50℃并搅拌2~4小时,得到粘稠液体。
(2)将得到的液体取出,放入瓷舟中,在管式炉中煅烧,用N2作为保护气,先升温至100℃,再以5℃/分钟的速度升温至850℃,在850℃保温1小时后自然降温,得黑色蓬松固体。
(4)将上述固体研磨后,取得到的固体2.5mg与50μL Nafion溶液和450μL乙醇溶液混合,再超声震荡30分钟将其分散均匀,制得催化剂浆液。取10μL浆液滴加到玻碳电极上,干燥1小时后进行电化学测试,主要有循环伏安、线性扫描等。
实施例二:
(1)在单口烧瓶中加入0.1mol乙烯基咪唑,随后分别滴加0.05mol磷酸和0.05mol硝酸,常温搅拌1小时后,升温至50℃并搅拌2~4小时,得到粘稠液体。
(2)将得到的液体取出,放入瓷舟中,在管式炉中煅烧,用N2作为保护气,先升温至100℃,再以5℃/分钟的速度升温至950℃,在950℃保温1小时后自然降温,得黑色蓬松固体。
(4)将上述固体研磨后,取得到的固体2.5mg与50μL Nafion溶液和450μL乙醇溶液混合,再超声震荡30分钟将其分散均匀,制得催化剂浆液。取10μL浆液滴加到玻碳电极上,干燥1小时后进行电化学测试,主要有循环伏安、线性扫描等。
实施例三:
(1)在单口烧瓶中加入0.15mol丙烯基咪唑,随后分别滴加0.05mol磷酸和0.1mol硝酸,常温搅拌1小时后,升温至50℃并搅拌2~4小时,得到粘稠液体。
(2)将得到的液体取出,放入瓷舟中,在管式炉中煅烧,用N2作为保护气,先升温至100℃,再以5℃/分钟的速度升温至900℃,在900℃保温2小时后自然降温,得黑色蓬松固体。
(4)将上述固体研磨后,取得到的固体2.5mg与50μL Nafion溶液和450μL乙醇溶液混合,再超声震荡30分钟将其分散均匀,制得催化剂浆液。取10μL浆液滴加到玻碳电极上,干燥1小时后进行电化学测试,主要有循环伏安、线性扫描等。
实施例四:
(1)在单口烧瓶中加入0.15mol丙烯基咪唑,随后分别滴加0.1mol磷酸和0.05mol硝酸,常温搅拌1小时后,升温至50℃并搅拌2~4小时,得到粘稠液体。
(2)将得到的液体取出,放入瓷舟中,在管式炉中煅烧,用N2作为保护气,先升温至100℃,再以5℃/分钟的速度升温至900℃,在900℃保温2小时后自然降温,得黑色蓬松固体。
(4)将上述固体研磨后,取得到的固体2.5mg与50μL Nafion溶液和450μL乙醇溶液混合,再超声震荡30分钟将其分散均匀,制得催化剂浆液。取10μL浆液滴加到玻碳电极上,干燥1小时后进行电化学测试,主要有循环伏安、线性扫描等。
Claims (2)
1.一种氮磷共掺的卷曲纳米碳片制备以及作为非金属催化剂在氧还原反应的应用
其特征在于:
以乙烯基咪唑为阳离子,以硝酸和磷酸为阴离子的功能化的聚离子液体,这种聚离子液体在煅烧过程中由于剧烈放出气体,从而可以获得氮磷共掺的卷曲纳米碳片,从电化学测试可以看出我们所得到的产物在氧还原催化方面具有较好的性能;
2.如权利要求1所述,实验步骤如下:
步骤1.含有C=C双键的咪唑类功能化可聚合离子液体含磷单体的合成;
步骤2.在氮气保护下于900~1000℃高温煅烧将上述中间体,获得最终产物。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611076089.5A CN106784885A (zh) | 2016-11-30 | 2016-11-30 | 一种氮磷共掺的卷曲纳米碳片制备以及作为非金属催化剂在氧还原反应的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611076089.5A CN106784885A (zh) | 2016-11-30 | 2016-11-30 | 一种氮磷共掺的卷曲纳米碳片制备以及作为非金属催化剂在氧还原反应的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106784885A true CN106784885A (zh) | 2017-05-31 |
Family
ID=58901011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611076089.5A Pending CN106784885A (zh) | 2016-11-30 | 2016-11-30 | 一种氮磷共掺的卷曲纳米碳片制备以及作为非金属催化剂在氧还原反应的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106784885A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107146893A (zh) * | 2017-05-23 | 2017-09-08 | 天津工业大学 | 一种杂原子原位掺杂碳基催化剂的制备方法及其在燃料电池中的应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105879895A (zh) * | 2016-04-27 | 2016-08-24 | 天津工业大学 | 氮掺杂多孔碳纳米片负载非贵金属催化剂及其制备方法 |
CN106000438A (zh) * | 2016-06-03 | 2016-10-12 | 兰州交通大学 | 一种氮磷共掺杂孔状碳材料的制备方法及其应用 |
-
2016
- 2016-11-30 CN CN201611076089.5A patent/CN106784885A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105879895A (zh) * | 2016-04-27 | 2016-08-24 | 天津工业大学 | 氮掺杂多孔碳纳米片负载非贵金属催化剂及其制备方法 |
CN106000438A (zh) * | 2016-06-03 | 2016-10-12 | 兰州交通大学 | 一种氮磷共掺杂孔状碳材料的制备方法及其应用 |
Non-Patent Citations (1)
Title |
---|
KUANPING GONG ET.AL: "Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction", 《SCIENCE》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107146893A (zh) * | 2017-05-23 | 2017-09-08 | 天津工业大学 | 一种杂原子原位掺杂碳基催化剂的制备方法及其在燃料电池中的应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Mesoporous hollow nitrogen-doped carbon nanospheres with embedded MnFe2O4/Fe hybrid nanoparticles as efficient bifunctional oxygen electrocatalysts in alkaline media | |
Gupta et al. | Quaternary FeCoNiMn-based nanocarbon electrocatalysts for bifunctional oxygen reduction and evolution: promotional role of Mn doping in stabilizing carbon | |
Ren et al. | Fe/N/C nanotubes with atomic Fe sites: A highly active cathode catalyst for alkaline polymer electrolyte fuel cells | |
Zhang et al. | Fe–N-doped mesoporous carbon with dual active sites loaded on reduced graphene oxides for efficient oxygen reduction catalysts | |
Ferrero et al. | Fe–N-doped carbon capsules with outstanding electrochemical performance and stability for the oxygen reduction reaction in both acid and alkaline conditions | |
Ji et al. | Pyridinic and graphitic nitrogen-enriched carbon paper as a highly active bifunctional catalyst for Zn-air batteries | |
Zeng et al. | Extraordinary activity of mesoporous carbon supported Ru toward the hydrogen oxidation reaction in alkaline media | |
Jiang et al. | Self-assembly synthesis of cobalt-and nitrogen-coembedded trumpet flower-like porous carbons for catalytic oxygen reduction in alkaline and acidic media | |
Qian et al. | MOF-derived carbon networks with atomically dispersed Fe–N x sites for oxygen reduction reaction catalysis in acidic media | |
Aziz et al. | A Janus cerium-doped bismuth oxide electrocatalyst for complete water splitting | |
CN107346826A (zh) | 一种单原子铁分散的氧还原电催化剂的制备方法 | |
Zhan et al. | Highly dispersed nonprecious metal catalyst for oxygen reduction reaction in proton exchange membrane fuel cells | |
Wang et al. | Pt nanoparticles supported on N-doped porous carbon derived from metal–organic frameworks for oxygen reduction | |
Wang et al. | An efficient pH-universal electrocatalyst for oxygen reduction: defect-rich graphitized carbon shell wrapped cobalt within hierarchical porous N-doped carbon aerogel | |
CN103252250A (zh) | 氮、铁修饰的碳材料的制备及应用 | |
Shu et al. | Rational design of a high-durability Pt-based ORR catalyst supported on Mn/N codoped carbon sheets for PEMFCs | |
Cui et al. | Highly active and stable Fe/Co/N Co-doped carbon-anchored Pd nanoparticles for oxygen reduction reaction | |
Liu et al. | A general method for constructing two-dimensional layered mesoporous mono-and binary-transition-metal nitride/graphene as an ultra-efficient support to enhance its catalytic activity and durability for electrocatalytic application | |
Wang et al. | Facile Synthesis of cobalt and nitrogen coordinated carbon nanotube as a high-Performance electrocatalyst for oxygen reduction reaction in both acidic and alkaline media | |
Liu et al. | Honeycomb-like Self-Supported Co–N–C Catalysts with an Ultrastable Structure: Highly Efficient Electrocatalysts toward Oxygen Reduction Reaction in Alkaline and Acidic Solutions | |
Naik et al. | Electrocatalytic performances of oxygen-deficient titanium dioxide nanosheet coupled palladium nanoparticles for oxygen reduction and hydrogen evolution reactions | |
Ding et al. | Strongly cooperative nano-CoO/Co active phase in hierarchically porous nitrogen-doped carbon microspheres for efficient bifunctional oxygen electrocatalysis | |
Luo et al. | Tuning active species in N-doped carbon with Fe/Fe3C nanoparticles for efficient oxygen reduction reaction | |
CN106374117A (zh) | 一种n,p共掺非金属氧还原催化剂的制备 | |
CN109731599B (zh) | 一种2D氧还原催化剂Fe3O4@FeNC纳米片的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170531 |
|
WD01 | Invention patent application deemed withdrawn after publication |