CN106784325B - 一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池及制备方法 - Google Patents

一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池及制备方法 Download PDF

Info

Publication number
CN106784325B
CN106784325B CN201611220971.2A CN201611220971A CN106784325B CN 106784325 B CN106784325 B CN 106784325B CN 201611220971 A CN201611220971 A CN 201611220971A CN 106784325 B CN106784325 B CN 106784325B
Authority
CN
China
Prior art keywords
hole transmission
light absorbing
transmission layer
perovskite
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201611220971.2A
Other languages
English (en)
Other versions
CN106784325A (zh
Inventor
刘炳光
李建生
佟玉洁
王少杰
卢俊锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Vocational Institute
Original Assignee
Tianjin Vocational Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Vocational Institute filed Critical Tianjin Vocational Institute
Priority to CN201611220971.2A priority Critical patent/CN106784325B/zh
Publication of CN106784325A publication Critical patent/CN106784325A/zh
Application granted granted Critical
Publication of CN106784325B publication Critical patent/CN106784325B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/331Metal complexes comprising an iron-series metal, e.g. Fe, Co, Ni
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明钙钛矿太阳电池由透明导电玻璃、致密层、钙钛矿光吸收层、空穴传输层、金属背电极组成,其特征在于空穴传输层化学组成为PxA1‑ xMX3,其中,A代表可生成一价有机阳离子的甲胺、甲脒、胍或其混合物;M代表Pb、Ce、Fe、Co、Cu离子或其混合物,为聚吡咯原位制备时形成的副产物;X代表F、Cl、Br、I;P代表聚吡咯,由吡咯在极性有机溶剂中为高价态金属盐氧化生成,x=0.3‑0.5。本发明钙钛矿太阳电池中钙钛矿光吸收层化学组成为APbX3,厚度为100‑500 nm。本发明钙钛矿太阳电池的空穴传输层涂布在钙钛矿光吸收层上,厚度为50‑150nm,能够促进空穴的分离和传输,提高钙钛矿太阳电池光电转换性能。

Description

一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池 及制备方法
技术领域
本发明涉及一种以钙钛矿型材料和聚吡咯导电高分子材料作为空穴传输层的钙钛矿太阳电池及制备方法,属于新能源和新材料领域。
技术背景
钙钛矿太阳电池通常是由透明导电玻璃、致密层、钙钛矿光吸收层、空穴传输层、金属背电极五部分组成。空穴传输层的厚度一般为0-150nm,无空穴传输层的钙钛矿太阳电池的光电转换效率通常比较低,空穴传输层的作用包括:(1)收集来自钙钛矿光吸收层注入的空穴,使钙钛矿光吸收层电子-空穴对的电荷分离;(2)空穴传输层插入钙钛矿光吸收层和金属背电极之间可以改善肖特基(Schottky)接触,促使电子和空穴在功能层界面分离,减少电荷复合和调节能级匹配性, 有助于获得更高的光电转换效率;(3)空穴传输材料具有稳定的热力学性质,还可作为钙钛矿光吸收层的保护层,有助于提高钙钛矿电池的化学稳定性;(4)某些空穴传输材料具有光敏特性,本身可以作为光电转换材料,稳定和提高光电转换效率;(5)某些空穴传输材料的导电性较好,扩散渗透到与其接触的光吸收层或背电极中可以降低太阳电池内阻,降低电池面积扩大时的尺寸效应。
2012年首次将2, 2’, 7, 7’-四 [N, N-二 (4-甲氧基苯基)氨基]-9, 9’-螺二芴 (spiro-OMeTAD) 作为空穴传输材料应用于钙钛矿太阳电池中,大幅提高了钙钛矿太阳电池的光电转换效率,新开发的空穴传输材料性能均以其作比较。虽然spiro-OMeTAD作为钙钛矿太阳电池的空穴传输层能取得很高的光电转换效率,由于其合成过程复杂, 价格为黄金的数倍,不利于钙钛矿太阳电池的商业化发展。研究人员不断寻求其他廉价高效的空穴传输材料来代替spiro-OMeTAD,目前重点研究方向是设计制备与spiro-OMeTAD结构类似的三苯胺类材料和廉价的CuI无机半导体材料,但这些材料的性能价格比与产业化应用目标存在很大差距,需要设计和筛选全新的空穴传输层材料。
发明内容
本发明目的是提供一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池,由透明导电玻璃、致密层、钙钛矿光吸收层、空穴传输层、金属背电极组成,其特征在于以钙钛矿型材料和聚吡咯导电高分子材料作为空穴传输层。
本发明钙钛矿太阳电池的空穴传输层化学组成为:PxA1-xMX3,其中,A代表可生成一价有机胺阳离子的甲胺、甲脒、胍或其混合物;M代表Pb、Ce、Fe、Co、Cu金属离子或其混合物,为聚吡咯原位制备时形成的副产物;X代表F、Cl、Br、I;P代表聚吡咯,由吡咯在极性有机溶剂中为高价态金属盐氧化生成,x=0.3-0.5。
本发明钙钛矿太阳电池中钙钛矿光吸收层厚度为100-500nm,化学组成为APbX3,其中,A代表可生成一价有机阳离子的甲胺、甲脒、胍或其混合物;X代表F、Cl、Br、I。钙钛矿光吸收层与空穴传输层紧密接触,钙钛矿光吸收层组分可以向扩散渗透空穴传输层。
本发明钙钛矿太阳电池的空穴传输层涂布在钙钛矿光吸收层上,厚度为50-150nm,空穴传输层组分能够扩散渗透到钙钛矿光吸收层中,能够促进空穴的分离和传输,提高钙钛矿光吸收层的光吸收性能。
本发明钙钛矿太阳电池的空穴传输层能与涂布其上的纳米银背电极进行组分的扩散渗透,从而形成紧密的电接触和提高背电极导电性能。
本发明钙钛矿型复合材料制备原理是聚吡咯导电高分子材料制备原理的发展。聚吡咯导电高分子材料制备一般在水溶液中进行,技术关键是控制聚合反应条件,以使聚吡咯与溶剂和副产的低价态金属盐分离。如果聚吡咯的聚合度过低,则聚吡咯溶于溶剂中难以分离出来;而一旦聚吡咯的聚合度过高,则生成的聚吡咯难以再次溶于溶剂中,无法进行后续加工处理。
本发明钙钛矿型复合材料制备在极性有机溶剂中进行,采用高价态金属盐作为氧化剂,容易控制聚合反应的条件和聚合产物的分子量,使生成聚吡咯的聚合度比较低,使其能够完全溶于极性有机溶剂中。只有当溶剂挥发分离后,低聚合度的聚吡咯才能原位聚合形成不溶性的聚吡咯导电高分子材料。聚吡咯分子中氮原子的未共用电子对与副产的低价态金属的空轨道存在配位作用,它们可以配位形成比较稳定的络合物,所以,金属盐既是氧化剂,又是聚吡咯的掺杂剂,可以改进聚吡咯导电高分子材料的导电性能。
本发明钙钛矿型复合材料制备过程中加入大量氢卤酸,氢卤酸既作为质子酸掺杂剂改进聚吡咯的导电性能,又能与溶液中的甲胺、甲脒、胍结合产生一价有机阳离子,一价有机阳离子与低价态金属盐可以形成化学组成为AMX3的络合物。低价态金属盐既能与聚吡咯配位形成络合物,又能与有机胺盐配位形成络合物,由于甲胺、甲脒、胍的有机胺盐分子比较小,往往在竞争配位中占一定优势,形成的钙钛矿型复合材料的化学组成比较复杂。
本发明的另一目的是提供一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池的制备方法,包括在透明导电玻璃上涂布纳米TiO2致密层、涂布纳米TiO2光吸收层骨架、钙钛矿光吸收层制备、空穴传输层制备、纳米银电极制备六部分,其特征在于空穴传输层制备方法包括以下步骤:
(1)在玻璃反应器中分别加入极性有机溶剂、乙酸和吡咯形成吡咯酸性溶液,将其冷却到-5-5℃,在搅拌下向其中缓慢加入高价态金属盐溶液,在0-5℃下进行氧化反应8-16h,控制投料摩尔比为:吡咯:高价态金属盐:乙酸 :极性有机溶剂= 1 : 2-4:10-20:50-100,使溶液中的吡咯氧化聚合生成聚吡咯,使高价态金属盐还原为低价态金属乙酸盐;所述极性有机溶剂是二甲基甲酰胺、二甲基亚砜、乙腈或其混合物;所述高价态金属盐是四乙酸铅、硝酸高铈、乙酸高铁、乙酸高钴、乙酸铜或其混合物;
(2)向以上聚吡咯溶液中加入氢卤酸继续搅拌反应1-2h,使过量的高价态金属盐还原,同时形成氢卤酸掺杂的聚吡咯导电高分子和低价态金属卤化物溶液,控制投料摩尔比为:金属盐:氢卤酸= 1 : 2.5-3.5,所述氢卤酸是氢氟酸、盐酸、氢溴酸、氢碘酸或其混合物;
(3)向以上低价态金属卤化物溶液中加入有机胺的溶液,控制投料摩尔比为:金属卤化物:有机胺= 1 : 0.5-1,在10-30℃下反应8-12h,使有机胺盐和聚吡咯与低价态金属卤化物竞争配位,形成空穴传输层镀膜液,所述有机胺是甲胺、甲脒、胍或其混合物;
(4)在100mm×100mm的 FTO导电玻璃衬底上涂布厚度为20-50nm的纳米TiO2致密层,然后涂布粒径为40-60nm,厚度为100-600nm的TiO2薄膜,最后在450-550℃下烧结形成光吸收层骨架;将钙钛矿光吸收材料的溶液滴在光吸收层骨架上,用线棒涂布器涂布均匀,溶剂挥发后形成厚度为100-500 nm的钙钛矿光吸收层,所述钙钛矿光吸收材料的化学组成为APbX3,其中,A代表可生成一价有机阳离子的甲胺、甲脒、胍或其混合物;X代表F、Cl、Br、I;
(5)将以上制备的空穴传输层镀膜液滴在钙钛矿光吸收层上,用线棒涂布器涂布均匀,使形成的空穴传输层厚度达到50-150nm,在极性有机溶剂气氛中放置1-2h, 使空穴传输材料溶液扩散渗透到钙钛矿光吸收层中,溶剂挥发晾干后用无水乙醇清洗空穴传输层表面吸附的未配位的有机胺盐,最后用110-150℃热风干燥15分钟,形成表面均匀的钙钛矿型空穴传输层,其化学组成为PxA1-xMX3, x=0.3-0.5,表面方块电阻为100-500Ω;
(6)在将以上制备的空穴传输层及衬底导电玻璃裁剪成100mm×10mm的矩形,涂布导电银胶薄膜,在150-200℃下干燥固化,表面方块电阻为0.5-2Ω,用其组装的钙钛矿太阳电池光电转换效率为14%-15%。
本发明的有益效果体现在:
(1)本发明的钙钛矿型材料和聚吡咯导电高分子材料具有光敏特性,可作为光电转换材料和空穴传输层,能够稳定和提高钙钛矿太阳电池光电转换效率;
(2)本发明的空穴传输层具有良的导电性,空穴传输材料扩散渗透到与其接触的光吸收层或背电极中可以降低太阳电池内阻;
(3)本发明的钙钛矿型材料和聚吡咯导电高分子材料采用原位制备,工艺简便,制备成本低廉,容易扩大和产业化应用。
具体实施方式
实施例1
在玻璃反应器中分别加入二甲基甲酰胺220g(3.0mol)、乙酸36g(0.3mol)和吡咯6.7g(0.05mol)形成吡咯的酸性溶液,将其冷却到-5-5℃,在搅拌下向其中缓慢加入质量百分浓度为50%的四乙酸铅的乙酸溶液88.6g(0.10mol),在0-5℃下进行氧化反应8h,使吡咯氧化聚合生成聚吡咯,使四乙酸铅还原为低价态的乙酸铅。再加入质量百分浓度为50%的氢碘酸溶液77.4g(0.3mol)继续搅拌反应1h,使过量的四乙酸铅还原,形成氢碘酸掺杂的聚吡咯和碘化铅溶液。进一步加入质量百分浓度为30%的甲胺的甲醇溶液10.3g(0.1mol),在10-30℃下反应8h,使碘化铅与甲胺和聚吡咯在氢碘酸存在下进行配位反应,形成空穴传输层镀膜液。
在100mm×100mm的 FTO导电玻璃衬底上涂布厚度为50nm的纳米TiO2致密层,然后涂布粒径为40-60nm,厚度为500nm的TiO2薄膜,最后在450-550℃下烧结形成光吸收层骨架;将CH3NH3PbI3钙钛矿光吸收材料溶解在二甲基甲酰胺溶剂中形成的镀膜液滴在光吸收层骨架上,用线棒涂布器涂布均匀,溶剂挥发后形成厚度为500 nm的钙钛矿光吸收层。
将空穴传输层镀膜液滴在钙钛矿光吸收层上,用线棒涂布器涂布均匀,形成厚度为100nm的空穴传输层,在密闭容器中放置2h, 使空穴传输材料扩散渗透到钙钛矿光吸收层中,然后使溶剂挥发晾干,用无水乙醇清洗除去空穴传输层表面吸附的未配位的甲胺氢碘酸盐,最后用110-150℃热风干燥15分钟,形成表面均匀的钙钛矿型空穴传输层,化学组成为P0.5(CH3NH3) 0.5PbI3,表面方块电阻为300Ω。将制备的空穴传输层及衬底导电玻璃裁剪成100mm×10mm的矩形,涂布导电银胶薄膜,在150-200℃下干燥固化,表面方块电阻为0.7Ω,用其组装的钙钛矿太阳电池光电转换效率为14.7%。
实施例2
在玻璃反应器中分别加入二甲基甲酰胺220g(3mol)、乙酸36g(0.3mol)和吡咯6.7g(0.05mol)形成吡咯的酸性溶液,将其冷却到-5-5℃,在搅拌下向其中缓慢加入质量百分浓度为50%的乙酸铁的乙酸溶液28.7g(0.15mol),在0-5℃下进行氧化反应12h,使吡咯氧化聚合生成聚吡咯,使乙酸铁还原为低价态的乙酸铁。加入质量百分浓度为50%的氢碘酸溶液103.2g(0.4mol)继续搅拌反应1h,使过量的乙酸铁还原,形成氢碘酸掺杂的聚吡咯和碘化亚铁溶液。进一步加入质量百分浓度为30%的甲胺的甲醇溶液15.5g(0.15mol),在10-30℃下反应12h,使碘化亚铁与甲胺和聚吡咯在氢碘酸存在下进行配位反应,形成空穴传输层镀膜液。
在100mm×100mm的 FTO导电玻璃衬底上涂布厚度为50nm的纳米TiO2致密层,然后涂布粒径为40-60nm,厚度为500nm的TiO2薄膜,最后在450-550℃下烧结形成光吸收层骨架;将CH3NH3PbI3钙钛矿光吸收材料溶解在二甲基甲酰胺溶剂中形成的镀膜液滴在光吸收层骨架上,用线棒涂布器涂布均匀,溶剂挥发后形成厚度为300 nm的钙钛矿光吸收层。
将空穴传输层镀膜液滴在钙钛矿光吸收层上,用线棒涂布器涂布均匀,形成厚度为100nm的空穴传输层,在密闭容器中放置2h, 使空穴传输材料扩散渗透到钙钛矿光吸收层中,然后使溶剂挥发晾干,用无水乙醇清洗除去空穴传输层表面吸附的未配位的甲胺氢碘酸盐,最后用110-150℃热风干燥15分钟,形成表面均匀的钙钛矿型空穴传输层,化学组成为P0.3(CH3NH3) 0.7FeI3,表面方块电阻为500Ω。将制备的空穴传输层及衬底导电玻璃裁剪成100mm×10mm的矩形,涂布导电银胶薄膜,在150-200℃下干燥固化,表面方块电阻为1.1Ω,用其组装的钙钛矿太阳电池光电转换效率为14.2%。

Claims (1)

1.一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池的制备方法,其特征在于空穴传输层制备方法包括以下步骤:
(1)在玻璃反应器中分别加入极性有机溶剂、乙酸和吡咯形成吡咯酸性溶液,将其冷却到-5-5℃,在搅拌下向其中缓慢加入高价态金属盐溶液,在0-5℃下进行氧化反应8-16h,控制投料摩尔比为:吡咯:高价态金属盐:乙酸 :极性有机溶剂= 1 : 2-4:10-20:50-100,使溶液中的吡咯氧化聚合生成聚吡咯,使高价态金属盐还原为低价态金属乙酸盐;所述极性有机溶剂是二甲基甲酰胺、二甲基亚砜、乙腈、四氢呋喃或其混合物;所述高价态金属盐是四乙酸铅、硝酸高铈、乙酸高铁、乙酸高钴、乙酸铜或其混合物;
(2)向以上聚吡咯溶液中加入氢卤酸继续搅拌反应1-2h,使过量的高价态金属盐还原,同时形成氢卤酸掺杂的聚吡咯导电高分子和低价态金属卤化物溶液,控制投料摩尔比为:金属盐:氢卤酸= 1 : 2.5-3.5,所述氢卤酸是氢氟酸、盐酸、氢溴酸、氢碘酸或其混合物;
(3)向以上低价态金属卤化物溶液中加入有机胺的溶液,控制投料摩尔比为:金属卤化物:有机胺= 1 : 0.5-1,在10-30℃下反应8-12h,使有机胺盐和聚吡咯与低价态金属卤化物竞争配位,形成空穴传输层镀膜液,所述有机胺是甲胺、甲脒、胍或其混合物;
(4)在100mm×100mm的 FTO导电玻璃衬底上涂布厚度为20-50nm的纳米TiO2致密层,然后涂布粒径为40-60nm,厚度为100-600nm的TiO2薄膜,最后在450-550℃下烧结形成光吸收层骨架;将钙钛矿光吸收材料的溶液滴在光吸收层骨架上,用线棒涂布器涂布均匀,溶剂挥发后形成厚度为100-500 nm的钙钛矿光吸收层,所述钙钛矿光吸收材料的化学组成为APbX3,其中,A代表可生成一价有机阳离子的甲胺、甲脒、胍或其混合物;X代表F、Cl、Br、I;
(5)将以上制备的空穴传输层镀膜液滴在钙钛矿光吸收层上,用线棒涂布器涂布均匀,使形成的空穴传输层厚度达到50-150nm,在极性有机溶剂气氛中放置1-2h, 使空穴传输材料溶液扩散渗透到钙钛矿光吸收层中,溶剂挥发晾干后用无水乙醇清洗空穴传输层表面吸附的未配位的有机胺盐,最后用110-150℃热风干燥15分钟,形成表面均匀的钙钛矿型空穴传输层,其化学组成为PxA1-xMX3, x=0.3-0.5,表面方块电阻为100-500Ω;
(6)在将以上制备的空穴传输层及衬底导电玻璃裁剪成100mm×10mm的矩形,涂布导电银胶薄膜,在150-200℃下干燥固化,表面方块电阻为0.5-2Ω,用其组装的钙钛矿太阳电池光电转换效率为14%-15%。
CN201611220971.2A 2016-12-26 2016-12-26 一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池及制备方法 Expired - Fee Related CN106784325B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611220971.2A CN106784325B (zh) 2016-12-26 2016-12-26 一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611220971.2A CN106784325B (zh) 2016-12-26 2016-12-26 一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池及制备方法

Publications (2)

Publication Number Publication Date
CN106784325A CN106784325A (zh) 2017-05-31
CN106784325B true CN106784325B (zh) 2018-11-27

Family

ID=58927055

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611220971.2A Expired - Fee Related CN106784325B (zh) 2016-12-26 2016-12-26 一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池及制备方法

Country Status (1)

Country Link
CN (1) CN106784325B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108321298B (zh) * 2018-02-12 2019-06-21 西北工业大学 一种高效率平面异质结钙钛矿薄膜太阳能电池及制备方法
CN110224065B (zh) 2019-04-11 2021-01-01 浙江大学 膜厚不敏感的反型厚膜二维杂化钙钛矿太阳电池及其制备方法
KR102218890B1 (ko) * 2019-07-03 2021-02-23 한양대학교 산학협력단 연속 광소결 박막트랜지스터 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795499A (zh) * 2015-04-09 2015-07-22 中国乐凯集团有限公司 有机无机杂化钙钛矿基太阳能电池及其制备方法
CN105374942A (zh) * 2015-11-04 2016-03-02 中国科学院上海应用物理研究所 一种钙钛矿基太阳能电池及其制备方法
CN105470391A (zh) * 2015-11-23 2016-04-06 中国科学院上海硅酸盐研究所 有机无机杂化钙钛矿薄膜以及钙钛矿太阳能电池的制备方法
CN106058051A (zh) * 2016-07-05 2016-10-26 苏州大学 一种有机无机杂化的空穴传输层修饰的钙钛矿型太阳能电池的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104795499A (zh) * 2015-04-09 2015-07-22 中国乐凯集团有限公司 有机无机杂化钙钛矿基太阳能电池及其制备方法
CN105374942A (zh) * 2015-11-04 2016-03-02 中国科学院上海应用物理研究所 一种钙钛矿基太阳能电池及其制备方法
CN105470391A (zh) * 2015-11-23 2016-04-06 中国科学院上海硅酸盐研究所 有机无机杂化钙钛矿薄膜以及钙钛矿太阳能电池的制备方法
CN106058051A (zh) * 2016-07-05 2016-10-26 苏州大学 一种有机无机杂化的空穴传输层修饰的钙钛矿型太阳能电池的制备方法

Also Published As

Publication number Publication date
CN106784325A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Mahajan et al. Review of current progress in hole-transporting materials for perovskite solar cells
Ren et al. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review
Yang et al. Ultrasound-spray deposition of multi-walled carbon nanotubes on NiO nanoparticles-embedded perovskite layers for high-performance carbon-based perovskite solar cells
Shi et al. Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites
Cui et al. Color-tuned perovskite films prepared for efficient solar cell applications
Wu et al. Electrolytes in dye-sensitized solar cells
Zhang et al. Recent progress in improving strategies of inorganic electron transport layers for perovskite solar cells
TWI584509B (zh) 有機/非有機混合鈣鈦礦化合物、其製備方法及含有該化合物的太陽電池
CN106784325B (zh) 一种以钙钛矿型复合材料作为空穴传输层的钙钛矿太阳电池及制备方法
EP3422430A1 (en) Electrode for a perovskite-based photoelectrochemical device
CN109478598A (zh) 太阳能电池、光吸收层以及光吸收层的形成方法
Lee et al. Metal oxides and their composites for the photoelectrode of dye sensitized solar cells
Yue et al. Incorporating CuInS2 quantum dots into polymer/oxide-nanoarray system for efficient hybrid solar cells
CN105932159B (zh) 一种钙钛矿太阳电池空穴传输层复合镀膜液及制备方法
JP2015128136A (ja) 色素増感太陽電池
Ameen et al. Metal oxide nanomaterials, conducting polymers and their nanocomposites for solar energy
CN110112295A (zh) 太阳能电池
Perera et al. Metal–organic frameworks in dye-sensitized solar cells
Zhao et al. Efficient and Stable Perovskite Solar Cells Achieved by Using Bifunctional Interfacial Materials to Modify SnO2 and MAPbI3–x Cl x Simultaneously
Gunasekera et al. Conducting polymers as cost effective counter electrode material in dye-sensitized solar cells
Kim et al. Sustainable and environmentally viable perovskite solar cells
Liang et al. Passivating defects via 4-cyanobenzenaminium iodide enables 22.44% efficiency perovskite solar cells
Dou et al. MOFs in Emerging Solar Cells
Zhu et al. Progress of solution-processed metal oxides as charge transport layers towards efficient and stable perovskite solar cells and modules
Xiao et al. Upscaling of temperature-sensitive particle photocatalyst electrodes: fully ambient and scalable roll-press fabrication of Ta3N5 photoelectrodes on metal substrate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181127

Termination date: 20191226

CF01 Termination of patent right due to non-payment of annual fee