CN106782970A - 一种铁钴基低温度系数永磁材料 - Google Patents

一种铁钴基低温度系数永磁材料 Download PDF

Info

Publication number
CN106782970A
CN106782970A CN201710056031.2A CN201710056031A CN106782970A CN 106782970 A CN106782970 A CN 106782970A CN 201710056031 A CN201710056031 A CN 201710056031A CN 106782970 A CN106782970 A CN 106782970A
Authority
CN
China
Prior art keywords
permanent
magnet material
temperature coefficient
cobalt
based low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710056031.2A
Other languages
English (en)
Other versions
CN106782970B (zh
Inventor
董生智
李卫
韩瑞
陈红升
魏中华
张晓伟
何响俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Iron and Steel Research Institute
Original Assignee
Central Iron and Steel Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Iron and Steel Research Institute filed Critical Central Iron and Steel Research Institute
Priority to CN201710056031.2A priority Critical patent/CN106782970B/zh
Publication of CN106782970A publication Critical patent/CN106782970A/zh
Application granted granted Critical
Publication of CN106782970B publication Critical patent/CN106782970B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种铁钴基低温度系数永磁材料,属于永磁材料技术领域。成分按重量百分比为:Co:5~38,B:0.9~1.2,LRE:10~32,HRE:0~22,Al:0~1,Cu:0~0.8,SM:0~0.8及O:0.01~0.3,余量为Fe。优点在于,得到的永磁材料在呈现较高的室温综合磁性能的同时,还具有较低的剩磁温度系数及矫顽力温度系数,并表现出极好的耐腐蚀性能。

Description

一种铁钴基低温度系数永磁材料
技术领域
本发明属于永磁材料技术领域,特别是提供了一种铁钴基低温度系数永磁材料,适用于既要求有高磁性能,又要求有良好温度稳定性的永磁材料领域。
背景技术
稀土永磁材料具有高磁能积、高矫顽力的性能优势,已广泛应用与国民经济的各个领域。其中,钕铁硼稀土永磁材料最大磁能积已经可以达到54MGOe以上,是当之无愧的磁王。但其居里温度却比较低,一般不超过360℃,温度稳定性相对较差(剩磁温度系数在-0.09~-0.12%/℃之间),且较易氧化、易腐蚀。而钐钴稀土永磁材料虽然温度稳定性、耐腐蚀性均较好,但由于磁能积只有30MGOe左右,且易碎难加工,在市场中的应用受到很大局限。
目前市场上,提高钕铁硼磁体使用温度的典型方法是通过添加重稀土镝或铽,大幅提高磁体的矫顽力,从而使磁体在较高的使用温度下,仍能保持足够强的抗退磁性。这种高矫顽力磁体的温度稳定性虽然得到了一定改善,但由于居里温度并无显著提高,随温度的上升磁性能下降还是比较快的,温度稳定性远远比钐钴磁体差。
为提高钐钴永磁材料的强韧性,有文献提出了将体积百分比含量为10-20%的增强纤维加入到钐钴磁体中,从而提高钐钴磁体的强韧性等力学性能[“一种高性能钐钴永磁材料及其制备方法”,申请号:201510845448.8,申请人:宁波科星材料科技有限公司]。该技术虽然可以改善钐钴磁体的力学性能,但却不利于提高磁体的磁能积。
如何获得既具有较高的磁能积,又兼备良好的温度稳定性、耐腐蚀性、可加工性,一直是磁性材料工作者共同面临的难题。
发明内容
本发明的目的是提供一种铁钴基低温度系数永磁材料,既具有较高的磁能积,又兼备良好的温度稳定性、耐腐蚀性、可加工性的永磁材料,满足特殊应用需求,填补钕铁硼永磁与钐钴永磁的市场空隙。
本发明所述永磁材料是以铁、钴为基础的稀土永磁材料,该材料在呈现较高的室温综合磁性能的同时,还具有较好的剩磁温度系数及矫顽力温度系数,并表现出极好的耐腐蚀性能。成分按重量百分比为:Co:5~38,B:0.9~1.2,LRE:10~32,HRE:0~22,Al:0~1,Cu:0~0.8,SM:0~0.8及O:0.01~0.3,余量为Fe。
其中,LRE是轻稀土Pr或Nd或二者组合,HRE是重稀土Gd、Tb、Dy、Ho中的一种或多种组合,SM是选择性微量添加的金属Cr、Nb、Zr、Ga中的一种或多种组合。
所述永磁材料的微观组织主要由RE:(Fe,Co):B=2:14:1结构的主相晶粒及随机分布的晶界相组成,其中主相中的铁含量比晶界相中的铁含量高;主相中的钴含量比晶界相中的钴含量低;主相中的轻稀土总含量比晶界相中的轻稀土总含量低;氧则主要存在于晶界相中。
本发明所述的新型铁钴基低温度系数永磁材料,其性能特征包括较高的居里温度:360~550℃,优异的温度稳定性(剩磁温度系数:20-100℃为-0.09~-0.001%/℃;内禀矫顽力温度系数:20-100℃为-0.55~-0.35%/℃)及良好的耐腐蚀性(120℃,2atm,100%RH测试环境下144小时的失重小于1mg/cm2),材料密度为7.6~7.8g/cm3,主相晶粒平均尺寸为2-10微米
本发明的原理为:结合钕铁硼(铁基)永磁材料的高剩磁及钐钴(钴基)永磁材料的高居里温度的优点,制备出兼具二者优势的铁钴基永磁材料,通过添加重稀土与微量元素,对材料的磁矩与微观结构进行有效调控,获得磁性能、热稳定性、力学性能、耐腐蚀性能均得以优化的综合性能优异的低温度系数永磁材料。
附图说明
图1为典型的铁钴基低温度系数永磁材料的不同温度下的退磁曲线图。
图2为SEM微区形貌图。
图3为SEM微区能谱成分分析图。
图4为典型的铁钴基低温度系数永磁材料的居里温度测试结果图。
具体实施方式
本发明所述的铁钴基低温度系数永磁材料具体实施例说明如下:
表1列出了铁钴基低温度系数永磁材料实施例的化学成分
成分表中没有列出氧的含量,但在实施例中,氧含量是根据工艺要求进行有效控制的,控制比例在100-3000ppm。
实施例中,未列出Tb、Nb、Cr等元素,但这并不影响这些元素在本发明中的使用及其效果。
表2列出了铁钴基低温度系数永磁材料实施例的典型磁性能
成分为实施例1~实施例5的铁钴基永磁材料,其剩磁的温度系数(0~100℃)都明显低于传统的钕铁硼永磁材料,呈现出极好的低温度系数特征(优于-0.09%/℃)。对于实施例5,剩磁温度系数甚至优于普通钐钴永磁材料。在所有实施例中,新型铁钴基永磁体的磁能积都超过了钐钴磁体。
图1给出了实施例5磁体在不同温度下测量的退磁曲线。可以看出不仅剩磁随温度变化很小,其内禀矫顽力的温度系数也只有-0.41%/℃。铁钴基低温度系数永磁材料具有极好的热稳定性,虽然室温时的Hcj只有26.71kOe,但在180℃时B-H曲线在第二象限仍接近直线。
图2是铁钴基低温度系数永磁材料的SEM图像,其中黑色区域为2:14:1结构的主相,成分相对固定;白色区域为富稀土晶界相,不同晶界相成分略有差异。沿图中白色虚线(横跨3个晶界相区域)进行微区能谱线扫描,进行成分分析,结果如图3。分析结果表明,在晶界相区域,铁含量、镝含量都明显降低,与之对应的是钴含量、钕含量、镨含量则有明显上升。进一步分析表明,铁钴基低温度系数永磁材料的主相平均晶粒尺寸在2-10微米之间,同时内部存在着平均尺寸在1-5微米的晶界相。
图4是利用差示扫描量热仪测量典型铁钴基永磁材料居里温度的结果,其中实线为样品表观相对质量(在有磁相互作用环境下测量的相对质量)随温度变化曲线,点线为样品表观相对质量的变化率的温度曲线。后者峰值出现的温度对应的就是材料磁性能变化最快的温度,即居里温度。新型铁钴基低温度系数永磁材料的居里温度随成分的不同,可以在360~550℃间变化。
铁钴基低温度系数永磁材料结构比较紧密,具有较大的密度(实施例的磁体密度一般为7.6-7.75g/cm3)及较好的耐湿热、耐腐蚀性能。典型的铁钴基低温度系数永磁材料的PCT标准试验144小时失重值为0.85mg/cm2

Claims (6)

1.一种铁钴基低温度系数永磁材料,其特征在于:成分按重量百分比为:Co:5~38,B:0.9~1.2,LRE:10~32,HRE:0~22,Al:0~1,Cu:0~0.8,SM:0~0.8及O:0.01~0.3,余量为Fe;
其中,LRE是轻稀土Pr或Nd或二者组合,HRE是重稀土Gd、Tb、Dy、Ho中的一种或多种组合,SM是选择性微量添加的金属Cr、Nb、Zr、Ga中的一种或多种组合。
2.根据权利1所述的铁钴基低温度系数永磁材料,其特征在于:永磁材料的微观组织由RE:Fe或Co:B=2:14:1结构的主相晶粒及随机分布的晶界相组成,其中,主相中的铁含量比晶界相中的铁含量高;主相中的钴含量比晶界相中的钴含量低;主相中的轻稀土总含量比晶界相中的轻稀土总含量低;氧则主要存在于晶界相中。
3.根据权利1所述的铁钴基低温度系数永磁材料,其特征在于:所述永磁材料的居里温度为360~550℃。
4.根据权利1所述的铁钴基低温度系数永磁材料,其特征在于:所述永磁材料的剩磁温度系数:20-100℃为-0.09~-0.001%/℃。
5.根据权利1所述的铁钴基低温度系数永磁材料,其特征在于:所述永磁材料的内禀矫顽力温度系数:20-100℃为-0.55~-0.35%/℃。
6.根据权利2所述的铁钴基低温度系数永磁材料,其特征在于:所述永磁材料的主相晶粒平均尺寸为2-10微米,材料密度为7.6-7.8g/cm3
CN201710056031.2A 2017-01-25 2017-01-25 一种铁钴基低温度系数永磁材料 Active CN106782970B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710056031.2A CN106782970B (zh) 2017-01-25 2017-01-25 一种铁钴基低温度系数永磁材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710056031.2A CN106782970B (zh) 2017-01-25 2017-01-25 一种铁钴基低温度系数永磁材料

Publications (2)

Publication Number Publication Date
CN106782970A true CN106782970A (zh) 2017-05-31
CN106782970B CN106782970B (zh) 2019-05-31

Family

ID=58942701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710056031.2A Active CN106782970B (zh) 2017-01-25 2017-01-25 一种铁钴基低温度系数永磁材料

Country Status (1)

Country Link
CN (1) CN106782970B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195415A (zh) * 2017-06-19 2017-09-22 合肥博之泰电子科技有限公司 一种磁性材料及其制备方法
CN111640549A (zh) * 2020-06-22 2020-09-08 钢铁研究总院 一种高温度稳定性烧结稀土永磁材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244105A (ja) * 1986-04-16 1987-10-24 Hitachi Metals Ltd 希土類磁石
CN105474333A (zh) * 2013-08-09 2016-04-06 Tdk株式会社 R-t-b系烧结磁铁以及旋转电机

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244105A (ja) * 1986-04-16 1987-10-24 Hitachi Metals Ltd 希土類磁石
CN105474333A (zh) * 2013-08-09 2016-04-06 Tdk株式会社 R-t-b系烧结磁铁以及旋转电机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
曾振鹏: "合金元素Cu、Nb对烧结Nd-Fe-Co-B永磁材料力学性能影响的研究", 《理化检验-物理分册》 *
李卫: "低温度系数的Nd-Fe-B永磁合金", 《中国稀土学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107195415A (zh) * 2017-06-19 2017-09-22 合肥博之泰电子科技有限公司 一种磁性材料及其制备方法
CN111640549A (zh) * 2020-06-22 2020-09-08 钢铁研究总院 一种高温度稳定性烧结稀土永磁材料及其制备方法
CN111640549B (zh) * 2020-06-22 2021-08-03 钢铁研究总院 一种高温度稳定性烧结稀土永磁材料及其制备方法

Also Published As

Publication number Publication date
CN106782970B (zh) 2019-05-31

Similar Documents

Publication Publication Date Title
CN106128673B (zh) 一种烧结钕铁硼磁体及其制备方法
Li et al. A novel method combining additive manufacturing and alloy infiltration for NdFeB bonded magnet fabrication
CN110853855A (zh) 一种r-t-b系永磁材料及其制备方法和应用
US10811175B2 (en) Alloy material, bonded magnet, and modification method of rare-earth permanent magnetic powder
Sun et al. Magnetic properties and microstructures of high-performance Sm2Co17 based alloy
CN113035556B (zh) 一种磁体性能梯度分布的r-t-b磁体的制备方法
CN107492429A (zh) 一种耐高温钕铁硼磁体及其制备方法
Fu et al. Effect of rare-earth content on coercivity and temperature stability of sintered Nd-Fe-B magnets prepared by dual-alloy method
CN106782970B (zh) 一种铁钴基低温度系数永磁材料
Chen et al. Dependence of the demagnetization behavior on the direction of grain boundary diffusion in sintered Nd-Fe-B magnets
Liu et al. Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with DyH 3 nanoparticles
CN106409458B (zh) 一种电机复合永磁材料及其制备方法
CN103060657A (zh) 一种制备高矫顽力和高耐蚀性烧结钕铁硼永磁材料的方法
Li et al. Temperature stability of coercivity in mischmetal-Fe-Co-B melt-spun ribbons
CN115798853A (zh) 一种烧结钕铁硼磁体及其制备方法
CN113066625B (zh) 一种r-t-b系永磁材料及其制备方法和应用
Gu et al. Influence of substitution of Cr for Fe on magnetic properties of Nd4Fe77. 5B18. 5 alloys
CN109594023A (zh) 一种短流程Ce-Fe基烧结永磁体及其制备方法
CN103247401A (zh) 一种稀土永磁材料
Liu et al. Alignment of magnetic particles in anisotropic Nd–Fe–B bonded magnets
Duan et al. Phase distribution and coercivity enhancement in (MM, Nd)-Fe-B magnets with dual-main-phase
CN113096947A (zh) 一种高性能钕铁硼烧结磁体制备方法及微观结构
Li et al. Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd–Fe–B magnets
Fan et al. Influence of Nd doping on the magnetic properties of Nd2Fe14B/α-Fe nanocomposite magnets
Guozheng et al. Time-stability of sintered Nd-Fe-B permanent magnet with lower oxygen content

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant