CN106780548A - 基于交通视频的运动车辆检测方法 - Google Patents

基于交通视频的运动车辆检测方法 Download PDF

Info

Publication number
CN106780548A
CN106780548A CN201611030752.8A CN201611030752A CN106780548A CN 106780548 A CN106780548 A CN 106780548A CN 201611030752 A CN201611030752 A CN 201611030752A CN 106780548 A CN106780548 A CN 106780548A
Authority
CN
China
Prior art keywords
pixel
value
image
gaussian profile
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201611030752.8A
Other languages
English (en)
Inventor
陈锡清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanning Haofa Technology Co Ltd
Original Assignee
Nanning Haofa Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanning Haofa Technology Co Ltd filed Critical Nanning Haofa Technology Co Ltd
Priority to CN201611030752.8A priority Critical patent/CN106780548A/zh
Publication of CN106780548A publication Critical patent/CN106780548A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/017Detecting movement of traffic to be counted or controlled identifying vehicles
    • G08G1/0175Detecting movement of traffic to be counted or controlled identifying vehicles by photographing vehicles, e.g. when violating traffic rules
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30248Vehicle exterior or interior
    • G06T2207/30252Vehicle exterior; Vicinity of vehicle

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于交通视频的运动车辆检测方法,包括以下步骤:S1:通过装置于车辆内的摄像机实时的采集车辆信息,将获得的车辆行驶视频按照帧分割成一系列的图像序列,并对图像进行灰度化、二值化及降噪预处理;S2:背景建模,是对背景图像中的每一个像素点建立起模型分布,实时更新模型参数;S3:将预处理后的当前帧图像采用Canny边缘检测来提取边缘信息,获取图像的结构特征和边缘信息;S4:根据获取的边缘信息,对每一像素建立基于边缘的混合高斯模型;S5:基于边缘信息的混合高斯模型参数的更新;S6:像素点值与最佳描述背景高斯分布进行匹配,将前景目标提取出来,实现运动车辆的检测。

Description

基于交通视频的运动车辆检测方法
技术领域
本发明涉及一种基于交通视频的运动车辆检测方法。
背景技术
现如今,随着当今经济的高速发展,交通运输行业得到了显著的发展,机动车保有量迅速地增长,仅仅依靠修建道路设施和人工管理很难解决现存的交通问题,采用智能化的交通控制与管理系统来最大限度地行使现有道路体系的通行能力势在必行。对运动车辆的有效检测可以统计出一定时间内车辆流量、车流密度等交通流信息,根据此信息作出相应的道路管理与控制;对运动车辆的有效跟踪可以计算出车辆的行车速度、行车轨迹等交通信息,对此信息进行分析,预测出车辆在未来时间内的行为而做出相应的处理(如对超速、违章车辆发出警告,对交通事故的肇事车辆进行追踪等)。
智能交通系统的发展,随着基于交通视频图像序列的运动车辆检测与跟踪技术的发展而迅速崛起,基于交通视频图像序列的运动车辆检测和跟踪技术广泛应用于智能交通系统当中,是整个智能交通系统最底层的一个模块,也是最重要的模块。致力于车辆检测、跟踪研究的学者们取得了大量的、可观的研究成果,但是视频图像帧序列来源于架设在室外的摄像机,受到突然改变的光照条件、车辆的阴影、车距大小等等的影响,导致场景的动态不固定性,这样对运动车辆检测中所运用到的算法提出更加严格、苛刻的要求;传统的跟踪算法对快速行驶的运动车辆、被遮挡的运动车辆、尺度变化的运动车辆等的跟踪往往达不到预期的结果。
发明内容
本发明要解决的技术问题是提供一种基于交通视频的运动车辆检测方法。
基于交通视频的运动车辆检测方法,包括以下步骤:
S1:通过装置于车辆内的摄像机实时的采集车辆信息,将获得的车辆行驶视频按照帧分割成一系列的图像序列,并对图像进行灰度化、二值化及降噪预处理;
S2:背景建模,是对背景图像中的每一个像素点建立起模型分布,实时更新模型参数;
S3:将预处理后的当前帧图像采用Canny边缘检测来提取边缘信息,获取图像的结构特征和边缘信息;
S4:根据获取的边缘信息,对每一像素建立基于边缘的混合高斯模型;
S5:基于边缘信息的混合高斯模型参数的更新,把长时间驻留组成静止目标区域的像素点归纳为组成背景区域的像素点,短暂驻留目标的像素点慢慢减弱,直到此区域的像素点被一个新出现的运动目标的像素点完全替代;
S6:像素点值与最佳描述背景高斯分布进行匹配,将前景目标提取出来,实现运动车辆的检测。
进一步的,所述背景建模具体如下:
S2-1:用一个赋予权值为wi,t,维数为n(灰度图像取1)的时间序列{X(x,y,i),1≤i≤t}来表示视频序列图像中像素点的值,任何时候这些像素点的值服从相同的分布且相互独立,采用K个独立的高斯分布(均值向量为μi,t,协方差矩阵为∑i,t的正态分布)概率密度函数的加权和来描述Xt的概率函数表达式表示为:
其中,Gi(Xti,t,∑i,t)为第i个高斯分布;
S2-2:此对组成背景区域像素点的最佳描述是wi,t/|∑i,t|比值较大的高斯分布,把描述每个像素点的K个高斯分布的wi,t/|∑i,t|由大到小的顺序排列,大于阈值T的前B个高斯分布作为描述组成背景区域的模型:
其中,T(0.5≤T≤1)作为预先设定的阈值很好地表现出组成背景区域像素点出现的概率。
进一步的,所述Canny边缘检测具体方法如下:
S3-1:平滑图像中数据的阵列是像素点f(x,y)与标准差是σ的高斯平滑滤波器H(x,y;σ)进行卷积的表达式表示为:
S(x,y)=H(x,y;σ)*f(x,y),
使用2×2一阶有限差分,梯度幅值和方向角分别为:
θ(x,y)=arctan(P2(x,y)/P1(x,y))
其中,
其中,M(x,y)为边缘强度;θ(x,y)为正交于边缘方向的法向矢量;
S3-2:计算图像灰度的偏导数P1(x,y)、P2(x,y),计算出边缘强度为M(x,y)和方向θ(x,y);
S3-3:某个像素点的灰度值与8邻域的8个像素灰度值作比较,如果不是最大值,则该像素点不是边缘像素点而把此像素点的值置为0,以此来决定出局部极大值;
S3-4:通过步骤S3-3得到了非极大值抑制的图像,在此基础上使用高阈值τ1和低阈值τ21≈τ2)分割图像得到了Th[x,y]和Tl[x,y]两个阈值边缘图像,图像Th[x,y]不包含假边缘,但造成轮廓上可能的间断,因此需在Th[x,y]中把边缘连接成轮廓,达到轮廓端点时,在图像Tl[x,y]的8邻域位置内寻找可以连接到利用阈值τ1得到的间断轮廓上的边缘像素点,重复此操作直到Th[x,y]图像中的所有间断连接起来。
进一步的,基于边缘信息的混合高斯模型建立具体如下:
1)初始化:
K个边缘混合高斯模型中的第一个高斯分布的均值为第一帧图像像素点灰度值的平均值,协方差为较大的初始值V0,权系数初始化为1,其它高斯分布均值为0,协方差为较大的初始值V0,权系数为0;
2)匹配校验:
每帧图像中的每个像素点Xt的值满足|Xti,t|≤2.5δi,t时,此像素点与边缘高斯分布Gi(Xt,μi,ti,t)相匹配。
进一步的,基于边缘信息的混合高斯模型参数的更新具体如下:
S5-1:均值向量μi,t,协方差矩阵∑i,t、权系数wi,t的更新:
1)像素点Xt对应的K个高斯模型中,如果存在大于或者是等于一个高斯分布满足|Xti,t|≤2.5δi,t时:
对于不满足|Xti,t|≤2.5δi,t的高斯分布,μi,t和Σi,t不进行更新,满足|Xti,t|≤2.5δi,t的μi,t和Σi,t更新为:
μi,t=(1-ρ)·μi,t-1+ρ·Xt
Σi,t=(1-ρ)Σi,t-1+ρ·diag[(Xti,t)T(Xti,t)],
ρ=α·Gi(Xti,ti,t),
其中,Xt表示的通过边缘检测得到的边缘像素点的值,α为学习因子;
2)像素点Xt对应的K个高斯模型中,如果没有一个高斯分布满足|Xti,t|≤2.5δi,t时,需要将K个模型中wi,t/|Σi,t|最小的Gj模型参数重新赋值:
wj,t=w0j,t=X,
其中,j=mini{wi,t-1},i=1,...,k;
3)在t时刻的K个边缘高斯分布权系数wi,t更新为:
wi,t=(1-α)·wi,t-1+α(Mi,t),
其中,不匹配时高斯分布Gi(Xti,t,∑i,t)相应的权值将衰减,因此若t时刻的像素值Xt与高斯分布Gi(Xti,t,∑i,t)相匹配,则Mi,t=1,否则Mi,t=0。
S5-2:参数估计学习因子α的动态调整:
1)用连续三帧差来动态调整α:
其中,λ反映了连续三帧像素值都明显发生变化的比率;“∧”表示与运算;H为在线学习获得的判定两帧间像素值发生变化的阈值;
2)参数估计学习因子α的动态调整依据:
在满足1)中公式的情况下:
当α<0.1时,α=2*α;
当α>0.1时,α的值保持不变;
在不满足1)中公式的情况下:
当α<0.05时,α=0.5*α;
当α>0.05时,α的值保持不变。
进一步的,所述前景目标提取具体方法如下:
S6-1:场景背景的建立:t时刻,对于描述组成背景区域像素点的最佳前B个高斯分布中,如果当前视频图像帧中的像素点的值满足|Xti,t|≤2.5δi,t,则把该像素归纳为组成背景区域的像素点,满足匹配关系的像素点映射到背景图像的像素点值更新为该像素点对应高斯模型(K个高斯模型中权值最大的高斯模型)的均值;
S6-2:运动前景检测:t时刻,对于描述组成背景区域像素点的最佳前B个高斯分布中,如果当前视频图像帧中的像素点的值不满足|Xti,t|≤2.5δi,t,则把该像素归纳为组成前景区域的像素点,不满足匹配关系的像素点映射到背景图像的像素点值不做更新处理,维持背景图像中原有的像素值。
高斯混合模型的基本思想是:在摄像机固定的情况下,组成背景区域的像素点在一定时间内出现的频率高,组成背景区域的像素点在颜色、灰度方面比较集中。颜色、灰度集中的地方像素点对应高斯分布的方差较小,出现频率高的像素点,概率密度函数对应的权值较大。
本发明的有益效果是:
本发明利用视频图像帧中的边缘像素点建立混合高斯模型,建立的混合高斯模型中各个高斯分布的均值和方差在学习因子自适应、动态调整的情况下能够加快收敛的速度,实时地将变化场景更新(建立适合当前场景的背景模型),根据视频图像中像素值与最佳描述背景高斯分布的匹配关系及时、有效地检测到运动车辆。
具体实施方式
以下具体实施例对本发明作进一步阐述,但不作为对本发明的限定。
基于交通视频的运动车辆检测方法,包括以下步骤:
S1:通过装置于车辆内的摄像机实时的采集车辆信息,将获得的车辆行驶视频按照帧分割成一系列的图像序列,并对图像进行灰度化、二值化及降噪预处理;
S2:背景建模,是对背景图像中的每一个像素点建立起模型分布,实时更新模型参数;
S3:将预处理后的当前帧图像采用Canny边缘检测来提取边缘信息,获取图像的结构特征和边缘信息;
S4:根据获取的边缘信息,对每一像素建立基于边缘的混合高斯模型;
S5:基于边缘信息的混合高斯模型参数的更新,把长时间驻留组成静止目标区域的像素点归纳为组成背景区域的像素点,短暂驻留目标的像素点慢慢减弱,直到此区域的像素点被一个新出现的运动目标的像素点完全替代;
S6:像素点值与最佳描述背景高斯分布进行匹配,将前景目标提取出来,实现运动车辆的检测。
所述背景建模具体如下:
S2-1:用一个赋予权值为wi,t,维数为n(灰度图像取1)的时间序列{X(x,y,i),1≤i≤t}来表示视频序列图像中像素点的值,任何时候这些像素点的值服从相同的分布且相互独立,采用K个独立的高斯分布(均值向量为μi,t,协方差矩阵为∑i,t的正态分布)概率密度函数的加权和来描述Xt的概率函数表达式表示为:
其中,Gi(Xti,t,∑i,t)为第i个高斯分布;
S2-2:此对组成背景区域像素点的最佳描述是wi,t/|∑i,t|比值较大的高斯分布,把描述每个像素点的K个高斯分布的wi,t/|∑i,t|由大到小的顺序排列,大于阈值T的前B个高斯分布作为描述组成背景区域的模型:
其中,T(0.5≤T≤1)作为预先设定的阈值很好地表现出组成背景区域像素点出现的概率。
所述Canny边缘检测具体方法如下:
S3-1:平滑图像中数据的阵列是像素点f(x,y)与标准差是σ的高斯平滑滤波器H(x,y;σ)进行卷积的表达式表示为:
S(x,y)=H(x,y;σ)*f(x,y),
使用2×2一阶有限差分,梯度幅值和方向角分别为:
θ(x,y)=arctan(P2(x,y)/P1(x,y))
其中,
其中,M(x,y)为边缘强度;θ(x,y)为正交于边缘方向的法向矢量;
S3-2:计算图像灰度的偏导数P1(x,y)、P2(x,y),计算出边缘强度为M(x,y)和方向θ(x,y);
S3-3:某个像素点的灰度值与8邻域的8个像素灰度值作比较,如果不是最大值,则该像素点不是边缘像素点而把此像素点的值置为0,以此来决定出局部极大值;
S3-4:通过步骤S3-3得到了非极大值抑制的图像,在此基础上使用高阈值τ1和低阈值τ21≈τ2)分割图像得到了Th[x,y]和Tl[x,y]两个阈值边缘图像,图像Th[x,y]不包含假边缘,但造成轮廓上可能的间断,因此需在Th[x,y]中把边缘连接成轮廓,达到轮廓端点时,在图像Tl[x,y]的8邻域位置内寻找可以连接到利用阈值τ1得到的间断轮廓上的边缘像素点,重复此操作直到Th[x,y]图像中的所有间断连接起来。
进一步的,基于边缘信息的混合高斯模型建立具体如下:
1)初始化:
K个边缘混合高斯模型中的第一个高斯分布的均值为第一帧图像像素点灰度值的平均值,协方差为较大的初始值V0,权系数初始化为1,其它高斯分布均值为0,协方差为较大的初始值V0,权系数为0;
2)匹配校验:
每帧图像中的每个像素点Xt的值满足|Xti,t|≤2.5δi,t时,此像素点与边缘高斯分布Gi(Xti,t,∑i,t)相匹配。
基于边缘信息的混合高斯模型参数的更新具体如下:
S5-1:均值向量μi,t,协方差矩阵∑i,t、权系数wi,t的更新:
1)像素点Xt对应的K个高斯模型中,如果存在大于或者是等于一个高斯分布满足|Xti,t|≤2.5δi,t时:
对于不满足|Xti,t|≤2.5δi,t的高斯分布,μi,t和∑i,t不进行更新,满足|Xti,t|≤2.5δi,t的μi,t和∑i,t更新为:
μi,t=(1-ρ)·μi,t-1+ρ·Xt
i,t=(1-ρ)∑i,t-1+ρ·diag[(Xti,t)T(Xti,t)],
ρ=α·Gi(Xti,t,∑i,t),
其中,Xt表示的通过边缘检测得到的边缘像素点的值,α为学习因子;
2)像素点Xt对应的K个高斯模型中,如果没有一个高斯分布满足|Xti,t|≤2.5δi,t时,需要将K个模型中wi,t/|∑i,t|最小的Gj模型参数重新赋值:
wj,t=w0j,t=X,
其中,j=mini{wi,t-1},i=1,...,k;
3)在t时刻的K个边缘高斯分布权系数wi,t更新为:
wi,t=(1-α)·wi,t-1+α(Mi,t),
其中,不匹配时高斯分布Gi(Xti,t,∑i,t)相应的权值将衰减,因此若t时刻的像素值Xt与高斯分布Gi(Xti,t,∑i,t)相匹配,则Mi,t=1,否则Mi,t=0。
S5-2:参数估计学习因子α的动态调整:
1)用连续三帧差来动态调整α:
其中,λ反映了连续三帧像素值都明显发生变化的比率;“∧”表示与运算;H为在线学习获得的判定两帧间像素值发生变化的阈值;
2)参数估计学习因子α的动态调整依据:
在满足1)中公式的情况下:
当α<0.1时,α=2*α;
当α>0.1时,α的值保持不变;
在不满足1)中公式的情况下:
当α<0.05时,α=0.5*α;
当α>0.05时,α的值保持不变。
所述前景目标提取具体方法如下:
S6-1:场景背景的建立:t时刻,对于描述组成背景区域像素点的最佳前B个高斯分布中,如果当前视频图像帧中的像素点的值满足|Xti,t|≤2.5δi,t,则把该像素归纳为组成背景区域的像素点,满足匹配关系的像素点映射到背景图像的像素点值更新为该像素点对应高斯模型(K个高斯模型中权值最大的高斯模型)的均值;
S6-2:运动前景检测:t时刻,对于描述组成背景区域像素点的最佳前B个高斯分布中,如果当前视频图像帧中的像素点的值不满足|Xti,t|≤2.5δi,t,则把该像素归纳为组成前景区域的像素点,不满足匹配关系的像素点映射到背景图像的像素点值不做更新处理,维持背景图像中原有的像素值。

Claims (6)

1.基于交通视频的运动车辆检测方法,其特征在于,包括以下步骤:
S1:通过装置于车辆内的摄像机实时的采集车辆信息,将获得的车辆行驶视频按照帧分割成一系列的图像序列,并对图像进行灰度化、二值化及降噪预处理;
S2:背景建模,是对背景图像中的每一个像素点建立起模型分布,实时更新模型参数;
S3:将预处理后的当前帧图像采用Canny边缘检测来提取边缘信息,获取图像的结构特征和边缘信息;
S4:根据获取的边缘信息,对每一像素建立基于边缘的混合高斯模型;
S5:基于边缘信息的混合高斯模型参数的更新,把长时间驻留组成静止目标区域的像素点归纳为组成背景区域的像素点,短暂驻留目标的像素点慢慢减弱,直到此区域的像素点被一个新出现的运动目标的像素点完全替代;
S6:像素点值与最佳描述背景高斯分布进行匹配,将前景目标提取出来,实现运动车辆的检测。
2.根据权利要求1所述的运动车辆检测方法,其特征在于,所述背景建模具体如下:
S2-1:用一个赋予权值为wi,t,维数为n(灰度图像取1)的时间序列{X(x,y,i),1≤i≤t}来表示视频序列图像中像素点的值,任何时候这些像素点的值服从相同的分布且相互独立,采用K个独立的高斯分布(均值向量为μi,t,协方差矩阵为∑i,t的正态分布)概率密度函数的加权和来描述Xt的概率函数表达式表示为:
Q ( X t ) = &Sigma; i = 1 K w i , t &CenterDot; G i ( X t , &mu; i , t , &Sigma; i , t ) ,
G i ( X t , &mu; i , t , &Sigma; i , t ) = 1 ( 2 &pi; ) &pi; 2 | &Sigma; i , t | 1 2 * e - 1 2 ( x t - &mu; i , t ) T &Sigma; - 1 ( X t - &Sigma; i , t ) ,
其中,Gi(Xti,t,∑i,t)为第i个高斯分布;
S2-2:此对组成背景区域像素点的最佳描述是wi,t/|∑i,t|比值较大的高斯分布,把描述每个像素点的K个高斯分布的wi,t/|∑i,t|由大到小的顺序排列,大于阈值T的前B个高斯分布作为描述组成背景区域的模型:
B = arg ( min b ( &Sigma; i = 1 b w i , t > T ) ) ,
其中,T(0.5≤T≤1)作为预先设定的阈值很好地表现出组成背景区域像素点出现的概率。
3.根据权利要求1所述的运动车辆检测方法,其特征在于,所述Canny边缘检测具体方法如下:
S3-1:平滑图像中数据的阵列是像素点f(x,y)与标准差是σ的高斯平滑滤波器H(x,y;σ)进行卷积的表达式表示为:
S(x,y)=H(x,y;σ)*f(x,y),
使用2×2一阶有限差分,梯度幅值和方向角分别为:
M ( x , y ) = P 1 2 ( x , y ) + P 1 2 ( x , y ) ,
θ(x,y)=arctan(P2(x,y)/P1(x,y)),
其中,
其中,M(x,y)为边缘强度;θ(x,y)为正交于边缘方向的法向矢量;
S3-2:计算图像灰度的偏导数P1(x,y)、P2(x,y),计算出边缘强度为M(x,y)和方向θ(x,y);
S3-3:某个像素点的灰度值与8邻域的8个像素灰度值作比较,如果不是最大值,则该像素点不是边缘像素点而把此像素点的值置为0,以此来决定出局部极大值;
S3-4:通过步骤S3-3得到了非极大值抑制的图像,在此基础上使用高阈值τ1和低阈值τ21≈τ2)分割图像得到了Th[x,y]和Tl[x,y]两个阈值边缘图像,图像Th[x,y]不包含假边缘,但造成轮廓上可能的间断,因此需在Th[x,y]中把边缘连接成轮廓,达到轮廓端点时,在图像Tl[x,y]的8邻域位置内寻找可以连接到利用阈值τ1得到的间断轮廓上的边缘像素点,重复此操作直到Th[x,y]图像中的所有间断连接起来。
4.根据权利要求1所述的运动车辆检测方法,其特征在于,基于边缘信息的混合高斯模型建立具体如下:
1)初始化:
K个边缘混合高斯模型中的第一个高斯分布的均值为第一帧图像像素点灰度值的平均值,协方差为较大的初始值V0,权系数初始化为1,其它高斯分布均值为0,协方差为较大的初始值V0,权系数为0;
2)匹配校验:
每帧图像中的每个像素点Xt的值满足|Xti,t|≤2.5δi,t时,此像素点与边缘高斯分布Gi(Xti,ti,t)相匹配。
5.根据权利要求1所述的运动车辆检测方法,其特征在于,基于边缘信息的混合高斯模型参数的更新具体如下:
S5-1:均值向量μi,t,协方差矩阵Σi,t、权系数wi,t的更新:
1)像素点Xt对应的K个高斯模型中,如果存在大于或者是等于一个高斯分布满足|Xti,t|≤2.5δi,t时:
对于不满足|Xti,t|≤2.5δi,t的高斯分布,μi,t和Σi,t不进行更新,满足|Xti,t|≤2.5δi,t的μi,t和∑i,t更新为:
μi,t=(1-ρ)·μi,t-1+ρ·Xt
i,t=(1-ρ)∑i,t-1+ρ·diag[(Xti,t)T(Xti,t)],
ρ=α·Gi(Xti,t,∑i,t),
其中,Xt表示的通过边缘检测得到的边缘像素点的值,α为学习因子;
2)像素点Xt对应的K个高斯模型中,如果没有一个高斯分布满足|Xti,t|≤2.5δi,t时,需要将K个模型中wi,t/|Σi,t|最小的Gj模型参数重新赋值:
w j , t = w 0 , &mu; j , t = X , &Sigma; j , t = V 0 = &sigma; 0 2 I ,
其中,j=mini{wi,t-1},i=1,...,k;
3)在t时刻的K个边缘高斯分布权系数wi,t更新为:
wi,t=(1-α)·wi,t-1+α(Mi,t),
其中,不匹配时高斯分布Gi(Xti,t,∑i,t)相应的权值将衰减,因此若t时刻的像素值Xt与高斯分布Gi(Xti,ti,t)相匹配,则Mi,t=1,否则Mi,t=0;
S5-2:参数估计学习因子α的动态调整:
1)用连续三帧差来动态调整α:
Dif 1 = 1 , | I n ( i , j ) - I n - 1 ( i , j ) | > H 0 , o t h e r s ,
Dif 2 = 1 , | I n ( i , j ) - I n - 2 ( i , j ) | > H 0 , o t h e r s ,
其中,λ反映了连续三帧像素值都明显发生变化的比率;“∧”表示与运算;H为在线学习获得的判定两帧间像素值发生变化的阈值;
2)参数估计学习因子α的动态调整依据:
在满足1)中公式的情况下:
当α<0.1时,α=2*α;
当α>0.1时,α的值保持不变;
在不满足1)中公式的情况下:
当α<0.05时,α=0.5*α;
当α>0.05时,α的值保持不变。
6.根据权利要求1所述的运动车辆检测方法,其特征在于,所述前景目标提取具体方法如下:
S6-1:场景背景的建立:t时刻,对于描述组成背景区域像素点的最佳前B个高斯分布中,如果当前视频图像帧中的像素点的值满足|Xti,t|≤2.5δi,t,则把该像素归纳为组成背景区域的像素点,满足匹配关系的像素点映射到背景图像的像素点值更新为该像素点对应高斯模型(K个高斯模型中权值最大的高斯模型)的均值;
S6-2:运动前景检测:t时刻,对于描述组成背景区域像素点的最佳前B个高斯分布中,如果当前视频图像帧中的像素点的值不满足|Xti,t|≤2.5δi,t,则把该像素归纳为组成前景区域的像素点,不满足匹配关系的像素点映射到背景图像的像素点值不做更新处理,维持背景图像中原有的像素值。
CN201611030752.8A 2016-11-16 2016-11-16 基于交通视频的运动车辆检测方法 Withdrawn CN106780548A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611030752.8A CN106780548A (zh) 2016-11-16 2016-11-16 基于交通视频的运动车辆检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611030752.8A CN106780548A (zh) 2016-11-16 2016-11-16 基于交通视频的运动车辆检测方法

Publications (1)

Publication Number Publication Date
CN106780548A true CN106780548A (zh) 2017-05-31

Family

ID=58971438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611030752.8A Withdrawn CN106780548A (zh) 2016-11-16 2016-11-16 基于交通视频的运动车辆检测方法

Country Status (1)

Country Link
CN (1) CN106780548A (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107909032A (zh) * 2017-11-15 2018-04-13 重庆邮电大学 一种基于单样本的行为检测与识别方法
CN107992865A (zh) * 2018-01-26 2018-05-04 重庆邮电大学 一种基于视频分析的车辆识别方法和系统
CN108416632A (zh) * 2018-03-26 2018-08-17 成都信达智胜科技有限公司 一种动态视频的识别方法
CN108648463A (zh) * 2018-05-14 2018-10-12 三峡大学 一种路口交通视频中车辆检测方法及系统
CN109190455A (zh) * 2018-07-18 2019-01-11 东南大学 基于高斯混合和自回归滑动平均模型的黑烟车识别方法
CN109410582A (zh) * 2018-11-27 2019-03-01 易念科技(深圳)有限公司 交通状况分析方法及终端设备
CN109919053A (zh) * 2019-02-24 2019-06-21 太原理工大学 一种基于监控视频的深度学习车辆停车检测方法
CN109919964A (zh) * 2019-03-01 2019-06-21 南阳理工学院 基于数学形态学的高斯背景建模技术进行图像处理的方法
CN109993767A (zh) * 2017-12-28 2019-07-09 北京京东尚科信息技术有限公司 图像处理方法和系统
CN110008932A (zh) * 2019-04-17 2019-07-12 四川九洲视讯科技有限责任公司 一种基于计算机视觉的车辆违章压线检测方法
CN110348305A (zh) * 2019-06-06 2019-10-18 西北大学 一种基于监控视频的运动目标提取方法
CN110443830A (zh) * 2019-08-14 2019-11-12 大连海事大学 一种基于混合高斯背景模型的降水云团检测方法
CN111383340A (zh) * 2018-12-28 2020-07-07 成都皓图智能科技有限责任公司 一种基于3d图像的背景过滤方法、装置及系统
CN111383250A (zh) * 2020-03-20 2020-07-07 内蒙古工业大学 基于改进混合高斯模型的运动目标检测方法及装置
CN111601011A (zh) * 2020-04-10 2020-08-28 全景智联(武汉)科技有限公司 一种基于视频流图像的自动告警方法及系统
CN112100435A (zh) * 2020-09-09 2020-12-18 沈阳帝信人工智能产业研究院有限公司 一种基于边缘端交通音视频同步样本的自动标注方法
CN112183337A (zh) * 2020-09-28 2021-01-05 华北电力大学(保定) 一种输电线路防机械入侵的检测方法及装置
CN112258462A (zh) * 2020-10-13 2021-01-22 广州杰赛科技股份有限公司 一种车辆检测方法、装置及计算机可读存储介质
CN112802348A (zh) * 2021-02-24 2021-05-14 辽宁石化职业技术学院 一种基于混合Gaussian模型的车流量计数方法
CN113254710A (zh) * 2021-05-20 2021-08-13 广州广电运通金融电子股份有限公司 一种视频浓缩方法、系统及设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957997A (zh) * 2009-12-22 2011-01-26 北京航空航天大学 一种动态场景中基于区域均值核密度估计的运动目标检测方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101957997A (zh) * 2009-12-22 2011-01-26 北京航空航天大学 一种动态场景中基于区域均值核密度估计的运动目标检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郑清超: "基于红外图像分析的入侵探测系统研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107909032A (zh) * 2017-11-15 2018-04-13 重庆邮电大学 一种基于单样本的行为检测与识别方法
CN109993767B (zh) * 2017-12-28 2021-10-12 北京京东尚科信息技术有限公司 图像处理方法和系统
CN109993767A (zh) * 2017-12-28 2019-07-09 北京京东尚科信息技术有限公司 图像处理方法和系统
CN107992865A (zh) * 2018-01-26 2018-05-04 重庆邮电大学 一种基于视频分析的车辆识别方法和系统
CN108416632A (zh) * 2018-03-26 2018-08-17 成都信达智胜科技有限公司 一种动态视频的识别方法
CN108416632B (zh) * 2018-03-26 2022-09-13 施永兵 一种动态视频的识别方法
CN108648463A (zh) * 2018-05-14 2018-10-12 三峡大学 一种路口交通视频中车辆检测方法及系统
CN109190455A (zh) * 2018-07-18 2019-01-11 东南大学 基于高斯混合和自回归滑动平均模型的黑烟车识别方法
CN109190455B (zh) * 2018-07-18 2021-08-13 东南大学 基于高斯混合和自回归滑动平均模型的黑烟车识别方法
CN109410582B (zh) * 2018-11-27 2021-11-16 易念科技(深圳)有限公司 交通状况分析方法及终端设备
CN109410582A (zh) * 2018-11-27 2019-03-01 易念科技(深圳)有限公司 交通状况分析方法及终端设备
CN111383340B (zh) * 2018-12-28 2023-10-17 成都皓图智能科技有限责任公司 一种基于3d图像的背景过滤方法、装置及系统
CN111383340A (zh) * 2018-12-28 2020-07-07 成都皓图智能科技有限责任公司 一种基于3d图像的背景过滤方法、装置及系统
CN109919053A (zh) * 2019-02-24 2019-06-21 太原理工大学 一种基于监控视频的深度学习车辆停车检测方法
CN109919964A (zh) * 2019-03-01 2019-06-21 南阳理工学院 基于数学形态学的高斯背景建模技术进行图像处理的方法
CN110008932A (zh) * 2019-04-17 2019-07-12 四川九洲视讯科技有限责任公司 一种基于计算机视觉的车辆违章压线检测方法
CN110008932B (zh) * 2019-04-17 2022-11-22 四川九洲视讯科技有限责任公司 一种基于计算机视觉的车辆违章压线检测方法
CN110348305B (zh) * 2019-06-06 2021-06-25 西北大学 一种基于监控视频的运动目标提取方法
CN110348305A (zh) * 2019-06-06 2019-10-18 西北大学 一种基于监控视频的运动目标提取方法
CN110443830B (zh) * 2019-08-14 2022-12-02 大连海事大学 一种基于混合高斯背景模型的降水云团检测方法
CN110443830A (zh) * 2019-08-14 2019-11-12 大连海事大学 一种基于混合高斯背景模型的降水云团检测方法
CN111383250A (zh) * 2020-03-20 2020-07-07 内蒙古工业大学 基于改进混合高斯模型的运动目标检测方法及装置
CN111601011A (zh) * 2020-04-10 2020-08-28 全景智联(武汉)科技有限公司 一种基于视频流图像的自动告警方法及系统
CN112100435A (zh) * 2020-09-09 2020-12-18 沈阳帝信人工智能产业研究院有限公司 一种基于边缘端交通音视频同步样本的自动标注方法
CN112100435B (zh) * 2020-09-09 2023-11-07 沈阳帝信人工智能产业研究院有限公司 一种基于边缘端交通音视频同步样本的自动标注方法
CN112183337A (zh) * 2020-09-28 2021-01-05 华北电力大学(保定) 一种输电线路防机械入侵的检测方法及装置
CN112258462A (zh) * 2020-10-13 2021-01-22 广州杰赛科技股份有限公司 一种车辆检测方法、装置及计算机可读存储介质
CN112802348A (zh) * 2021-02-24 2021-05-14 辽宁石化职业技术学院 一种基于混合Gaussian模型的车流量计数方法
CN113254710A (zh) * 2021-05-20 2021-08-13 广州广电运通金融电子股份有限公司 一种视频浓缩方法、系统及设备
CN113254710B (zh) * 2021-05-20 2023-08-22 广州广电运通金融电子股份有限公司 一种视频浓缩方法、系统及设备

Similar Documents

Publication Publication Date Title
CN106780548A (zh) 基于交通视频的运动车辆检测方法
CN101957997B (zh) 一种动态场景中基于区域均值核密度估计的运动目标检测方法
CN107507221A (zh) 结合帧差法和混合高斯模型的运动目标检测与跟踪方法
CN103258332B (zh) 一种抗光照变化的运动目标的检测方法
CN103886325B (zh) 一种分块的循环矩阵视频跟踪方法
CN103488993B (zh) 一种基于fast的人群异常行为识别方法
CN102930719B (zh) 用于交通路口场景并基于网络物理系统的视频图像前景检测方法
CN105261037A (zh) 一种自适应复杂场景的运动目标检测方法
CN104424638A (zh) 一种基于遮挡情况下的目标跟踪方法
CN109919053A (zh) 一种基于监控视频的深度学习车辆停车检测方法
CN104715244A (zh) 一种基于肤色分割和机器学习的多视角人脸检测方法
CN104134079A (zh) 一种基于极值区域和极限学习机的车牌识别方法
CN103810703B (zh) 一种基于图像处理的隧道视频运动目标检测方法
CN103679168A (zh) 文字区域检测方法及装置
CN102147861A (zh) 一种基于颜色-纹理双重特征向量进行贝叶斯判决的运动目标检测方法
Wang et al. A video-based traffic violation detection system
CN105894701A (zh) 输电线路防外破大型施工车辆的识别报警方法
CN106204586A (zh) 一种基于跟踪的复杂场景下的运动目标检测方法
CN103020614B (zh) 基于时空兴趣点检测的人体运动识别方法
CN106127812A (zh) 一种基于视频监控的客运站非出入口区域的客流统计方法
CN101964113A (zh) 光照突变场景下的运动目标检测方法
CN107730889B (zh) 一种基于交通视频的目标车辆检索方法
CN104952256A (zh) 一种基于视频信息的交叉口处车辆的检测方法
CN111553214B (zh) 一种驾驶员吸烟行为检测方法及系统
CN109359549A (zh) 一种基于混合高斯和hog_lbp的行人检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20170531

WW01 Invention patent application withdrawn after publication