CN106204586A - 一种基于跟踪的复杂场景下的运动目标检测方法 - Google Patents

一种基于跟踪的复杂场景下的运动目标检测方法 Download PDF

Info

Publication number
CN106204586A
CN106204586A CN201610539182.9A CN201610539182A CN106204586A CN 106204586 A CN106204586 A CN 106204586A CN 201610539182 A CN201610539182 A CN 201610539182A CN 106204586 A CN106204586 A CN 106204586A
Authority
CN
China
Prior art keywords
pixel
target
background
moving target
variation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610539182.9A
Other languages
English (en)
Other versions
CN106204586B (zh
Inventor
薛月菊
毛亮
林焕凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Agricultural University
Original Assignee
South China Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Agricultural University filed Critical South China Agricultural University
Priority to CN201610539182.9A priority Critical patent/CN106204586B/zh
Publication of CN106204586A publication Critical patent/CN106204586A/zh
Application granted granted Critical
Publication of CN106204586B publication Critical patent/CN106204586B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/52Surveillance or monitoring of activities, e.g. for recognising suspicious objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30232Surveillance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)

Abstract

本发明提出了一种基于跟踪的复杂场景下的运动目标检测方法,所述方法包含如下步骤:对输入的视频帧,采用混合高斯模型进行背景建模并进行模型更新,获取初始前景像素点。基于LBP纹理特征对光照的不敏感性,分别将当前前景像素和相对应的背景像素与邻域像素进行二值化比较,实现了背景模型的自适应更新,很好的适应光照的突然变化,获得运动目标。再对运动目标进行跟踪,获取目标的轨迹信息,根据轨迹信息计算目标偏离初始位置的距离和运动方向改变的次数,以便去除树叶摆动的影响。最后再通过计算变异系数去除大量孤立的小噪声或者伪目标,获取最终运动目标。本发明可有效克服如晃动的树叶、光照突变等复杂背景的影响,具有良好的实时性和适应环境变化的能力。

Description

一种基于跟踪的复杂场景下的运动目标检测方法
技术领域
本发明涉及智能视频监控技术领域,具体涉及一种基于跟踪的复杂场景下的运动目标检测方法。
背景技术
随着公共安全建设的加强以及人们安全意识的提高,智能视频监控开始受到人们的关注与青睐。这对安全防范系统、视频监控系统提出了更高的要求。
智能视频监控系统是通过对摄像机拍录的视频进行自动分析来对动态场景中的目标进行检测、跟踪、识别,并在此基础上分析和判断目标的行为。做到即完成日常的监控又能在异常情况发生时及时做出反应,解决传统监控工作量大、效率低、反应速度慢等问题。
运动目标检测是智能视频监控系统中最重要的组成部分,其检测的精确度对后续目标的跟踪、识别、行为分析等产生直接影响。目前,最常用的运动检测方法包括:光流法、帧间差分法、背景差分法等。背景差分法是通过对当前图像和背景图像差分来检测运动目标。其关键是构造一个鲁棒性的背景图像。与帧间差分法和光流法相比较,背景差分法由于建模不需要先验知识、运算速度快、目标检测精准等优点,而成为研究的焦点。现有技术在光照突变和树叶摇晃的运动目标检测过程中,背景更新不及时,导致运动目标检测结果不好。
发明内容
本发明的目的是要解决轻微摇动树叶和光照突变的技术问题,为此,本发明提出一种基于跟踪的复杂场景下的运动目标检测方法。
为了实现所述目的,本发明的技术方案为:
一种基于跟踪的复杂场景下的运动目标检测方法,该方法能够去除光照、树叶抖动及孤立的小噪声或者伪目标,具体步骤如下:
步骤1:对输入的视频帧,采用混合高斯模型进行背景建模并进行模型更新,获取初始前景像素点。
步骤2:分别将当前前景像素和相对应的背景像素与邻域像素进行二值化比较,实现了背景模型的自适应更新,获得运动目标。
步骤3:对运动目标进行跟踪,获取目标的轨迹信息,并根据轨迹信息计算目标偏离初始位置的距离和运动方向改变的次数。
步骤4:计算运动目标和其相对应的背景之间的变异系数,再次判断去除孤立的小噪声或者伪目标。
上述方法中,步骤2能够去除光照突变影响,其过程如下:
使用LBP分别提取当前前景像素和相对应的背景像素的纹理模式;
假设t时刻位置c处(xt,c,yt,c)的像素为gt,c,对应的八个邻域像素为gt,p,p=0,…,7,将每个邻域像素与该像素进行二值化比较,得到一个八位的二进制串;统计当前前景像素的二进制串和背景像素二进制串对应位置相等的个数Num,若Num>6,且该像素点与背景像素点的差值的绝对值小于T,则判断该像素点为背景点,否则该像素点为前景点,这样不仅实现了背景模型的更新,而且还获得了运动目标,其中T是根据场景人为设定的阈值;
LBP t ( x t , c , y t , c ) = Σ p = 0 7 s ( g t , p - g t , c ) 2 p
s ( x ) = 1 x &GreaterEqual; 0 0 x < 0
LBPt(xt,c,yt,c)表示位置c处(xt,c,yt,c)与其周围像素形成的一种纹理模式
上述步骤3,根据轨迹信息计算目标偏离初始位置的距离和运动方向改变的次数的过程如下:
假设目标运动轨迹为(x1,y1)(x2,y2)...(xt-1,yt-1)(xt,yt),则在t时刻目标位置与初始位置的距离为在1到t时刻内目标偏离初始位置最大距离为dmax=max(d1,d2,…,dt);在t分别取2,3,…,t-1时,不等式(dt-1-dt)(dt-dt+1)<0成立的次数为f。
其中dmax用来描述树叶摆动的幅度,f用来描述树叶摆动的频次。若dmax小于D或者f大于N,则判断该目标是因为树叶摆动引起,属于背景;否则判断该目标为运动目标,D和N为人为设定的阈值。
步骤4中,运动目标和其相对应的背景之间的变异系数的计算过程如下:
假设视频序列在时刻t的输入图像为初始背景帧为利用当前帧与背景帧的分量差值建立噪声模型泊松分布,并统计其直方图Hist[d],对所得的直方图计算相关方差Var[d];最后,对所得的相关方差进行排序,寻找出最大值,即为变异系数λ;当变异系数λ大于1时,则判定场景发生突变;
λ=max(Var[d])/C d=0,1,2...254
其中d为当前帧像素和背景帧像素之间的亮度变化,Var[]为相关方差,C为常量。
与现有的方法相比,本发明提出对输入的视频帧,采用混合高斯模型进行背景建模并进行模型更新,获取初始前景像素点。基于LBP纹理特征对光照的不敏感性,分别将当前前景像素和相对应的背景像素与邻域像素进行二值化比较,实现了背景模型的自适应更新,很好的适应光照的突然变化,获得运动目标。再对运动目标进行跟踪,获取目标的轨迹信息,根据轨迹信息计算目标偏离初始位置的距离和运动方向改变的次数,以便去除树叶抖动的影响。最后再通过计算变异系数去除大量孤立的小噪声或者伪目标,获取最终运动目标。该方法有效的解决了运动目标检测易受到复杂树叶扰动和光照变化等的影响,由于局部二值模式和目标的运行速度计算都比较简单,所以该算法同时具有很高的实时性。
附图说明
图1是本发明的用于运动目标前景检测方法的流程图。
图2(a)是原始视频帧;图2(b)是混合高斯模型提取的背景;图2(c)是混合高斯模型提取的前景;图2(d)是本发明提取的前景。
具体实施方式
为使本发明的目的、技术方案和优点更加明确清晰,以下结合具体实例,并参考附图,对本发明进一步详细说明。
本发明研制开发的一种基于跟踪的复杂场景下的运动目标检测方法,是在微机windows 7环境下,采用面向对象的设计方法和软件工程规范,用C++语言实现。
图1是本发明所述方法的具体流程图。下面以图1为例说明本发明中一些具体的实现流程。本发明的方法是一种基于跟踪的复杂场景下的运动目标检测方法,其具体步骤为:
步骤1:对输入的视频序列利用混合高斯背景建模,获取初始运动目标。
对t时刻的每个像素点用变量Xt表示,其概率密度函数可用如下K个高斯函数表示:
p ( X t ) = &Sigma; i = 1 K &omega; i , t . &eta; ( X t , &mu; i , t , &Psi; i , t ) - - - ( 1 )
公式(1)中,ωi,t为第i个高斯分布在t时刻的权值,且有η(Xti,ti,t)是t时刻的第i个高斯分布函数,μi,t和Ψi,t分别代表均值和协方差,表达式为:
&eta; ( X t , u i , t , &psi; i , t ) = 1 ( 2 &pi; ) n 2 | &psi; i , t | 1 2 e - 1 2 ( X t - &mu; i , t ) T &psi; - 1 i , t ( X t - &mu; i , t ) - - - ( 2 )
公式(2)中,i=1,2,...,K,式中,n表示Xt的维数。模型中假设R,G,B三个通道互相独立,并具有相同的方差,则有
ψi,t=σi 2I (3)
公式(3)中,σi 2表示方差,I表示单位矩阵。
对于新帧图像像素值Xt与它K个高斯分布进行匹配,如果K个高斯分布中有某个在M倍标准差范围内,即|Xtt-1|<M*σi(M一般取2.5~3.5),则Xt与该高斯分布匹配,该像素点为背景点,如果Xt与K个高斯分布都不匹配,则认为该像素点为前景点,图2(b)为混合高斯背景建模下提取的背景。对与高斯分布匹配的像素值的参数按照下面公式进行更新:
ωk,t=(1-α)ωk,t-1+αMk,t (4)
μt=(1-ρ)μt-1+ρXt (5)
&sigma; t 2 = ( 1 - &rho; ) &sigma; t - 1 2 + &rho; ( X t - &mu; t ) T ( X t - &mu; t ) - - - ( 6 )
公式(4)~(6)中,ρ是一个更新率,它决定了分布模型更新的快慢。α是一个学习率,Mk,t的取值依匹配情况而定,对与像素当前值匹配的模型取1,其余取0。
&rho; = &lambda; &alpha; w i , t
其中,wi,t为对应高斯分布的当前权值,λ为变异系数,可依据前景运动目标变化情况自适应更新。这样可以针对不同区域,自适应的改变更新率的大小。
对于所有高斯分布中没有一个与像素当前值相匹配,则创建一个新的高斯分布取代现有K个高斯分布中ωtt值最小的模型。在权值更新完后,要对同一混合高斯模型中的各分布的权值按公式(7)进行归一化处理。
&omega; i , t = &omega; i , t &Sigma; j = 1 K &omega; j , t , i = 1 , 2 , ... , K - - - ( 7 )
通过参数更新以后,对K个高斯分布按ω/σ的比值降序排列,然后取满足下式的前b个分布组成背景模型:
B = arg m i n ( &Sigma; k = 1 b &omega; K > T ) - - - ( 8 )
其中,T为背景选取的阈值,T调整描述背景的高斯分布的个数,如果T越大,则对背景描述的高斯分布则越多,但这样会带来更多的内存开销和更大的计算量。
高斯分布个数的确定。初始化时,给场景中每个像素设置一个高斯模型;随着场景的变化,当某个像素的混合高斯模型不能与当前像素值匹配,且该像素的高斯模型个数没有达到设定的最大值,则为该像素自动增加一个高斯模型,均值为当前像素值,否则用新的高斯模型替换排在最后的高斯模型;在每次模型更新完成后,判断每个像素对应的高斯模型中的最后一个高斯成分是否满足式(9),如果不满足则删除。
步骤2:使用局部二值模式分别提取目标的前景和对应背景的纹理模式,具体是:
假设t时刻像素c处(xt,c,yt,c)的像素为gt,c对应的八个邻域像素gt,p,p=0,…,7,将每个邻域像素与该像素进行二值化比较,得到一个八位的二进制串。统计当前前景像素的二进制串和背景像素二进制串对应位置相等的个数Num,若Num>6,且该像素点与背景像素点的差值的绝对值小于T,则判断该像素点为背景点,否则该像素点为前景点,这样不仅实现了背景模型的更新,而且还获得了运动目标,其中T是根据场景人为设定的阈值。
LBP t ( x t , c , y t , c ) = &Sigma; p = 0 7 s ( g t , p - g t , c ) 2 p
s ( x ) = 1 x &GreaterEqual; 0 0 x < 0
LBPt(xt,c,yt,c)刻画了像素(xt,c,yt,c)与其周围像素形成的一种纹理模式。
假设目标的前景图片对应的二进制串为f1f2...fp(p=1,2,...,8),背景图片对应的二进制串为b1b2...bp(p=1,2,...,8)。统计当前前景像素的二进制串和背景像素二进制串对应位置相等的个数Num,若Num>6,且该像素点与背景像素点的差值的绝对值小于T,则判断该像素点为背景点,否则该像素点为前景点。其中T是根据场景人为设定的阈值。
步骤3.对步骤2获得的运动目标进行跟踪,利用跟踪轨迹计算目标偏离初始位置的距离和运动方向改变的次数,具体是:
假设目标运动轨迹为(x1,y1)(x2,y2)...(xt-1,yt-1)(xt,yt),则在t时刻目标位置与初始位置的距离为在1到t时刻内目标偏离初始位置最大距离为dmax=max(d1,d2,…,dt);在t分别取2,3,…,t-1时,不等式(dt-1-dt)(dt-dt+1)<0成立的次数为f。
其中dmax用来描述树叶摆动的幅度,f用来描述树叶摆动的频次。若dmax小于D或者f大于N,则判断该目标是因为树叶摆动引起,属于背景;否则判断该目标为运动目标,D和N为人为设定的阈值。
步骤4:对步骤3获得的运动目标计算变异系数,具体是:
假设视频序列在时刻t的输入图像为初始背景帧为利用当前帧与背景帧的分量差值建立噪声模型泊松分布,并统计其直方图Hist[d],对所得的直方图计算相关方差Var[d];最后,对所得的相关方差进行排序,寻找出最大值,即为变异系数λ;当变异系数λ大于1时,则判定场景发生突变;
λ=max(Var[d])/C d=0,1,2...254
其中d为当前帧像素和背景帧像素之间的亮度变化,Var[]为相关方差,C为常量。
Var[d]=E{[Xd-E(Xd)]2}
=E(x2)-(E(x))2
=SQd/Cd-(Sd/Cd)2
SQ d = &Sigma; d 255 d * d * H i s t &lsqb; d &rsqb; , d = 0 , 1 , 2...254
S d = &Sigma; d 255 d * H i s t &lsqb; d &rsqb; , d = 0 , 1 , 2 , ... , 254
P d = &Sigma; d 255 H i s t &lsqb; d &rsqb; , d = 0 , 1 , 2...254
d=|Iin(i,j)-Ibg(i,j)|
H i s t &lsqb; d &rsqb; = &Sigma; i = 0 H &Sigma; j = 0 W d
Iin=(Rin,Gin,Bin)为输入图像像素向量,Ibg=(Rbg,Gbg,Bbg)为背景图像像素向量。(i,j)为图像中每个像素的坐标。H和W分别为图像的高和宽。若Pd=0,则Cd=1,否则,Cd=Pd
若变异系数大于Tλ,则判断该目标为最终运动目标,否则判断该目标为其他干扰,属于背景。其中Tλ为变异系数阈值。图2(c)为混合高斯模型提取的前景,图2(d)为本发明提取的前景。从图2(c)、(d)可以看出,本发明方法能够有效去除大量的伪目标,克服树叶摆动的影响。
以上所述的本发明的实施方式,并不构成对本发明保护范围的限定。任何在本发明的精神原则之内所作出的修改、等同替换和改进等,均应包含在本发明的权利要求保护范围之内。

Claims (4)

1.一种基于跟踪的复杂场景下的运动目标检测方法,其特征在于,具体包括步骤如下:
步骤1:对输入的视频帧,采用混合高斯模型进行背景建模并进行模型更新,获取初始前景像素点;
步骤2:分别将当前前景像素和相对应的背景像素与邻域像素进行二值化比较,实现了背景模型的自适应更新,获得运动目标;
步骤3:对运动目标进行跟踪,获取目标的轨迹信息,并根据轨迹信息计算目标偏离初始位置的距离和运动方向改变的次数;
步骤4:计算运动目标和其相对应的背景之间的变异系数,再次判断去除孤立的小噪声或者伪目标。
2.根据权利要求1所述的一种基于跟踪的复杂场景下的运动目标检测方法,其特征在于,步骤2中的实现过程如下:
使用LBP分别提取当前前景像素和相对应的背景像素的纹理模式;
假设t时刻位置c处(xt,c,yt,c)的像素为gt,c,对应的八个邻域像素为gt,p,p=0,…,7,将每个邻域像素与该像素进行二值化比较,得到一个八位的二进制串;统计当前前景像素的二进制串和背景像素二进制串对应位置相等的个数Num,若Num>6,且该像素点与背景像素点的差值的绝对值小于T,则判断该像素点为背景点,否则该像素点为前景点,这样不仅实现了背景模型的更新,而且还获得了运动目标,其中T是根据场景人为设定的阈值。
LBP t ( x t , c , y t , c ) = &Sigma; p = 0 7 s ( g t , p - g t , c ) 2 p
s ( x ) = 1 x &GreaterEqual; 0 0 x < 0
LBPt(xt,c,yt,c)表示位置c处(xt,c,yt,c)与其周围像素形成的一种纹理模式。
3.根据权利要求1所述的一种基于跟踪的复杂场景下的运动目标检测方法,其特征在于,步骤3根据轨迹信息计算目标偏离初始位置的距离和运动方向改变的次数的过程如下:
假设目标运动轨迹为(x1,y1)(x2,y2)...(xt-1,yt-1)(xt,yt),则在t时刻目标位置与初始位置的距离为在1到t时刻内目标偏离初始位置最大距离为dmax=max(d1,d2,…,dt);在t分别取2,3,…,t-1时,不等式(dt-1-dt)(dt-dt+1)<0成立的次数为f。
其中dmax用来描述树叶摆动的幅度,f用来描述树叶摆动的频次。若dmax小于D或者f大于N,则判断该目标是因为树叶摆动引起,属于背景;否则判断该目标为运动目标,D和N为人为设定的阈值。
4.根据权利要求1所述的一种基于跟踪的复杂场景下的运动目标检测方法,其特征在于,步骤4中,运动目标和其相对应的背景之间的变异系数的计算过程如下:
假设视频序列在时刻t的输入图像为初始背景帧为利用当前帧与背景帧的分量差值建立噪声模型泊松分布,并统计其直方图Hist[d],对所得的直方图计算相关方差Var[d];最后,对所得的相关方差进行排序,寻找出最大值,即为变异系数λ;当变异系数λ大于1时,则判定场景发生突变;
λ=max(Var[d])/C d=0,1,2...254
其中d为当前帧像素和背景帧像素之间的亮度变化,Var[]为相关方差,C为常量。
CN201610539182.9A 2016-07-08 2016-07-08 一种基于跟踪的复杂场景下的运动目标检测方法 Active CN106204586B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610539182.9A CN106204586B (zh) 2016-07-08 2016-07-08 一种基于跟踪的复杂场景下的运动目标检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610539182.9A CN106204586B (zh) 2016-07-08 2016-07-08 一种基于跟踪的复杂场景下的运动目标检测方法

Publications (2)

Publication Number Publication Date
CN106204586A true CN106204586A (zh) 2016-12-07
CN106204586B CN106204586B (zh) 2019-07-19

Family

ID=57474146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610539182.9A Active CN106204586B (zh) 2016-07-08 2016-07-08 一种基于跟踪的复杂场景下的运动目标检测方法

Country Status (1)

Country Link
CN (1) CN106204586B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106874949A (zh) * 2017-02-10 2017-06-20 华中科技大学 一种基于红外图像的动平台运动目标检测方法及系统
CN108389430A (zh) * 2018-01-12 2018-08-10 南京理工大学 一种基于视频检测的交叉口行人与机动车碰撞预测方法
CN108629254A (zh) * 2017-03-24 2018-10-09 杭州海康威视数字技术股份有限公司 一种运动目标的检测方法及装置
CN109948776A (zh) * 2019-02-26 2019-06-28 华南农业大学 一种基于lbp的对抗网络模型图片标签生成方法
CN111273050A (zh) * 2020-02-12 2020-06-12 清华大学 信号采集处理方法及装置
CN112561962A (zh) * 2020-12-15 2021-03-26 北京伟杰东博信息科技有限公司 一种目标对象的跟踪方法及系统
CN112770090A (zh) * 2020-12-28 2021-05-07 杭州电子科技大学 一种基于异动检测与目标跟踪的监控方法
CN113156457A (zh) * 2021-05-07 2021-07-23 长春理工大学 一种基于主动偏振成像的水下运动目标检测装置及方法
CN113643323A (zh) * 2021-08-20 2021-11-12 中国矿业大学 城市地下综合管廊尘雾环境下目标检测系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235950A (zh) * 2013-05-14 2013-08-07 南京理工大学 一种目标检测图像处理方法
CN105303581A (zh) * 2014-06-12 2016-02-03 南京理工大学 一种自适应参数的运动目标检测方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103235950A (zh) * 2013-05-14 2013-08-07 南京理工大学 一种目标检测图像处理方法
CN105303581A (zh) * 2014-06-12 2016-02-03 南京理工大学 一种自适应参数的运动目标检测方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DENG-YUAN HUANG等: "Reliable moving vehicle detection based on the filtering of swinging tree leaves and raindrops", 《JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION》 *
MARKO HEIKKILA等: "A Texture-Based Method for Modeling the Background and Detecting Moving Objects", 《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》 *
XU JINGXIN等: "Dynamic texture reconstruction from sparse codes for unusual event detection in crowded scenes", 《JOINT ACM WORKSHOP ON MODELING AND REPRESENTING EVENTS》 *
何亮明等: "动态场景中的改进混合高斯背景模型", 《计算机工程》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106874949A (zh) * 2017-02-10 2017-06-20 华中科技大学 一种基于红外图像的动平台运动目标检测方法及系统
CN108629254A (zh) * 2017-03-24 2018-10-09 杭州海康威视数字技术股份有限公司 一种运动目标的检测方法及装置
CN108389430A (zh) * 2018-01-12 2018-08-10 南京理工大学 一种基于视频检测的交叉口行人与机动车碰撞预测方法
CN108389430B (zh) * 2018-01-12 2021-02-26 南京理工大学 一种基于视频检测的交叉口行人与机动车碰撞预测方法
CN109948776A (zh) * 2019-02-26 2019-06-28 华南农业大学 一种基于lbp的对抗网络模型图片标签生成方法
CN111273050A (zh) * 2020-02-12 2020-06-12 清华大学 信号采集处理方法及装置
CN112561962A (zh) * 2020-12-15 2021-03-26 北京伟杰东博信息科技有限公司 一种目标对象的跟踪方法及系统
CN112770090A (zh) * 2020-12-28 2021-05-07 杭州电子科技大学 一种基于异动检测与目标跟踪的监控方法
CN113156457A (zh) * 2021-05-07 2021-07-23 长春理工大学 一种基于主动偏振成像的水下运动目标检测装置及方法
CN113643323A (zh) * 2021-08-20 2021-11-12 中国矿业大学 城市地下综合管廊尘雾环境下目标检测系统
CN113643323B (zh) * 2021-08-20 2023-10-03 中国矿业大学 城市地下综合管廊尘雾环境下目标检测系统

Also Published As

Publication number Publication date
CN106204586B (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN106204586A (zh) 一种基于跟踪的复杂场景下的运动目标检测方法
CN105354791B (zh) 一种改进的自适应混合高斯前景检测方法
US20230289979A1 (en) A method for video moving object detection based on relative statistical characteristics of image pixels
CN103971386B (zh) 一种动态背景场景下的前景检测方法
CN101142593B (zh) 跟踪视频序列中的目标的方法
CN103246896B (zh) 一种鲁棒性车辆实时检测与跟踪方法
CN106780548A (zh) 基于交通视频的运动车辆检测方法
CN101751679A (zh) 运动目标的分类方法和检测方法及其装置
CN101470809A (zh) 一种基于扩展混合高斯模型的运动目标检测方法
CN103123726B (zh) 一种基于运动行为分析的目标跟踪算法
CN106778712A (zh) 一种多目标检测与跟踪方法
CN111192294B (zh) 一种基于目标检测的目标跟踪方法及系统
CN105976401B (zh) 基于分块多示例学习算法的目标跟踪方法和系统
CN102339390B (zh) 一种视频监控系统目标模板的更新方法及系统
CN105654505A (zh) 一种基于超像素的协同跟踪算法和系统
JP6080572B2 (ja) 通行物体検出装置
CN104077591A (zh) 电脑智能自动监控系统
CN102800105B (zh) 基于运动矢量的目标检测方法
Song et al. A robust moving objects detection based on improved Gaussian mixture model
CN102592125A (zh) 基于标准差特征的运动目标检测方法
Li et al. Moving vehicle detection based on an improved interframe difference and a Gaussian model
KR20060031829A (ko) 움직이는 객체 영역 검출을 위한 적응 배경 학습 방법
CN115188081A (zh) 一种面向复杂场景的检测跟踪一体化方法
CN108241837B (zh) 一种遗留物检测方法和装置
Chen et al. Robust anomaly detection via fusion of appearance and motion features

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant