CN106777771A - 基于小波有限元模型的二维声子晶体板结构带隙设计方法 - Google Patents

基于小波有限元模型的二维声子晶体板结构带隙设计方法 Download PDF

Info

Publication number
CN106777771A
CN106777771A CN201710013871.0A CN201710013871A CN106777771A CN 106777771 A CN106777771 A CN 106777771A CN 201710013871 A CN201710013871 A CN 201710013871A CN 106777771 A CN106777771 A CN 106777771A
Authority
CN
China
Prior art keywords
band gap
finite element
phi
wavelet
phononic crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710013871.0A
Other languages
English (en)
Other versions
CN106777771B (zh
Inventor
向家伟
刘帽
钟永腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201710013871.0A priority Critical patent/CN106777771B/zh
Publication of CN106777771A publication Critical patent/CN106777771A/zh
Application granted granted Critical
Publication of CN106777771B publication Critical patent/CN106777771B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Integrated Circuits (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

本发明公开了一种基于小波有限元模型的二维声子晶体板结构带隙设计方法。该小波有限元模型采用区间B样条小波与有限元法相结合,用BSWI尺度函数取代传统有限元的多项式插值,结合单胞技术和周期边界条件PBCs建立关于二维声子晶体离散结构的实对称特征值问题,进而计算获得声子晶体的带隙特性。该二维声子晶体板结构带隙计算的小波有限元模型吸取了有限元方法能处理具有复杂求解域和小波多尺度逼近特性的优势,可以获得精度高、收敛快的数值计算模型。本发明提出的二维声子晶体板结构带隙设计的小波有限元模型计算精度高且收敛快,适合于二维声子晶体板结构带隙设计。

Description

基于小波有限元模型的二维声子晶体板结构带隙设计方法
技术领域
本发明属声学功能材料结构设计领域,具体涉及一种基于小波有限元模型的二维声子晶体板结构带隙设计方法。
背景技术
近年来,以自然晶体中电子能带理论为基础,学者对周期结构中弹性波的传播产生了浓厚的兴趣,势必找到振动控制的良策。1993年,Kushwaha等人在研究材料周期变化的结构时第一次使用了声子晶体的概念。并指出声子晶体具有的带隙特性能够应用到高精密、无振动环境中。1995年,R.Martinez-Sala等人对雕塑“流动的旋律”做声学试验测试时,首次实验验证了存在弹性波带隙。从这之后,声子晶体得到了国内外众多学者的关注。
平面波展开法(PWE)是声子晶体研究中最常用的算法之一,适用于各维声子晶体板结构带隙计算。其基本理论是:因为声子晶体结构是材料周期性的,可以把材料参数等按傅里叶级数展开,并利用Bloch定理,在倒格矢空间中,可以将波的动力学方程以平面波叠加的形式展开,此时动力学方程就转化为特征值问题,经过计算特征值得到能带结构。PWE法在计算固/固、液(气)/液(气)等形成的多种声子晶体时十分有效,但是对于计算液(气)/固体组成的声子晶体时面临很大困难。当材料构成差异很大时,计算收敛很慢,耗费大量时间,而且其结果也不精确。
传递矩阵法(TM)是目前计算一维声子晶体带隙特性使用较多的方法。此方法首先推导出单个周期的传递矩阵。然后通过施加周期边界条件,从而得出频散曲线的解析解;在限定的周期结构振动传输特性计算中,只要利用传递矩阵乘积就能获得其结果。虽然TM法计算量很小,但目前较难分析二维和三维问题。
多重散射法(MST)可用于二维和三维声子晶体的带隙特性计算。该方法在求解声子晶体带结构和弹性波反射/透射系数时,是先通过分析散射弹性波与各个散射体的入射关系而得出的。但该方法存在一 定的局限,主要解决二维圆柱和三维球状散射体构成的声子晶体。
有限元法(FEM)已广泛用于复杂工程结构对象的定量分析。尤其在固体力学和结构分析领域,许多通用程序直接用于工程应用。求解的基本思想是将连续的求解区域进行离散处理,然后根据变分原理及弹性力学基本方程,将未知场函数用单元内假设的近似函数来分片的表示,再结合平衡条件得出有限元求解方程,引入边界条件,就可以通过插值函数计算出整个求解域的近似值。除了上述常用的算法外,国内外学者还提出了时域有限差分法、边界元法、谱有限元法、变分法、集中质量法等,在这里不作详述。
虽然上述有些算法已经得到了大量应用,但共性缺点在于精度不高、收敛慢等问题,这制约了声子晶体板结构带隙设计,应用于工程实践。
发明内容
为了克服以上的技术不足,本发明提供一种基于小波有限元模型的二维声子晶体板结构带隙设计方法。
本发明提供一种基于小波有限元模型的二维声子晶体板结构带隙设计方法,其包括以下步骤:
一、通过将区间B样条小波与有限元法相结合,建立二维声子晶体板结构带隙特性计算模型;
二、采用一中所构造的计算模型,并在频域内,结合单胞结构和周期边界条件PBCs获得声子晶体的带隙特性;
三、为获得满足特定频带要求的带隙特性,通过不断计算调整二维声子晶体板结构尺寸,在固定晶格常数的前提下,通过获得最佳填充率,确定散射体几何尺寸关系,最终完成二维声子晶体板结构带隙设计,获得二维声子晶体板结构尺寸。
一中包括以下步骤:
1)获得板势能泛函
通过变分原理,令δΠp=0,可得到单元求解方程
其中,单元载荷列阵为
获得单元刚度矩阵为
并得到一致质量矩阵
并获得声子晶体板单胞的特征频率方程:
(K-ω2M)v=Dv=0
其中D=(K-ω2M)表示动力刚度矩阵,ω为角频率,K和M分别表示总体刚度矩阵与质量矩阵,v为总体自由度排列。
二中包括以下步骤:
首先将单胞节点分成9组,即4个边界节点、4个角节点和内部节点,则将带隙计算模型转换为
其中,v4为内部节点自由度,v3,v7,v8和v9表示4个角点自由度,v1,v2,v5和v6表示4个边界节点自由度;
其次将波矢k作为横坐标x、特征频率为纵坐标y,当具体波矢k=[kx ky],kx ky为波数,当其在第一Brillouin边界取值时,就可得到声子晶体板结构带隙特性,可用简约波矢M、Γ、X做为横坐标,用频率作为纵坐标描述。
本发明的有益效果:本发明由于将BSWI与有限元法相结合,用BSWI尺度函数取代传统有限元的多项式插值,进而建立二维声子晶体板结构带隙特性计算模型。结合单胞结构和周期边界条件PBCs就能计算声子晶体的带隙特性。具有下列区别于传统有限元求解方法的显著优势:
1)BSWI结合传统有限元的多功能性与B样条函数的优良逼近性进行结构分析,在声子晶体带隙计算过程中,用精确的BSWI尺度函数代替传统的多项式插值来形成形状函数,进而构成单元,因此,可以方便计算出刚度与质量矩阵,能够利用较少的单元与自由度数获得较高的计算精度。这使得BSWI小波有限元较传统有限元法具有更好的计算效率和收敛性;
2)本发明结合ω(k)技术将复杂的波矢问题转化为纯粹的实频域内来解决,并通过动力凝聚将频散曲线简化为三次多项式特征值问题;
3)通过构建二维声子晶体板结构带隙设计的小波有限元模型,不断调整声子晶体板结构尺寸,可高精度、快速收敛地获得所需要的带隙特性,最终完成声子晶体板结构带隙设计。
附图说明
图1是本发明的板单元求解域Ωe
图2a是本发明的单胞的几何布局图
图2b是本发明的单胞的离散布局图。
图3是本发明的小波有限元模型计算的带隙特性(实线)和传统有限元模型计算的带隙特性(点与虚线)。
图4是本发明的长方晶格的带隙特性。
图5是本发明的填充率为f=32.6%时长方晶格的带隙特性。
图6是本发明的各组元材料的弹性常数表。
具体实施方式
下面结合附图对本发明实施例作进一步说明:
如图所示,本发明提供如下方法:
1)将区BSWI与有限元法相结合,用BSWI尺度函数取代传统有限元的多项式插值,进而建立二维声子晶体板结构带隙特性计算模型。
板势能泛函为
式中,Ωe为单元求解域,t为单元厚度,f={fx fy}T为体力向量,面力向量p={pxpy}T,位移场向量u={u v}T,ui={ui vi}T为集中载荷作用点的位移,弹性阵D为
式中,E为弹性模量,μ为泊松比,应变阵ε={εx εy γxy}T
应力应变关系为
σ={σx σy τxy}T=Dε (4)
采用二维BSWI尺度函数插值时,标准区间Ωs中的未知位移场函数表示为
式中,为某尺度下BSWI的尺度函数,ue,ve为物理空间自由度列向量,表示为
式中,i=1,2,…,n+1。
单元矩形求解域Ωe和单元节点及自由度排列如图1所示,单元 边长分别为lex和ley
对势能泛函式(1),首先将单元求解域Ωe映射到单元标准求解域Ωs,然后将式(2)、(3)和式(5)代入式(1),并由变分原理,令δΠp=0,可得到单元求解方程
其中,单元载荷列阵为
单元刚度矩阵为
Ke,3=(Ke,2)T
以上各式中积分项为
i,j=0,1中lex,dξ和分别用ley,dη和替换,可得到 i,j=0,1表达式。
由于u和v各自独立插值,可以将单元求解方程式(7)按照单元节点自由度{u1,1v1,1…u1,n+1 v1,n+1|…|un+1,1 vn+1,1…un+1,n+1 vn+1,n+1}T进行排列,从而得到BSWI板单元有限元求解方程
式中
式中,各元素分别为式(7)中各子阵Ke,1、Ke,2、Ke,3和Ke,4中对应元素一致质量矩阵为
如图所示,板的单胞结构图,一个声子晶体板单胞由矩形B部分镶嵌于矩形A中,B部分的几何尺寸为长La宽Lb,矩形A部分几何尺寸为长Lx宽Ly。那么,声子晶体板结构就由单胞结构向XY平面延伸得到的。
如图2(b),现将单胞结构离散成9个BSWI4j(4表示B样条小波阶数,j为B样条小波尺度)有限元单元,分别编号为1,2,…,9。单胞内相应的自由度v也被分成9组,即vi(i=1,…,9),其中,v4为内部节点自由度,v3,v7,v8和v9表示4个角点自由度,v1,v2,v5和v6表示4个边界节点自由度。
二维声子晶体板单胞的特征频率方程为
(K-ω2M)v=Dv=0 (13)
这里,D=(K-ω2M)表示动力刚度矩阵,ω为角频率,K和M分别表示总体刚度矩阵与质量矩阵,v为总体自由度排列。
总体刚度矩阵K和质量矩阵M是由9个BSWI4j单元的刚度矩阵与质量矩阵叠加而得到的。表示A部分的单元刚度矩阵与单元质量矩阵,分别表示B部分的单元刚度矩阵与质量矩阵。KA,j和MA,j分别为A部分的局部总体刚度矩阵与质量矩阵;KB,j和MB,j分别表示B部分的局部总体刚度矩阵与质量矩阵。
为了简化计算,将单胞的节点分成9个子块,则式(13)变为
在边界节点x=Lx、y=Ly、x=0和y=0处施加周期边界条件,则矩阵将被分成以下4个部分,它们相应的表达式为
这里,kx和ky表示波数。边界节点自由度自然就与波数建立起了联系。内部节点自由度v4将通过以下动力凝聚矩阵得到缩减
其中,
式中,n1=2(2jm+2m+2jn+2n-1),n2=2(10m+10n+1),ni为单胞的内部节点自由度,m和n分别表示单胞在X和Y方向上的单元数,I和0分别表示相应维度上的单位矩阵与零矩阵。最终,二维声子晶体板的带隙计算方程为
其中,
其中,m1=2(2jm+3m-1),m2=2(2jn+3n-1),m3=2。方程呈现了一个关于二维声子晶体板离散结构的实对称特征值问题,可以用一个实矩阵表达式来替换复杂的矩阵方程。通过求解特征值方程,每一个波矢k可以得到与之对应的一组特征频率,每个特征频率有其对应的特征向量,特征向量表示在该频率下声子晶体结构的运动形式。将波矢k作为横坐标x、特征频率为纵坐标y,当具体波矢k=[kx ky],kx ky为波数,当其在第一Brillouin边界取值时,就可得到声子晶体板结构带隙特性,可用简约波矢M、Γ、X做为横坐标,用频率作为纵坐标描述。
实施例1:本实施例主要验证二维声子晶体板结构带隙计算的小波有限元数值求解模型计算精度。为了验证所构造的BSWI板单元在声子晶体带隙计算方面的正确性与有效性,本节将给出算例验证。如图2所示,散射体采用矩形铅板(B部分)周期排列镶嵌于环氧树脂(A部分)基体中构成了二维声子晶体板,其填充率为f=(La×Lb)/(Lx×Ly)=11%,限定晶格常数Lx与Ly均等于0.03m,铅与环氧树脂的材料参数见图6。
首先采用9(m=3,n=3)个BSWI43板单元去计算二维声子晶体带隙特性,这里使用的BSWI尺度函数为4阶3尺度,9个BSWI单元总体自由度为1992个,其计算结果见图3实线所示。同样,也采用了50×50,80×80个传统板单元去计算二维声子晶体带隙,其总体自由度分别为5202个与13122个,计算结果见图3虚线与点线表示。从图3通过对比得到,在低频带隙区域,9个BSWI43板单元与传统板单元吻合的很好,但是在高频带隙区域,小波有限元法较传统有限元 法具有更好地收敛性与稳定性。有限元法已经成功计算了二维声子晶体带隙且计算精度较好。图3中显示9个BSWI43板单元已经比900个传统板单元的精度还高,这表明了本节所构造的BSWI板单元在二维声子晶体带隙计算方面具有了很高的精度,能够以很少的计算自由度获取很高的计算精度,这势必减少了计算时间和提高了计算效率。
实施例2:本实施例主要验证二维长方板声子晶体带隙计算的小波有限元数值求解模型计算效率。长方板作为结构部件也广泛应用于工程实际,本文将利用BSWI小波有限元法研究不同晶格形式的声子晶体带隙。铅与环氧树脂的材料参数见图6。
我们采用长方晶格去研究声子晶体带隙的影响,其中Lx不等于Ly。相应的结构参数为:Lx=0.03m、Ly=0.02m、La=Lb=0.01m、填充率为f=16.7%。分别采用9个BSWI43板单元(m=3,n=3)、20×20、40×40个传统长方板单元去计算声子晶体带隙,其结果见图4,分别用点、实线、正方框表示其结果。与正方晶格声子晶体具有相似的计算结果,在低频域内,BSWI小波有限元法的带隙计算结果与传统有限元法基本吻合。但是,在高频域内,9个BSWI43板单元1992个自由度明显小于传统板单元的7442个,且计算精度高。这说明了BSWI小波有限元在计算长方晶格时也具有较高的精度和较快的收敛速度。这大大降低了计算时间,提高了计算效率。
实施例3:本实施例主要给出利用基于小波有限元模型计算得到的具有较宽带隙的二维长方板声子晶体结构尺度范围。铅与环氧树脂的材料参数见图6。不失一般性,固定结构参数为:Lx=0.03m、Ly=0.02m。
采用9个BSWI43板单元(m=3,n=3)计算声子晶体带隙。为获得满足特定频带要求的带隙特性,通过不断计算调整二维声子晶体板结构尺寸,在固定晶格常数的前提下,通过获得最佳填充率,确定散射体几何尺寸关系,最终完成二维声子晶体板结构带隙设计,获得二维声子晶体板结构尺寸。当填充率为f=32.6%时能获得最低的第一完全带隙起始频率,由f=(La×Lb)/(0.03×0.02)=32.6%,可得La×Lb=1.956×10-4m2。满足La×Lb=1.956×10-4m2要求的散射体(B部分)尺寸的带隙求解结果见图5,第一完全带隙如灰色区域所示,其起始 频率(灰色区域的下边界)低至13.1KHz,而截止频率(灰色区域的上边界)高至21.6KHz。禁带(该频率范围内声波不能通过)宽度为8.5KHz,而工程应用中高频噪声范围是:10000Hz~20000Hz。因此,该二维长方板声子晶体结构具有良好的抑制工程中高频噪声的能力。
以上数值算例表明,与传统有限元相比,BSWI平面板单元在计算二维声子晶体带隙方面具有计算精度高和收敛性快的特点。最后,可通过构建二维声子晶体板结构带隙设计的小波有限元模型,不断调整声子晶体板结构尺寸(填充率为f,晶格常数Lx与Ly,La与Lb),可高性能(快速、稳定性、收敛)地获得所需要的带隙特性,最终完成声子晶体板结构带隙设计,获得符合特定要求带隙特性的声子晶体板结构。
实施例不应视为对本发明的限制,任何基于本发明的精神所作的改进,都应在本发明的保护范围之内。

Claims (3)

1.一种基于小波有限元模型的二维声子晶体板结构带隙设计方法,
其特征在于:其包括以下步骤:
一、通过将区间B样条小波与有限元法相结合,建立二维声子晶体板结构带隙特性计算模型;
二、采用一中所构造的计算模型,并在频域内,结合单胞结构和周期边界条件PBCs获得声子晶体的带隙特性;
三、为获得满足特定频带要求的带隙特性,通过不断计算调整二维声子晶体板结构尺寸,在固定晶格常数的前提下,通过获得最佳填充率,确定散射体几何尺寸关系,最终完成二维声子晶体板结构带隙设计,获得二维声子晶体板结构尺寸。
2.根据权利要求1所述的基于小波有限元模型的二维声子晶体板结构带隙设计方法,其特征在于,一中包括以下步骤:
1)获得板势能泛函
Π p ( u ) = ∫ Ω e 1 2 ϵ T D ϵ t d x d y - ∫ Ω e u T f t d x d y - ∫ S σ u T p t d s ,
Γ 1 0 , 0 = ( T 1 e ) T { l α ∫ 0 1 Φ 1 T Φ 1 d ξ } T 1 e ,
Γ 1 0 , 1 = ( T 1 e ) T { ∫ 0 1 Φ 1 T dΦ 1 d ξ d ξ } T 1 e ,
通过变分原理,令δΠp=0,可得到单元求解方程
K e , 1 K e , 2 K e , 3 K e , 4 u e v e = P a e P b e ,
其中,单元载荷列阵为
获得单元刚度矩阵为
Γ 1 1 , 0 = ( T 1 e ) T { l e x ∫ 0 1 dΦ 1 T d ξ Φ 1 d ξ } T 1 e ,
Γ 1 1 , 1 = ( T 1 e ) T { 1 / l e x ∫ 0 1 dΦ 1 T d ξ dΦ 1 d ξ d ξ } T 1 e ,
Γ 1 1 , 0 = ( T 1 e ) T { l e x ∫ 0 1 dΦ 1 T d ξ Φ 1 d ξ } T 1 e ,
Γ 1 1 , 1 = ( T 1 e ) T { 1 / l e x ∫ 0 1 dΦ 1 T d ξ dΦ 1 d ξ d ξ } T 1 e ,
并得到一致质量矩阵
M ~ = l x l y ρtΓ 1 0 , 0 ⊗ Γ 2 0 , 0 ,
并获得声子晶体板单胞的特征频率方程:
(K-ω2M)v=Dv=0,
其中D=(K-ω2M)表示动力刚度矩阵,ω为角频率,K和M分别表示总体刚度矩阵与质量矩阵,v为总体自由度排列。
3.根据权利要求2所述的基于小波有限元模型的二维声子晶体板结构带隙设计方法,其特征在于,二中包括以下步骤:
首先将单胞节点分成9组,即4个边界节点、4个角节点和内部节点,则将带隙计算模型转换为
其中,v4为内部节点自由度,v3,v7,v8和v9表示4个角点自由度,v1,v2,v5和v6表示4个边界节点自由度;
其次将波矢k作为横坐标x、特征频率为纵坐标y,当具体波矢k=[kx ky],kx ky为波数,当其在第一Brillouin边界取值时,就可得到声子晶体板结构带隙特性,可用简约波矢M、Γ、X做为横坐标,用频率作为纵坐标描述。
CN201710013871.0A 2017-01-09 2017-01-09 基于小波有限元模型的二维声子晶体板结构带隙设计方法 Active CN106777771B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710013871.0A CN106777771B (zh) 2017-01-09 2017-01-09 基于小波有限元模型的二维声子晶体板结构带隙设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710013871.0A CN106777771B (zh) 2017-01-09 2017-01-09 基于小波有限元模型的二维声子晶体板结构带隙设计方法

Publications (2)

Publication Number Publication Date
CN106777771A true CN106777771A (zh) 2017-05-31
CN106777771B CN106777771B (zh) 2020-06-26

Family

ID=58950791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710013871.0A Active CN106777771B (zh) 2017-01-09 2017-01-09 基于小波有限元模型的二维声子晶体板结构带隙设计方法

Country Status (1)

Country Link
CN (1) CN106777771B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109740268A (zh) * 2019-01-07 2019-05-10 重庆大学 一种建筑用夹芯板生产方法
CN110232239A (zh) * 2019-06-11 2019-09-13 中原工学院 一种基于反问题的一维声子晶体带隙设计方法
CN110472287A (zh) * 2019-07-16 2019-11-19 西北工业大学 一种周期结构中弹性波传播特性的控制方法
CN111368479A (zh) * 2020-03-06 2020-07-03 华北电力大学(保定) 一种用于变电站降噪的轻量化复合声子晶体薄板制备方法
CN111400945A (zh) * 2020-03-06 2020-07-10 华北电力大学(保定) 一种局域共振型声子晶体的轻量化设计方法
CN112836416A (zh) * 2021-02-27 2021-05-25 西北工业大学 一种用于抑制弹性波传播的声子晶体结构优化设计方法
CN113031263A (zh) * 2021-03-29 2021-06-25 温州大学 基于小波边界元模型的二维正方晶格光子晶体带隙设计方法
CN113868776A (zh) * 2021-12-01 2021-12-31 中国铁路设计集团有限公司 车辆段上盖的桩柱联构周期分形拓扑减振基础设计方法
CN114239374A (zh) * 2021-12-31 2022-03-25 华侨大学 基于晶格常数的单晶材料势函数修正方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176272A (zh) * 2011-12-21 2013-06-26 北京邮电大学 二维光子晶体最大绝对带隙结构优化方法
CN103246807A (zh) * 2013-04-26 2013-08-14 北京工业大学 一种二维固-固声子晶体混合模态带隙优化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176272A (zh) * 2011-12-21 2013-06-26 北京邮电大学 二维光子晶体最大绝对带隙结构优化方法
CN103246807A (zh) * 2013-04-26 2013-08-14 北京工业大学 一种二维固-固声子晶体混合模态带隙优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAO LIU 等: "Research on Band Structure of One-dimensional Phononic Crystals Based on Wavelet Finite Element Method", 《CMES》 *
ZHIZHONG YAN 等: "Wavelet Method for Calculating the Defect States of Two-dimensional Phononic Crystals", 《ACTA MECHANICA SOLIDA SINICA》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109740268A (zh) * 2019-01-07 2019-05-10 重庆大学 一种建筑用夹芯板生产方法
CN110232239A (zh) * 2019-06-11 2019-09-13 中原工学院 一种基于反问题的一维声子晶体带隙设计方法
CN110472287A (zh) * 2019-07-16 2019-11-19 西北工业大学 一种周期结构中弹性波传播特性的控制方法
CN111368479A (zh) * 2020-03-06 2020-07-03 华北电力大学(保定) 一种用于变电站降噪的轻量化复合声子晶体薄板制备方法
CN111400945A (zh) * 2020-03-06 2020-07-10 华北电力大学(保定) 一种局域共振型声子晶体的轻量化设计方法
CN111368479B (zh) * 2020-03-06 2022-04-05 华北电力大学(保定) 一种用于变电站降噪的轻量化复合声子晶体薄板制备方法
CN111400945B (zh) * 2020-03-06 2023-10-20 华北电力大学(保定) 一种局域共振型声子晶体的轻量化设计方法
CN112836416A (zh) * 2021-02-27 2021-05-25 西北工业大学 一种用于抑制弹性波传播的声子晶体结构优化设计方法
CN112836416B (zh) * 2021-02-27 2023-02-28 西北工业大学 一种用于抑制弹性波传播的声子晶体结构优化设计方法
CN113031263A (zh) * 2021-03-29 2021-06-25 温州大学 基于小波边界元模型的二维正方晶格光子晶体带隙设计方法
CN113868776A (zh) * 2021-12-01 2021-12-31 中国铁路设计集团有限公司 车辆段上盖的桩柱联构周期分形拓扑减振基础设计方法
CN114239374A (zh) * 2021-12-31 2022-03-25 华侨大学 基于晶格常数的单晶材料势函数修正方法

Also Published As

Publication number Publication date
CN106777771B (zh) 2020-06-26

Similar Documents

Publication Publication Date Title
CN106777771B (zh) 基于小波有限元模型的二维声子晶体板结构带隙设计方法
Li et al. Nonlinear dynamic response of sandwich plates with functionally graded auxetic 3D lattice core
Guo et al. A new method for band gap analysis of periodic structures using virtual spring model and energy functional variational principle
Phani et al. Wave propagation in two-dimensional periodic lattices
Li et al. An efficient algorithm to analyze wave propagation in fluid/solid and solid/fluid phononic crystals
Li et al. Dispersion and band gaps of elastic guided waves in the multi-scale periodic composite plates
Li et al. Semi-analytical wave characteristics analysis of graphene-reinforced piezoelectric polymer nanocomposite cylindrical shells
Parvanova et al. Dynamic analysis of nano-heterogeneities in a finite-sized solid by boundary and finite element methods
Zhuang et al. Modal and aeroelastic analysis of trapezoidal corrugated-core sandwich panels in supersonic flow
Zhou et al. Evaluation of the transient performance of magneto-electro-elastic based structures with the enriched finite element method
Chen et al. Analysis of vibration and sound insulation characteristics of functionally graded sandwich plates
CN106709202A (zh) 一种基于小波有限元模型的一维声子晶体梁结构带隙设计方法
Zuo et al. Numerical and experimental investigations on the vibration band-gap properties of periodic rigid frame structures
Yao et al. A modified smoothed finite element method (M-SFEM) for analyzing the band gap in phononic crystals
Zhong et al. Meshless stochastic vibration for laminated quadrilateral plates considering thermal factor
Wang et al. In-plane dynamic crushing of a novel bio-inspired re-entrant honeycomb with negative Poisson's ratio
Lyu et al. Free in-plane vibration analysis of elastically restrained annular panels made of functionally graded material
Alberdi et al. An isogeometric approach for analysis of phononic crystals and elastic metamaterials with complex geometries
Wang et al. Static and free vibration analysis of thin arbitrary-shaped triangular plates under various boundary and internal supports
Domagalski Free and forced large amplitude vibrations of periodically inhomogeneous slender beams
Qian et al. Using PWE/FE method to calculate the band structures of the semi-infinite beam-like PCs: Periodic in z-direction and finite in x–y plane
Nastos et al. A finite wavelet domain method for wave propagation analysis in thick laminated composite and sandwich plates
Patni et al. Efficient modelling of beam-like structures with general non-prismatic, curved geometry
Eugster Numerical analysis of nonlinear wave propagation in a pantographic sheet
Singh et al. Vibroacoustic response of mode localized thin functionally graded plates using physical neutral surface

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170531

Assignee: Pingyang Intelligent Manufacturing Research Institute of Wenzhou University

Assignor: Wenzhou University

Contract record no.: X2020330000096

Denomination of invention: Band gap design method of two dimensional phononic crystal plate based on wavelet finite element model

Granted publication date: 20200626

License type: Common License

Record date: 20201122