CN106759100A - 一种升降式防洪堤 - Google Patents

一种升降式防洪堤 Download PDF

Info

Publication number
CN106759100A
CN106759100A CN201710000139.XA CN201710000139A CN106759100A CN 106759100 A CN106759100 A CN 106759100A CN 201710000139 A CN201710000139 A CN 201710000139A CN 106759100 A CN106759100 A CN 106759100A
Authority
CN
China
Prior art keywords
flood bank
steel frame
flood
structural steel
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710000139.XA
Other languages
English (en)
Other versions
CN106759100B (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanzhou Xinhong run Industrial Design Co., Ltd.
Original Assignee
郭策
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郭策 filed Critical 郭策
Priority to CN201710000139.XA priority Critical patent/CN106759100B/zh
Publication of CN106759100A publication Critical patent/CN106759100A/zh
Application granted granted Critical
Publication of CN106759100B publication Critical patent/CN106759100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/10Dams; Dykes; Sluice ways or other structures for dykes, dams, or the like
    • E02B3/102Permanently installed raisable dykes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/04Hardening by cooling below 0 degrees Celsius
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明涉及一种升降式防洪堤,包括防洪堤基础、防洪堤升降装置、六边形型钢框架、连接杆和废旧轮胎。通过对防洪堤升降装置进行改进,配合在其上设置的六边形型钢框架和废旧轮胎组合,使得在非汛期防洪堤老化现象明显减少,在汛期能够随着洪水的高度调整防洪堤的高度,从而达到实时防汛的目的。

Description

一种升降式防洪堤
技术领域
本发明属于水利工程领域,具体涉及一种升降式防洪堤。
背景技术
现有的河道和海边的防洪堤均为固定式的,为了防止汛期来临之后河堤高度不够,常规设置的比较高,这样做在非汛期的时候其实是一种浪费,而当遇到多年不遇的高汛期洪水的时候又需要大量的人力物力临时加高加固防洪堤,而且这样临时加固防洪堤的做法很容易造成人员的伤亡,一旦加固不及时,决堤之后造成的财产损失也会成倍的增长。
目前也研发出一些可以临时加高的活动式防洪堤,如中国发明专利CN104499455B公开一种悬挂式防洪墙,其采用防洪堤后侧翻转式设置的钢闸板达到短时加高防洪堤的目的。但是这样的防洪堤有几个缺点,第一,需要在防洪堤后部设置非常大的空间供钢闸板翻转(并不仅仅是存放,在翻转的时候需要更大的空间);第二,这样的钢闸板防洪强度不高,难以阻挡冲击力较大的洪水冲击。
发明内容
本发明的目的在于提出一种升降式防洪堤。
具体通过如下技术手段实现:
一种升降式防洪堤,包括防洪堤基础、防洪堤升降装置、六边形型钢框架、连接杆和废旧轮胎。
所述防洪堤基础为钢筋混凝土结构。
所述防洪堤升降装置包括设置在防洪堤斜面上的钢板、设置在每块所述钢板两侧的滑行轨道、设置在滑行轨道上的滑轮、以及在钢板下端设置的与钢板垂直的加强杆,所述加强杆在所述防洪堤升降装置升起的状态时插入到所述防洪堤基础的中上段的加强杆插孔中。
所述六边形型钢框架设置在所述钢板上,且每块钢板上横向和纵向设置有多个所述六边形型钢框架。
所述废旧轮胎套设在所述六边形型钢框架之外,所述连接杆可拆卸式设置在相邻的所述六边形型钢框架之间,所述废旧轮胎位于所述连接杆和所述钢板之间。
所述六边形型钢框架对角线的长度均小于所述废旧轮胎的内径。
作为优选,所述六边形型钢框架与所述钢板采用焊接的方式固定连接。
作为优选,所述六边形型钢框架和所述钢板的材质均为高强度水利用钢,所述高强度水利用钢按质量百分比含量计为:C:0.05~0.10%,Si:0.3~0.5%,Mn:0.6~0.9%,Ni:0.6~0.9%,Cr:0.5~1.1%,Cu:0.1~0.2%,Mo:0.2~0.5%,V:0.02~0.05%,Nb:0.05~0.08%,Ti:0.05~0.08%,La:0.01~0.02%,P<0.02%,S<0.01%,N<0.01%,余量为Fe和不可避免的杂质。
所述高强度水利用钢成型后的六边形型钢框架的微观结构中TiC相在钢表面的体积百分比含量是在钢中心体积百分比含量的1.1~1.5倍。
作为优选,所述加强杆在所述防洪堤升降装置非升起的状态时用铁链拴设于所述滑行轨道的一侧。
所述六边形型钢框架经过电炉冶炼、模铸成型之后经过如下热处理步骤:
1)淬火,将模铸成型之后的半成品置入到电阻炉内加热到920~960℃,保温25~35min后置入淬火油中冷却至230~280℃,然后捞出喷水急冷至室温;其中在淬火油中冷却的时候,对半成品进行电脉冲处理,其中电脉冲的具体参数为:电脉冲频率为90~210Hz,峰值电流密度为80~220A·mm-2,脉宽为30~90μs,处理时间为15~30s。
2)回火,将步骤1)淬火之后的半成品置入到回火炉中加热至550~600℃,保温20~30min后出炉空冷至室温。
3)深冷,将步骤2)回火之后的半成品置入到深冷箱中冷却至-90~-120℃,保温30~50min。
4)低温回火,将步骤3)深冷处理之后的半成品在不恢复至室温的情况下直接置入到回火炉中,随炉将半成品加热至180~220℃,保温50~80min,然后随炉冷却至室温。
5)精加工,对步骤4)处理之后的半成品进行切边、精整处理之后得到六边形型钢框架成品。
作为优选,所述连接杆与所述六边形型钢框架的连接采用在所述连接杆和所述六边形型钢框架相应位置上设置内螺纹,采用螺杆进行连接。
作为优选,所述加强杆采用高强度马氏体不锈钢材质。
作为优选,所述连接杆采用热镀锌高强度钢。
本发明的效果在于:
1,通过在防洪堤防洪斜面上直接设置可以斜向上下滑动的升降装置,使得在洪水来临的时候,在非常短的时间内即可将防洪堤的高度至多再提升3/4,使得防洪堤的高度提升了将近一倍。并且由于该提升的部分是钢板和钢板上设置的框架以及套设在框架之外的废旧轮胎,虽然其重量比仅提升钢板增加了一些(并且由于其仅是钢框架和橡胶材质的废旧轮胎,重量也没有增加太多),但是其防洪效果却比仅是钢板的防洪效果大大的提升(由于其表面设置有废旧轮胎形成的缓冲格局)。
2,通过设置六边形型钢框架上软性固定废旧汽车轮胎的形式,首先由于废旧汽车轮胎的橡胶材质,使得洪水冲击的时候能够部分吸能,其次由于废旧汽车轮胎是套设在六边形型钢框架上,并且其尺寸是大于六边形型钢框架的(六边形型钢的对角线长度均小于所述废旧轮胎的内直径),从而使得废旧轮胎能够在该框架上活动,从而当洪水冲击的时候,废旧轮胎也随着洪水上下运动,从而废旧轮胎的运动大大抵消了洪水冲击的动能,从而更进一步的达到了吸能的效果。并且由于六边形型钢框架外面通过连接杆将废旧轮胎套设在其内部,只要将该框架的尺寸设置为合适的尺寸,从而各种规格的废旧轮胎都能使用,而不受轮胎规格尺寸的影响,从而可以更加全面的再利用废旧轮胎,降低了轮胎的回收成本(没有筛选成本和淘汰成本)。
3,通过对该防洪堤关键部件——六边形型钢框架的热处理制度进行改进,尤其是在淬火急冷的时候施加电脉冲,通过设置合适的参数,使得在急冷之初就通过电脉冲,将合金内部支晶打碎,从而将大的晶粒变成较小的晶粒,打碎的支晶形成更加细小的晶粒,从而使得合金在急冷的过程中再次细化晶粒,使得合金整体强度得到大幅度的提升。
通过在包含电脉冲的淬火之后设置回火,在回火之后设置深冷处理,使得细化后的晶粒在回火的过程中均匀稳定,然后在深冷处理的过程中进一步细化晶粒,然后再进行低温回火,将深冷处理细化后的晶粒进一步均匀并消除应力,从而达到在不添加大量昂贵元素的情况下细化了晶粒,提高了强度。
淬火的时候先油冷后喷水冷却的方式,使得合金微观结构中强化相在表面细化分布,从而提高了表面的疲劳强度。
通过检测,其框架的屈服强度为760~810MPa,抗拉强度为850~900MPa,伸长率为22~25%,-20℃冲击功为150~160J。
附图说明
图1为本发明升降式防洪堤非汛期状态的结构示意图。
图2为本发明升降式防洪堤防洪状态的结构示意图。
图3为废旧轮胎和六边形型钢框架结构斜向俯视的结构示意图。
其中:1-防洪堤基础,21-滑行轨道,22-滑轮,23-钢板,3-六边形型钢框架,4-废旧轮胎,5-连接杆,6-加强杆。
具体实施方式
实施例1
一种升降式防洪堤,包括防洪堤基础、防洪堤升降装置、六边形型钢框架、连接杆和废旧轮胎。
所述防洪堤基础为钢筋混凝土结构。
所述防洪堤升降装置包括设置在防洪堤斜面上的钢板、设置在每块所述钢板两侧的滑行轨道、设置在滑行轨道上的滑轮、以及在钢板下端设置的与钢板垂直的加强杆,所述加强杆在所述防洪堤升降装置升起的状态时插入到所述防洪堤基础的中上段的加强杆插孔中。
所述六边形型钢框架设置在所述钢板上,且每块钢板上横向设置有6个所述六边形型钢框架,纵向设置有8个所述六边形型钢框架。
所述废旧轮胎套设在所述六边形型钢框架之外,所述连接杆可拆卸式设置在相邻的所述六边形型钢框架之间,所述废旧轮胎位于所述连接杆和所述钢板之间。
所述六边形型钢框架对角线的长度均小于所述废旧轮胎的内直径。
所述六边形型钢框架与所述钢板采用焊接的方式固定连接。
所述六边形型钢框架和所述钢板的材质均为高强度水利用钢,所述高强度水利用钢按质量百分比含量计为:C:0.08%,Si:0.32%,Mn:0.8%,Ni:0.65%,Cr:0.91%,Cu:0.15%,Mo:0.31%,V:0.028%,Nb:0.06%,Ti:0.058%,La:0.015%,P:0.001%,S:0.001%,N:0.001%,余量为Fe和不可避免的杂质。
所述高强度水利用钢成型后的六边形型钢框架的微观结构中TiC相在钢表面的体积百分比含量是在钢中心体积百分比含量的1.25倍。
所述加强杆在所述防洪堤升降装置非升起的状态时用铁链拴设于所述滑行轨道的一侧。
所述六边形型钢框架经过电炉冶炼、模铸成型之后经过如下热处理步骤:
1)淬火,将模铸成型之后的半成品置入到电阻炉内加热到930℃,保温26min后置入淬火油中冷却至251℃,然后捞出喷水急冷至室温;其中在淬火油中冷却的时候,对半成品进行电脉冲处理,其中电脉冲的具体参数为:电脉冲频率为150Hz,峰值电流密度为120A·mm-2,脉宽为60μs,处理时间为20s。
2)回火,将步骤1)淬火之后的半成品置入到回火炉中加热至580℃,保温25min后出炉空冷至室温。
3)深冷,将步骤2)回火之后的半成品置入到深冷箱中冷却至-106℃,保温35min。
4)低温回火,将步骤3)深冷处理之后的半成品在不恢复至室温的情况下直接置入到回火炉中,随炉将半成品加热至192℃,保温60min,然后随炉冷却至室温。
5)精加工,对步骤4)处理之后的半成品进行切边、精整处理之后得到六边形型钢框架成品。
所述连接杆与所述六边形型钢框架的连接采用在所述连接杆和所述六边形型钢框架相应位置上设置内螺纹,采用螺杆进行连接。
所述加强杆采用高强度马氏体不锈钢材质。
所述连接杆采用热镀锌高强度钢。
实施例2
一种升降式防洪堤,包括防洪堤基础、防洪堤升降装置、六边形型钢框架、连接杆和废旧轮胎。
所述防洪堤基础为钢筋混凝土结构。
所述防洪堤升降装置包括设置在防洪堤斜面上的钢板、设置在每块所述钢板两侧的滑行轨道、设置在滑行轨道上的滑轮、以及在钢板下端设置的与钢板垂直的加强杆,所述加强杆在所述防洪堤升降装置升起的状态时插入到所述防洪堤基础的中上段的加强杆插孔中。
所述六边形型钢框架设置在所述钢板上,且每块钢板上横向和纵向设置有多个所述六边形型钢框架。
所述废旧轮胎套设在所述六边形型钢框架之外,所述连接杆可拆卸式设置在相邻的所述六边形型钢框架之间,所述废旧轮胎位于所述连接杆和所述钢板之间。
所述六边形型钢框架对角线的长度均小于所述废旧轮胎的内径。
所述六边形型钢框架与所述钢板采用焊接的方式固定连接。
所述六边形型钢框架和所述钢板的材质均为高强度水利用钢,所述高强度水利用钢按质量百分比含量计为:C:0.09%,Si:0.39%,Mn:0.82%,Ni:0.65%,Cr:1.06%,Cu:0.11%,Mo:0.39%,V:0.022%,Nb:0.069%,Ti:0.055%,La:0.018%,P:0.015%,S:0.002%,N:0.006%,余量为Fe和不可避免的杂质。
所述高强度水利用钢成型后的六边形型钢框架的微观结构中TiC相在钢表面的体积百分比含量是在钢中心体积百分比含量的1.3倍。
所述加强杆在所述防洪堤升降装置非升起的状态时用铁链拴设于所述滑行轨道的一侧。
所述六边形型钢框架经过电炉冶炼、模铸成型之后经过如下热处理步骤:
1)淬火,将模铸成型之后的半成品置入到电阻炉内加热到951℃,保温31min后置入淬火油中冷却至266℃,然后捞出喷水急冷至室温;其中在淬火油中冷却的时候,对半成品进行电脉冲处理,其中电脉冲的具体参数为:电脉冲频率为200Hz,峰值电流密度为90A·mm-2,脉宽为80μs,处理时间为20s。
2)回火,将步骤1)淬火之后的半成品置入到回火炉中加热至560℃,保温28min后出炉空冷至室温。
3)深冷,将步骤2)回火之后的半成品置入到深冷箱中冷却至-100℃,保温39min。
4)低温回火,将步骤3)深冷处理之后的半成品在不恢复至室温的情况下直接置入到回火炉中,随炉将半成品加热至200℃,保温60min,然后随炉冷却至室温。
5)精加工,对步骤4)处理之后的半成品进行切边、精整处理之后得到六边形型钢框架成品。
所述连接杆与所述六边形型钢框架的连接采用在所述连接杆和所述六边形型钢框架相应位置上设置内螺纹,采用螺杆进行连接。
所述加强杆采用高强度马氏体不锈钢材质。
所述连接杆采用热镀锌高强度钢。
实施例3
一种升降式防洪堤,包括防洪堤基础、防洪堤升降装置、六边形型钢框架、连接杆和废旧轮胎。
所述防洪堤基础为钢筋混凝土结构。
所述防洪堤升降装置包括设置在防洪堤斜面上的钢板、设置在每块所述钢板两侧的滑行轨道、设置在滑行轨道上的滑轮、以及在钢板下端设置的与钢板垂直的加强杆,所述加强杆在所述防洪堤升降装置升起的状态时插入到所述防洪堤基础的中上段的加强杆插孔中。
所述六边形型钢框架设置在所述钢板上,且每块钢板上横向和纵向设置有多个所述六边形型钢框架。
所述废旧轮胎套设在所述六边形型钢框架之外,所述连接杆可拆卸式设置在相邻的所述六边形型钢框架之间,所述废旧轮胎位于所述连接杆和所述钢板之间。
所述六边形型钢框架对角线的长度均小于所述废旧轮胎的内径。
所述六边形型钢框架与所述钢板采用焊接的方式固定连接。
所述六边形型钢框架和所述钢板的材质均为高强度水利用钢,所述高强度水利用钢按质量百分比含量计为:C:0.08%,Si:0.35%,Mn:0.62%,Ni:0.83%,Cr:0.9%,Cu:0.18%,Mo:0.3%,V:0.022%,Nb:0.068%,Ti:0.052%,La:0.018%,P:0.012%,S:0.0051%,N:0.0068%,余量为Fe和不可避免的杂质。
所述高强度水利用钢成型后的六边形型钢框架的微观结构中TiC相在钢表面的体积百分比含量是在钢中心体积百分比含量的1.32倍。
所述加强杆在所述防洪堤升降装置非升起的状态时用铁链拴设于所述滑行轨道的一侧。
所述六边形型钢框架经过电炉冶炼、模铸成型之后经过如下热处理步骤:
1)淬火,将模铸成型之后的半成品置入到电阻炉内加热到930℃,保温26min后置入淬火油中冷却至250℃,然后捞出喷水急冷至室温;其中在淬火油中冷却的时候,对半成品进行电脉冲处理,其中电脉冲的具体参数为:电脉冲频率为160Hz,峰值电流密度为180A·mm-2,脉宽为80μs,处理时间为20s。
2)回火,将步骤1)淬火之后的半成品置入到回火炉中加热至590℃,保温25min后出炉空冷至室温。
3)深冷,将步骤2)回火之后的半成品置入到深冷箱中冷却至-110℃,保温39min。
4)低温回火,将步骤3)深冷处理之后的半成品在不恢复至室温的情况下直接置入到回火炉中,随炉将半成品加热至196℃,保温60min,然后随炉冷却至室温。
5)精加工,对步骤4)处理之后的半成品进行切边、精整处理之后得到六边形型钢框架成品。
通过检测,其框架的屈服强度为806MPa,抗拉强度为882MPa,伸长率为23%,-20℃冲击功为155J。
所述连接杆与所述六边形型钢框架的连接采用在所述连接杆和所述六边形型钢框架相应位置上设置内螺纹,采用螺杆进行连接。
所述加强杆采用高强度马氏体不锈钢材质。
所述连接杆采用热镀锌高强度钢。
对比例1
所述六边形型钢框架的材质中各元素的组分含量与实施例3的相同,热处理过程中不施加电脉冲且在深冷处理之后恢复至室温后在进入回火炉进行低温回火,其他参数相同。
通过检测,其框架的屈服强度为751MPa,抗拉强度为796MPa,伸长率为22%,-20℃冲击功为133J。
对比例2
所述六边形型钢框架的材质中各元素的组分含量与实施例3的相同,仅进行淬火+回火热处理,且淬火和回火热处理的参数与实施例3相同,且不施加电脉冲。
通过检测,其框架的屈服强度为750MPa,抗拉强度为788MPa,伸长率为23%,-20℃冲击功为128J。
对比例3
所述六边形型钢框架的热处理步骤与实施例3的相同,但是材质中不添加稀土La、Ti含量为0.03%。
通过检测,其框架的屈服强度为761MPa,抗拉强度为801MPa,伸长率为23%,-20℃冲击功为136J。

Claims (8)

1.一种升降式防洪堤,其特征在于,包括防洪堤基础、防洪堤升降装置、六边形型钢框架、连接杆和废旧轮胎;
所述防洪堤基础为钢筋混凝土结构;
所述防洪堤升降装置包括设置在防洪堤斜面上的钢板、设置在每块所述钢板两侧的滑行轨道、设置在滑行轨道上的滑轮、以及在钢板下端设置的与钢板垂直的加强杆,所述加强杆在所述防洪堤升降装置升起的状态时插入到所述防洪堤基础的中上段的加强杆插孔中;
所述六边形型钢框架设置在所述钢板上,且每块钢板上横向和纵向设置有多个所述六边形型钢框架;
所述废旧轮胎套设在所述六边形型钢框架之外,所述连接杆可拆卸式设置在相邻的所述六边形型钢框架之间,所述废旧轮胎位于所述连接杆和所述钢板之间;
所述六边形型钢框架对角线的长度均小于所述废旧轮胎的内径。
2.根据权利要求1所述的升降式防洪堤,其特征在于,所述六边形型钢框架与所述钢板采用焊接的方式固定连接。
3.根据权利要求1所述的升降式防洪堤,其特征在于,所述六边形型钢框架和所述钢板的材质均为高强度水利用钢,所述高强度水利用钢按质量百分比含量计为:C:0.05~0.10%,Si:0.3~0.5%,Mn:0.6~0.9%,Ni:0.6~0.9%,Cr:0.5~1.1%,Cu:0.1~0.2%,Mo:0.2~0.5%,V:0.02~0.05%,Nb:0.05~0.08%,Ti:0.05~0.08%(优选0.06%),La:0.01~0.02%,P<0.02%,S<0.01%,N<0.01%,余量为Fe和不可避免的杂质;
所述高强度水利用钢成型后的六边形型钢框架的微观结构中TiC相在钢表面的体积百分比含量是在钢中心体积百分比含量的1.1~1.5倍。
4.根据权利要求1所述的升降式防洪堤,其特征在于,所述加强杆在所述防洪堤升降装置非升起的状态时用铁链拴设于所述滑行轨道的一侧。
5.根据权利要求1所述的升降式防洪堤,其特征在于,所述六边形型钢框架经过电炉冶炼、模铸成型之后经过如下热处理步骤:
1)淬火,将模铸成型之后的半成品置入到电阻炉内加热到920~960℃,保温25~35min后置入淬火油中冷却至230~280℃,然后捞出喷水急冷至室温;其中在淬火油中冷却的时候,对半成品进行电脉冲处理,其中电脉冲的具体参数为:电脉冲频率为90~210Hz,峰值电流密度为80~220A·mm-2,脉宽为30~90μs,处理时间为15~30s;
2)回火,将步骤1)淬火之后的半成品置入到回火炉中加热至550~600℃,保温20~30min后出炉空冷至室温;
3)深冷,将步骤2)回火之后的半成品置入到深冷箱中冷却至-90~-120℃,保温30~50min;
4)低温回火,将步骤3)深冷处理之后的半成品在不恢复至室温的情况下直接置入到回火炉中,随炉将半成品加热至180~220℃,保温50~80min,然后随炉冷却至室温;
5)精加工,对步骤4)处理之后的半成品进行切边、精整处理之后得到六边形型钢框架成品。
6.根据权利要求1所述的升降式防洪堤,其特征在于,所述连接杆与所述六边形型钢框架的连接采用在所述连接杆和所述六边形型钢框架相应位置上设置内螺纹,采用螺杆进行连接。
7.根据权利要求1所述的升降式防洪堤,其特征在于,所述加强杆采用高强度马氏体不锈钢材质。
8.根据权利要求1所述的升降式防洪堤,其特征在于,所述连接杆采用热镀锌高强度钢。
CN201710000139.XA 2017-01-01 2017-01-01 一种升降式防洪堤 Active CN106759100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710000139.XA CN106759100B (zh) 2017-01-01 2017-01-01 一种升降式防洪堤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710000139.XA CN106759100B (zh) 2017-01-01 2017-01-01 一种升降式防洪堤

Publications (2)

Publication Number Publication Date
CN106759100A true CN106759100A (zh) 2017-05-31
CN106759100B CN106759100B (zh) 2018-11-13

Family

ID=58952014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710000139.XA Active CN106759100B (zh) 2017-01-01 2017-01-01 一种升降式防洪堤

Country Status (1)

Country Link
CN (1) CN106759100B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112482303A (zh) * 2018-11-30 2021-03-12 吴增文 水利工程防洪堤
CN114855711A (zh) * 2022-04-15 2022-08-05 广东万奥建设工程有限公司 一种高强抗震的宽体重力坝结构及其施工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458275B2 (ja) * 2001-03-16 2003-10-20 昇 工藤 軟弱地盤上の盛土安定工法
CN104480899A (zh) * 2014-12-17 2015-04-01 天津大学前沿技术研究院有限公司 一种水力升降挡水墙
KR20150109121A (ko) * 2014-03-19 2015-10-01 김수득 폐타이를 결합한 기성제 콘크리트파일 및 이를 이용한 사면안정화 구조
CN105133543A (zh) * 2015-08-06 2015-12-09 重庆大学 一种可升降的挂壁式硬化河道生态防护带
CN205205781U (zh) * 2015-07-21 2016-05-04 中国科学院水利部成都山地灾害与环境研究所 一种废旧轮胎泥石流工程体防护装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458275B2 (ja) * 2001-03-16 2003-10-20 昇 工藤 軟弱地盤上の盛土安定工法
KR20150109121A (ko) * 2014-03-19 2015-10-01 김수득 폐타이를 결합한 기성제 콘크리트파일 및 이를 이용한 사면안정화 구조
CN104480899A (zh) * 2014-12-17 2015-04-01 天津大学前沿技术研究院有限公司 一种水力升降挡水墙
CN205205781U (zh) * 2015-07-21 2016-05-04 中国科学院水利部成都山地灾害与环境研究所 一种废旧轮胎泥石流工程体防护装置
CN105133543A (zh) * 2015-08-06 2015-12-09 重庆大学 一种可升降的挂壁式硬化河道生态防护带

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112482303A (zh) * 2018-11-30 2021-03-12 吴增文 水利工程防洪堤
CN112482303B (zh) * 2018-11-30 2022-08-16 东营市垦利区水利工程公司 水利工程防洪堤
CN114855711A (zh) * 2022-04-15 2022-08-05 广东万奥建设工程有限公司 一种高强抗震的宽体重力坝结构及其施工方法
CN114855711B (zh) * 2022-04-15 2024-01-30 广东万奥建设工程有限公司 一种高强抗震的宽体重力坝结构及其施工方法

Also Published As

Publication number Publication date
CN106759100B (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN106498245B (zh) 一种深冷处理强化的高强度铸造铝硅合金及其制备工艺
CN104630641B (zh) 800MPa级高强度高塑性低碳中锰钢及其制造方法
CN106086673B (zh) 一种热作模具钢板及其制备方法
CN107385329A (zh) 一种大厚度q500gje高强度建筑结构用钢板及其制造方法
CN106102940A (zh) 厚壁高韧性高张力钢板及其制造方法
MX2013004025A (es) Metodos de fabricacion de tubos de acero para varillas de perforacion con propiedades mecanicas mejoradas, y varillas obtenidas a traves de los mismos.
CN103276312B (zh) 一种80-120mm特厚高强度钢板及其利用连铸坯生产的方法
CN106756618B (zh) 100mm厚Q420GJC/D控轧态高强度结构用钢板
CN104651734B (zh) 1000MPa级高强度高塑性含铝中锰钢及其制造方法
CN102352462B (zh) 一种高强高冲击韧性的锚杆钢筋及其制备方法
CN106521320B (zh) 特厚q460gjc/d控轧态高强度结构用钢板
CN103343281A (zh) 一种层片状双相高强高韧钢及其制备方法
CN106759100B (zh) 一种升降式防洪堤
CN105200309A (zh) 一种高强度、高塑性的高锰钢材料及其加工方法
CN102953000B (zh) 一种超高强度钢板及其制造方法
CN102876968A (zh) 一种高强抗震hrb500e热轧带肋钢筋的生产工艺及其钢筋
CN103484761A (zh) 一种40~60mm厚管桩用钢板及其生产方法
CN103993243A (zh) 一种超高强度贝氏体钢板及其制备方法
CN105935861B (zh) 一种核电用高强塑性奥氏体不锈钢帽螺钉锻件的制备方法
CN104109800B (zh) 高强度含钒高锰无磁钢及其生产方法
KR101999022B1 (ko) 피로균열 전파 억제 특성이 우수한 구조용 고강도 강재 및 그 제조방법
CN104109811B (zh) Mn-Cr-V系超高强度无磁钢及其生产方法
CN106756548B (zh) 一种防洪堤的制备方法
CN106522159B (zh) 一种水利工程用高效耐久防洪堤
CN105256241B (zh) 一种高强度锚杆

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180928

Address after: 362000 Fujian Quanzhou investment zone, Luoyang Town, lower house 196 natural village

Applicant after: Quanzhou Xinhong run Industrial Design Co., Ltd.

Address before: 266555 room 1512, building 19, Optics Valley science and Technology Park, Emei Shan Road, Huangdao District, Qingdao, Shandong.

Applicant before: Guo Ce

GR01 Patent grant
GR01 Patent grant