CN106756794A - 一种耐高温烧结钕铁硼磁体的制备方法 - Google Patents

一种耐高温烧结钕铁硼磁体的制备方法 Download PDF

Info

Publication number
CN106756794A
CN106756794A CN201710041040.4A CN201710041040A CN106756794A CN 106756794 A CN106756794 A CN 106756794A CN 201710041040 A CN201710041040 A CN 201710041040A CN 106756794 A CN106756794 A CN 106756794A
Authority
CN
China
Prior art keywords
sintered ndfeb
ndfeb magnet
high temperature
preparation
temperature resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710041040.4A
Other languages
English (en)
Inventor
曹玉杰
张鹏杰
黄秀莲
衣晓飞
吴玉程
陈静武
刘家琴
熊永飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Earth Panda Advance Magnetic Material Co Ltd
Original Assignee
Earth Panda Advance Magnetic Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Earth Panda Advance Magnetic Material Co Ltd filed Critical Earth Panda Advance Magnetic Material Co Ltd
Priority to CN201710041040.4A priority Critical patent/CN106756794A/zh
Publication of CN106756794A publication Critical patent/CN106756794A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • C23C28/3225Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only with at least one zinc-based layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/001Magnets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明公开了一种耐高温烧结钕铁硼磁体的制备方法,其包括以下步骤:电镀金属层的制备、喷砂处理工艺、物理气相沉积陶瓷层。本发明采用电镀工艺在经过前处理后的烧结钕铁硼磁体表面电镀上金属层,金属层作为过渡层,可以为烧结钕铁硼磁体提供初步的防护作用,而且还为后面陶瓷涂层的沉积做准备,提高了陶瓷涂层与基体的结合力;喷砂处理不仅降低了金属层的孔隙率,还增加金属层的表面粗糙度,即增加金属层与最外层的陶瓷涂层的接触面积,从而提高两者的结合力,从而能提高烧结钕铁硼磁体表面的耐高温、耐腐蚀、耐磨的性能。

Description

一种耐高温烧结钕铁硼磁体的制备方法
技术领域
本发明属于钕铁硼永磁体技术领域,具体涉及一种耐高温烧结钕铁硼磁体的制备方法。
背景技术
烧结钕铁硼永磁体自上世纪八十年代问世以来,因其具有更高的磁能积、矫顽力和剩磁而被称为“磁王”,其产品被广泛应用于汽车、医疗器械、电机、电力、电子、风力发电、航空航天等领域。但烧结钕铁硼磁体具有三相结构:主相Nd2Fe14B、富Nd相和富B相,各项之间的电位差较大,尤其是化学活性较强的富Nd相强,故在高温、潮湿以及电化学环境中极易腐蚀。当前,用于提高烧结钕铁硼磁体耐蚀性的方法主要有两类:一是添加合金元素法;二是在磁体表面添加防护层。由于添加合金元素会在一定程度上降低磁体的磁性能,且效果不明显。所以目前工业生产中通常采用表面防护处理的工艺措施在磁体表面添加防护层,能够明显改善磁体的耐蚀性能。
而目前,用于烧结钕铁硼磁体表面防护的工艺措施主要有电镀、化学镀、有机涂层、物理气相沉积、复合镀层。在电机应用领域所用的磁体,不仅要求磁体的磁性能均匀性、一致性好,而且要求磁体能够承受较高的工作温度。其中烧结钕铁硼永磁体表面的有机涂层不具备耐高温特性,而电镀、化学镀、物理气相沉积、复合镀层相对于有机涂层而言,虽然能够承受较高的工作温度,但效果不理想。因此,有必要开发新的耐高温烧结钕铁硼磁体表面防护层。
发明内容
本发明针对现有烧结钕铁硼磁体表面电镀金属镀层存在的耐高温、耐磨性能较差的缺点,提供一种耐高温烧结钕铁硼磁体的制备方法。
为解决上述问题,本发明所采取的技术方案如下:
一种耐高温烧结钕铁硼磁体的制备方法,包括以下步骤:
(1)电镀金属层的制备:在经过前处理后的烧结钕铁硼磁体的表面进行电镀一层金属层;
(2)喷砂处理工艺:在烧结钕铁硼磁体的金属层表面进行喷砂处理;
(3)物理气相沉积陶瓷层:采用物理气相沉积方法在经喷砂处理后的烧结钕铁硼磁体表面沉积陶瓷涂层。
进一步方案,所述步骤(1)中金属层为镍层、锌层或锡层;所述烧结钕铁硼磁体的前处理是指对烧结钕铁硼磁体依次进行除油、酸洗。
进一步方案,所述步骤(2)中的喷砂处理的材料为200~300目的棕刚玉,喷砂处理的角度为30~60°,时间为2~3min。
进一步方案,所述步骤(3)物理气相沉积方法是采用电子束物理气相沉积工艺,其真空室真空度为0.3~0.9Pa,Ar2流量为80~120sccm,偏压为80~120V,磁控溅射电流为15~21A,磁控溅射50~70min。
进一步方案,所述陶瓷涂层的材料为氧化锆,陶瓷涂层的厚度为0.05~0.08mm。
本发明采用喷砂工艺处理金属层,可增加金属层的表面粗糙度,即增加金属层与最外层的陶瓷涂层的接触面积,从而提高两者的结合力。
本发明中的电子束物理气相沉积工艺是现有的。
与现有技术相比较,本发明的实施效果如下:
1、本发明采用电镀工艺在经过前处理后的烧结钕铁硼磁体表面电镀上金属层,金属层作为过渡层,可以为烧结钕铁硼磁体提供初步的防护作用,而且还为后面陶瓷涂层的沉积做准备,提高了陶瓷涂层与基体的结合力;
2、本发明通过采用喷砂工艺对电镀在烧结钕铁硼磁体表面的金属层进行处理,不仅降低了金属层的孔隙率,还增加金属层的表面粗糙度,即增加金属层与最外层的陶瓷涂层的接触面积,从而提高两者的结合力;
3、采用物理气相沉积技术在金属层上沉积耐高温腐蚀的陶瓷涂层,使陶瓷涂层与烧结钕铁硼磁体之间的结合力增强,由于陶瓷涂层具有耐磨、耐高温特性,从而能提高烧结钕铁硼磁体表面的耐高温、耐腐蚀、耐磨的性能。
具体实施方式
下面将结合具体的实施例来说明本发明的内容。
实施例1:一种耐高温烧结钕铁硼磁体的制备方法,包括以下步骤:
(1)电镀镍层的制备:
选用规格为35×10×3mm的块状烧结钕铁硼磁体(由安徽大地熊新材料股份有限公司提供,牌号:45H)进行试验。
将经过除油、酸洗前处理后的烧结钕铁硼磁体放入镀镍槽中进行电镀,其电镀液是由以下组分组成的:硫酸镍160g/L、硼酸38g/L、硫酸钠18g/L、十二烷基硫酸钠0.04g/L;电镀液的pH值为4.2、温度为50℃,电流密度为0.48A/dm2,电镀处理的时间为30min。
(2)喷砂处理工艺:
采用200目的棕刚玉对电镀镍层进行喷砂处理,其喷砂角度为30°,喷砂处理时间为2min;
(3)物理气相沉积陶瓷层:
采用电子束物理气相沉积工艺在电镀镍层上沉积陶瓷涂层,其工艺为:真空室真空度为0.3Pa,Ar2流量为80sccm,偏压为80V,磁控溅射电流为15A,磁控溅射50min。所述陶瓷层的材料为化学稳定的氧化锆材料,陶瓷层的厚度为0.05mm。本实施例所得样品命名为样品1A。
对照实施例1
为进行对比,按实施例1的步骤(1)将经过除油、酸洗前处理后的烧结钕铁硼磁体放入镀镍槽中进行电镀,制备出与样品1A镍层厚度相同的样品1B。
对实施例1制备的样品1A和对照实施例1制备的样品1B进行盐雾试验(盐雾试验的条件为:试验箱温度为37℃,盐水浓度为5%(体积比),采用连续喷雾的试验方式)及300℃恒温干燥箱进行耐高温测试,其具体结果见下表1。
表1样品1A和1B的盐雾试验和耐高温测试结果
样品 盐雾试验(h) 耐高温(℃)
样品1A 120 254
样品1B 71 200
从表1可以看出,样品1A的盐雾试验及耐高温能力与样品1B相比均得到显著的提高,说明在NdFeB磁体表面依次进行电镀金属层、喷砂处理工艺、物理气相沉积陶瓷层的制备方法,能够明显改善磁体表面单纯金属镀层孔隙率高和耐高温性能较差的缺点,从而显著提高烧结NdFeB磁体耐高温、耐腐蚀、耐磨性能。
实施例2:一种耐高温烧结钕铁硼磁体的制备方法,包括以下步骤:
(1)电镀锌层的制备:
采用规格为35×10×3mm的块状烧结钕铁硼磁体(由安徽大地熊新材料股份有限公司提供,牌号:45H)进行试验。将经过除油、酸洗前处理后的烧结钕铁硼产品放入镀锌槽中进行电镀,阴极为钕铁硼磁体,阳极为高纯锌片。电镀液PH值为4.7,温度为54℃,阴极电流密度为3.5A/dm2,电镀处理的时间为30min。
(2)喷砂处理工艺:
采用250目的棕刚玉对电镀锌层进行喷砂处理,其喷砂角度为45°,喷砂处理时间为2.5min。
(3)物理气相沉积陶瓷层:
采用电子束物理气相沉积工艺在电镀锌层上制备陶瓷涂层,保持真空室真空度为0.6Pa,Ar2流量为100sccm,偏压为100V,磁控溅射电流为18A,磁控溅射60min。所述陶瓷层的材料为化学稳定的氧化锆材料,陶瓷层的厚度为0.065mm。本实施例所得样品命名为样品2A。
对照实施例2
为进行对比,按实施例1的步骤(1)将经过除油、酸洗前处理后的烧结钕铁硼磁体放入镀锌槽中进行电镀,制备出与样品2A的锌层厚度相同的样品2B。
对具体实施例2制备的样品2A和对照实施例2制备的样品2B进行盐雾试验(盐雾试验的条件为:试验箱温度为37℃,盐水浓度为5%(体积比),采用连续喷雾的试验方式)及300℃恒温干燥箱进行耐高温测试,具体结果见下表2。
表2样品2A和2B的盐雾试验和耐高温测试结果
样品 盐雾试验(h) 耐高温(℃)
样品2A 124 261
样品2B 73 202
从表2可以看出样品2A的盐雾试验及耐高温能力与样品2B相比均得到显著的提高,说明在NdFeB磁体表面依次进行电镀金属层、喷砂处理工艺、物理气相沉积陶瓷层的制备,能够明显改善磁体表面单纯金属镀层孔隙率高和耐高温性能较差的缺点,从而显著提高烧结NdFeB磁体耐高温、耐腐蚀、耐磨性能。
实施例3:一种耐高温烧结钕铁硼磁体的制备方法,包括以下步骤:
(1)电镀锡层的制备:
采用规格为35×10×3mm的块状烧结钕铁硼磁体(由安徽大地熊新材料股份有限公司提供,牌号:45H)进行试验。将经过除油、酸洗前处理后的烧结钕铁硼产品放入镀锡槽中进行电镀,阴极为钕铁硼磁体,阳极为电镀锡材料。电镀液PH值为3.2,温度为40℃,电流密度为3.5A/dm2,电镀处理的时间为30min。
(2)喷砂处理工艺:
采用300目的棕刚玉对电镀锡层进行喷砂处理,喷砂角度为60°,喷砂处理时间为3min。
(3)物理气相沉积陶瓷层:
采用电子束物理气相沉积工艺在电镀锡层上制备陶瓷涂层,保持真空室真空度为0.9Pa,Ar2流量为120sccm,偏压为120V,磁控溅射电流为21A,磁控溅射70min。所述陶瓷层的材料为化学稳定的氧化锆材料,陶瓷层的厚度为0.08mm。本实施例所得样品命名为样品3A。
对照实施例3
为进行对比,按实施例3的步骤(1)将经过除油、酸洗前处理后的烧结钕铁硼磁体放入镀锡槽中进行电镀,制备出与样品3A的锡层厚度相同的样品3B。
对具体实施例3制备的样品3A和对照实施例3制备的样品3B进行盐雾试验(盐雾试验的条件为:试验箱温度为37℃,盐水浓度为5%(体积比),采用连续喷雾的试验方式)及300℃恒温干燥箱进行耐高温测试,具体结果见下表3。
表3样品3A和3B的盐雾试验和耐高温测试结果
样品 盐雾试验(h) 耐高温(℃)
样品3A 123 258
样品3B 72 203
从表3可以看出样品3A的盐雾试验及耐高温能力与样品3B相比均得到显著的提高,说明在NdFeB磁体表面依次进行电镀金属层、喷砂处理工艺、物理气相沉积陶瓷层的制备,能够明显改善磁体表面单纯金属镀层孔隙率高和耐高温性能较差的缺点,从而显著提高烧结NdFeB磁体耐高温、耐腐蚀、耐磨性能。
上述实施方案和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (5)

1.一种耐高温烧结钕铁硼磁体的制备方法,其特征在于:包括以下步骤:
(1)电镀金属层的制备:在经过前处理后的烧结钕铁硼磁体的表面进行电镀一层金属层;
(2)喷砂处理工艺:在烧结钕铁硼磁体的金属层表面进行喷砂处理;
(3)物理气相沉积陶瓷层:采用物理气相沉积方法在经喷砂处理后的烧结钕铁硼磁体表面沉积陶瓷涂层。
2.根据权利要求1所述的一种耐高温烧结钕铁硼磁体的制备方法,其特征在于:所述步骤(1)中金属层为镍层、锌层或锡层;所述烧结钕铁硼磁体的前处理是指对烧结钕铁硼磁体依次进行除油、酸洗。
3.根据权利要求1所述的一种耐高温烧结钕铁硼磁体的制备方法,其特征在于:所述步骤(2)中的喷砂处理的材料为200~300目的棕刚玉,喷砂处理的角度为30~60°,时间为2~3min。
4.根据权利要求1所述的一种耐高温烧结钕铁硼磁体的制备方法,其特征在于:所述步骤(3)物理气相沉积方法是采用电子束物理气相沉积工艺,其真空室真空度为0.3~0.9 Pa,Ar2流量为80~120 sccm,偏压为80~120 V,磁控溅射电流为15~21A,磁控溅射50~70 min。
5.根据权利要求1所述的一种耐高温烧结钕铁硼磁体的制备方法,其特征在于:所述陶瓷涂层的材料为氧化锆,陶瓷涂层的厚度为0.05~0.08 mm。
CN201710041040.4A 2017-01-18 2017-01-18 一种耐高温烧结钕铁硼磁体的制备方法 Pending CN106756794A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710041040.4A CN106756794A (zh) 2017-01-18 2017-01-18 一种耐高温烧结钕铁硼磁体的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710041040.4A CN106756794A (zh) 2017-01-18 2017-01-18 一种耐高温烧结钕铁硼磁体的制备方法

Publications (1)

Publication Number Publication Date
CN106756794A true CN106756794A (zh) 2017-05-31

Family

ID=58944671

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710041040.4A Pending CN106756794A (zh) 2017-01-18 2017-01-18 一种耐高温烧结钕铁硼磁体的制备方法

Country Status (1)

Country Link
CN (1) CN106756794A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108914042A (zh) * 2018-07-06 2018-11-30 安徽大地熊新材料股份有限公司 一种耐磨防腐烧结钕铁硼磁体的制备方法
CN109402683A (zh) * 2018-12-12 2019-03-01 常州大学 一种预置层和超声相结合的提高涂层结合力方法
CN109554677A (zh) * 2018-12-26 2019-04-02 湖北永磁磁材科技有限公司 一种烧结钕铁硼永磁体表面锌锡合金镀层及其制备方法
CN110144611A (zh) * 2019-06-10 2019-08-20 河北工业大学 一种镁合金表面耐蚀耐磨复合涂层及其制备方法
CN110983333A (zh) * 2019-12-06 2020-04-10 东莞中探探针有限公司 一种钕铁硼复合镀层及其制备方法和应用
CN112267115A (zh) * 2020-09-30 2021-01-26 福建省长汀金龙稀土有限公司 一种可应用于钕铁硼的耐蚀、耐磨复合镀层及其制备方法
CN113005453A (zh) * 2021-02-25 2021-06-22 深圳市正和忠信股份有限公司 一种在铁钴软磁合金上沉积装饰涂层的方法及产品

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444983A (zh) * 2007-11-27 2009-06-03 比亚迪股份有限公司 一种镀膜材料及其制备方法
CN102368438A (zh) * 2011-11-02 2012-03-07 宁波韵升高科磁业有限公司 一种钕铁硼磁体的表面复合防护方法
CN102774088A (zh) * 2012-08-10 2012-11-14 昆山乔锐金属制品有限公司 一种新型铁基陶瓷涂层
CN103173763A (zh) * 2013-03-28 2013-06-26 宁波韵升股份有限公司 一种钕铁硼磁体的电镀与气相沉积复合防护方法
CN103854819A (zh) * 2014-03-22 2014-06-11 沈阳中北通磁科技股份有限公司 一种钕铁硼稀土永磁器件的混合镀膜方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101444983A (zh) * 2007-11-27 2009-06-03 比亚迪股份有限公司 一种镀膜材料及其制备方法
CN102368438A (zh) * 2011-11-02 2012-03-07 宁波韵升高科磁业有限公司 一种钕铁硼磁体的表面复合防护方法
CN102774088A (zh) * 2012-08-10 2012-11-14 昆山乔锐金属制品有限公司 一种新型铁基陶瓷涂层
CN103173763A (zh) * 2013-03-28 2013-06-26 宁波韵升股份有限公司 一种钕铁硼磁体的电镀与气相沉积复合防护方法
CN103854819A (zh) * 2014-03-22 2014-06-11 沈阳中北通磁科技股份有限公司 一种钕铁硼稀土永磁器件的混合镀膜方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
戴达煌等: "《功能薄膜及其沉积制备技术》", 31 January 2013, 冶金工业出版社 *
王学让等: "《快速成形与快速模具制造技术》", 31 January 2006, 清华大学出版社 *
袁正光等: "《现代科学技术知识辞典(试行本)》", 31 July 1994, 科学出版社 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108914042A (zh) * 2018-07-06 2018-11-30 安徽大地熊新材料股份有限公司 一种耐磨防腐烧结钕铁硼磁体的制备方法
CN108914042B (zh) * 2018-07-06 2020-09-11 安徽大地熊新材料股份有限公司 一种耐磨防腐烧结钕铁硼磁体的制备方法
CN109402683A (zh) * 2018-12-12 2019-03-01 常州大学 一种预置层和超声相结合的提高涂层结合力方法
CN109554677A (zh) * 2018-12-26 2019-04-02 湖北永磁磁材科技有限公司 一种烧结钕铁硼永磁体表面锌锡合金镀层及其制备方法
CN110144611A (zh) * 2019-06-10 2019-08-20 河北工业大学 一种镁合金表面耐蚀耐磨复合涂层及其制备方法
CN110144611B (zh) * 2019-06-10 2021-10-22 河北工业大学 一种镁合金表面耐蚀耐磨复合涂层及其制备方法
CN110983333A (zh) * 2019-12-06 2020-04-10 东莞中探探针有限公司 一种钕铁硼复合镀层及其制备方法和应用
CN112267115A (zh) * 2020-09-30 2021-01-26 福建省长汀金龙稀土有限公司 一种可应用于钕铁硼的耐蚀、耐磨复合镀层及其制备方法
CN112267115B (zh) * 2020-09-30 2022-07-12 福建省长汀金龙稀土有限公司 一种可应用于钕铁硼的耐蚀、耐磨复合镀层及其制备方法
CN113005453A (zh) * 2021-02-25 2021-06-22 深圳市正和忠信股份有限公司 一种在铁钴软磁合金上沉积装饰涂层的方法及产品

Similar Documents

Publication Publication Date Title
CN106756794A (zh) 一种耐高温烧结钕铁硼磁体的制备方法
CN100464007C (zh) 钕铁硼永磁材料表面梯度功能涂层制备方法
Dong et al. Electroplating preparation of Ni–Al2O3 graded composite coatings using a rotating cathode
CN102808210B (zh) 一种微弧氧化的表面处理方法及其制品
CN105420669B (zh) 一种用于永磁体防腐前处理的气相沉积方法
CN102732936B (zh) 一种在钢铁件上用电泳沉积法制备氧化硅陶瓷涂层的方法
CN111005050B (zh) 一种提高烧结钕铁硼磁体耐蚀性双涂层的制备方法
CN103668369A (zh) 一种提高金属件耐腐蚀性的电镀方法
CN101226800A (zh) 一种用于烧结型钕铁硼永磁材料的表面处理方法
Zhan-Fang et al. Super-hydrophobic coating used in corrosion protection of metal material: review, discussion and prospects
CN204918772U (zh) 一种用于航空航天零部件的高耐腐蚀性镀镉层
CN104060224A (zh) 一种金属件的真空镀膜方法
CN104073849B (zh) 一种烧结钕铁硼磁体表面电镀镍钨磷的工艺
CN105349971A (zh) 一种铝合金表面改性工艺
CN109468576A (zh) 一种烧结钕铁硼磁体表面高耐蚀涂层及其制备方法
CN102817019A (zh) 镁合金表面化学镀镍磷金属层镀液及其制备与使用方法
CN111020482A (zh) 一种烧结NdFeB磁体表面致密化Al镀层及其制备方法
CN112725855B (zh) 一种钕铁硼磁体表面高结合力高耐蚀涂层的制备方法
CN109686558A (zh) 一种高耐蚀性烧结NdFeB磁体的制备方法
TW201433451A (zh) 改善覆著力的複合材料及其製造方法
Liu et al. Construction of Al-BTA passivation film on the surface of electrolytic copper foil and study of corrosion resistance mechanism
CN105386045A (zh) 一种镁合金表面处理的方法
CN106783134A (zh) 一种表面涂覆有防护涂层的粘胶磁体组件的制备方法
CN108364780A (zh) 一种烧结钕铁硼磁体表面高耐蚀涂层的制备方法
Ishikawa et al. Preparation of thin film resistors with low resistivity and low TCR by heat treatment of multilayered Cu/Ni deposits

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication