CN106756333B - 一种高强度航天用铝合金铆钉线材的制造方法 - Google Patents

一种高强度航天用铝合金铆钉线材的制造方法 Download PDF

Info

Publication number
CN106756333B
CN106756333B CN201611218749.9A CN201611218749A CN106756333B CN 106756333 B CN106756333 B CN 106756333B CN 201611218749 A CN201611218749 A CN 201611218749A CN 106756333 B CN106756333 B CN 106756333B
Authority
CN
China
Prior art keywords
casting
temperature
wire rod
aluminum alloy
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611218749.9A
Other languages
English (en)
Other versions
CN106756333A (zh
Inventor
高新宇
王国军
王金花
孙婧彧
王志超
谭树栋
刘世雷
高宝亭
杨晓禹
赵大明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Light Alloy Co Ltd
Original Assignee
Northeast Light Alloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Light Alloy Co Ltd filed Critical Northeast Light Alloy Co Ltd
Priority to CN201611218749.9A priority Critical patent/CN106756333B/zh
Publication of CN106756333A publication Critical patent/CN106756333A/zh
Application granted granted Critical
Publication of CN106756333B publication Critical patent/CN106756333B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Abstract

一种高强度航天用铝合金铆钉线材的制造方法,本发明涉及一种新型铝合金铆钉线材的制造方法,它是满足我国航天工业对于高强度的铆接材料有了迫切的需求,特别是轻质的铝合金铆钉材料,在保证材料强度的同时,要求铆钉仍然有一定的塑性。制造方法:一、合金溶液制备;二、铝液精炼处理;三、铸造合金铸棒;四、均匀化退火;五、铸棒锯切;六、热挤压成型;七、中间退火;八、冷拉;九、固溶处理;十、时效处理。本发明制备的铝合金铆钉线材的抗拉强度不小于580Mpa,规定非比例延伸强度不小于500Mpa,断后伸长率不小于6%,抗剪切强度不小于320Mpa,满足航天产品的应用要求。本发明可用于航天铝合金铆钉的加工制造。

Description

一种高强度航天用铝合金铆钉线材的制造方法
技术领域
本发明涉及一种铝合金铆钉线材的制造方法,尤其涉及一种高强度航天用铝合金铆钉线材的制造方法。
背景技术
随着我国航天事业的发展,对于高强度的铆接材料有了迫切的需求,特别是轻质的铝合金铆钉材料,在保证材料强度的同时,要求铆钉仍然有一定的塑性,根据我国航天设计需求,需要铆钉线材的抗拉强度达到580Mpa,规定非比例延伸强度达到500Mpa,断后伸长率达到6%,抗剪切强度达到320Mpa。但现有工艺生产中各类铝合金铆钉线材制备得到的铆钉在满足断后伸长率的前期下,铆钉线材的强度和抗剪切强度无法满足航空用品的应用要求。
发明内容
本发明为了解决现有工艺生产制备的铝合金铆钉线材在满足断后伸长率的前期下,铆钉线材的强度和抗剪切强度无法满足航空用品的应用要求的问题,提出一种高强度航天用铝合金铆钉线材制造方法。
本发明高强度航天用铝合金铆钉线材制造方法按以下步骤进行:
一、按各元素质量百分比为Zn:6.5%~7.2%、Mg:2.8%~3.2%、Cu:1.0%~1.2%、Zr:0.08%~0.18%、V:0.05%~0.15%、Mn:≤0.10%、Si:≤0.08%、Fe:≤0.10%、Cr:≤0.10%和余量的Al称取纯锌锭、纯镁锭、电解铜、Al-Zr中间合金、Al-V中间合金和高纯铝锭作为原料,然后将原料加入到熔炼炉中,在720℃~740℃条件下熔炼6~8小时,得到铝合金熔液;其中原料中Mn、Si、Fe和Cr为杂质元素,来源于铝锭及中间合金,这些杂质元素及含量对铝合金铆钉线材的性能没有影响;
二、将步骤一得到的铝合金熔液导入静置炉中,在温度为720℃~740℃和通有氩氯混合气体的条件下精炼5min~15min,然后在温度为720℃~730℃和通入氩气的条件下精炼10min~20min,静置后得到铸造熔体;所述氩氯混合气体中按体积比包含氩气90%~94%和氯气6%~10%,并且氩氯混合气体中H2、O2、N2或H2O的体积浓度不大于2ppm,CH4体积浓度不大于1ppm;
三、将步骤二得到的铸造熔体在温度为720℃~740℃、铸造速度为65mm/min~70mm/min、冷却水强度为0.01MPa~0.04MPa、冷却水温度为20℃~30℃和炉外在线除气的条件下采用热顶半连续铸造法制备得到直径为205mm~210mm的铸棒;
四、将步骤三得到的铸棒放置在退火炉中,在400℃~420℃的温度下保温10h~15h进行第一级均匀化退火,然后在440℃~470℃的温度下保温20h~25h进行第二级均匀化退火,完成后取出空冷;
五、将经步骤四处理的铸棒车去表面的氧化皮,得到直径为190mm~192mm的铝合金铸棒,并将铸棒切成长度为650mm~700mm的短铸棒;
六、将经步骤五得到的短铸棒放置在空气加热炉中加热,在铝合金短铸锭温度达到420℃~450℃后热挤压成型,得到直径为10mm~12mm铝合金线材;
七、将步骤六制得的铝合金线材进行中间退火;所述中间退火为在380℃~400℃下保温2~3小时;
八、将步骤七退火后的铝合金线材在变形率为10%~20%的条件下通过拉伸模具进行冷拉;
九、将步骤八冷拉得到的铝合金铆钉线材在精度为±2.5℃的固溶热处理炉中固溶处理,得到固溶后的铝合金铆钉线材;所述固溶处理的温度为465℃,固溶处理的时间为1h~2h,固溶处理的介质为水;
十、将步骤九得到的固溶后的铆钉线材放置在精度为±5℃的时效炉中进行时效处理,得高强度铝合金铆钉线材;即完成;所述时效处理的工艺为:在温度为115℃保温4~6h后,升温至135℃保温8~10h。
本发明具备以下有益效果:
本发明高强度航天用铝合金铆钉线材的制备方法,在合金成分设计上就有较高的优化效果,其主元素Zn高于现有用于铝合金制造的其他铝合金,显著提高了铝合金性能。通过保持适当的Mg、Cu含量确保了合金的热处理效果,从而提高了铝合金热处理的效果,提高了铝合金强度,另外,增加了Zr作为细化元素,保证了合金的延伸性能,增加了微量的V,可以提高线材的加工性能;同时,配合优化后的热处理工艺,确保了线材的性能达到了最佳的效果。同时本发明制备的线材抗拉强度不小于580MPa,规定非比例延伸强度不小于500MPa,断后伸长率不小于6%,T4态丝材的抗剪强度不小于320MPa。
具体实施方式:
本发明技术方案不局限于以下所列举具体实施方式,还包括各具体实施方式间的任意合理组合。
具体实施方式一:
本实施方式高强度航天用铝合金铆钉线材制造方法按以下步骤进行:
一、按各元素质量百分比为Zn:6.5%~7.2%、Mg:2.8%~3.2%、Cu:1.0%~1.2%、Zr:0.08%~0.18%、V:0.05%~0.15%、Mn:≤0.10%、Si:≤0.08%、Fe:≤0.10%、Cr:≤0.10%和余量的Al称取纯锌锭、纯镁锭、电解铜、Al-Zr中间合金、Al-V中间合金和高纯铝锭作为原料,然后将原料加入到熔炼炉中,在720℃~740℃条件下熔炼6~8小时,得到铝合金熔液;
二、将步骤一得到的铝合金熔液导入静置炉中,在温度为720℃~740℃和通有氩氯混合气体的条件下精炼5min~15min,然后在温度为720℃~730℃和通入氩气的条件下精炼10min~20min,静置后得到铸造熔体;
三、将步骤二得到的铸造熔体在温度为720℃~740℃、铸造速度为65mm/min~70mm/min、冷却水强度为0.01MPa~0.04MPa、冷却水温度为20℃~30℃和炉外在线除气的条件下采用热顶半连续铸造法制备得到直径为205mm~210mm的铸棒;
四、将步骤三得到的铸棒放置在退火炉中,在400℃~420℃的温度下保温10h~15h进行第一级均匀化退火,然后在440℃~470℃的温度下保温20h~25h进行第二级均匀化退火,完成后取出空冷;
五、将经步骤四处理的铸棒车去表面的氧化皮,得到直径为190mm~192mm的铝合金铸棒,并将铸棒切成长度为650mm~700mm的短铸棒;
六、将经步骤五得到的短铸棒放置在空气加热炉中加热,在铝合金短铸锭温度达到420℃~450℃后热挤压成型,得到直径为10mm~12mm铝合金线材;
七、将步骤六制得的铝合金线材进行中间退火;
八、将步骤七退火后的铝合金线材在变形率为10%~20%的条件下通过拉伸模具进行冷拉;
九、将步骤八冷拉得到的铝合金铆钉线材在精度为±2.5℃的固溶热处理炉中固溶处理,得到固溶后的铝合金铆钉线材;
十、将步骤九得到的固溶后的铆钉线材放置在精度为±5℃的时效炉中进行时效处理,得高强度铝合金铆钉线材;即完成。
本实施方式具备以下有益效果:
本实施方式高强度航天用铝合金铆钉线材的制备方法,在合金成分设计上就有较高的优化效果,其主元素Zn高于现有用于铝合金制造的其他铝合金,显著提高了铝合金性能。通过保持适当的Mg、Cu含量确保了合金的热处理效果,从而提高了铝合金热处理的效果,提高了铝合金强度,另外,增加了Zr作为细化元素,保证了合金的延伸性能,增加了微量的V,可以提高线材的加工性能;同时,配合优化后的热处理工艺,确保了线材的性能达到了最佳的效果;同时本实施方式制备的线材抗拉强度不小于580MPa,规定非比例延伸强度不小于500MPa,断后伸长率不小于6%,T4态丝材的抗剪强度不小于320MPa。
具体实施方式二:本实施方式与具体实施方式一不同的是:步骤一所述按元素质量百分比为Zn:6.8%、Mg:3.0%、Cu:1.1%、Zr:0.15%、V:0.08、Mn:≤0.10%、Si:≤0.08%、Fe:≤0.10%、Cr:≤0.10%和余量的Al称取纯锌锭、纯镁锭、电解铜、Al-Zr中间合金、Al-V中间合金和高纯铝锭作为原料。其他步骤和参数与具体实施方式一相同。
具体实施方式三:本实施方式与具体实施方式一或二不同的是:步骤二所述氩氯混合气体中按体积比包含氩气90%~94%和氯气6%~10%,并且氩氯混合气体中H2、O2、N2或H2O的体积浓度不大于2ppm,CH4体积浓度不大于1ppm。其他步骤和参数与具体实施方式一或二相同。
具体实施方式四:本实施方式与具体实施方式一至三之一不同的是:步骤七所述中间退火为在380℃~400℃下保温2~3小时。其他步骤和参数与具体实施方式一至三之一相同。
具体实施方式五:本实施方式与具体实施方式一至四之一不同的是:步骤九所述固溶处理的温度为465℃,固溶处理的时间为1h~2h,固溶处理的介质为水。其他步骤和参数与具体实施方式一至四之一相同。
具体实施方式六:本实施方式与具体实施方式一至五之一不同的是:步骤十所述时效处理的工艺为:在温度为115℃保温4~6h后,升温至135℃保温8~10h。其他步骤和参数与具体实施方式一至五之一相同。
实施例1:
本实施例高强度航天用铝合金铆钉线材制造方法按以下步骤进行:
一、按元素质量百分比为Zn:6.8%、Mg:3.0%、Cu:1.1%、Zr:0.15%、V:0.08、Mn:≤0.10%、Si:≤0.08%、Fe:≤0.10%、Cr:≤0.10%和余量的Al称取纯锌锭、纯镁锭、电解铜、Al-Zr中间合金、Al-V中间合金和高纯铝锭作为原料,然后将原料加入到熔炼炉中,在720℃~740℃条件下熔炼6~8小时,得到铝合金熔液;其中原料中Mn、Si、Fe和Cr为杂质元素,来源于铝锭及中间合金,这些杂质元素及含量对铝合金铆钉线材的性能没有影响;
二、将步骤一得到的铝合金熔液导入静置炉中,在温度为730℃和通有氩氯混合气体的条件下精炼10min,然后在温度为725℃和通入氩气的条件下精炼15min,静置后得到铸造熔体;所述氩氯混合气体中按体积比包含氩气94%和氯气6%,并且氩氯混合气体中H2、O2、N2或H2O的体积浓度不大于2ppm,CH4体积浓度不大于1ppm;
三、将步骤二得到的铸造熔体在温度为730℃、铸造速度为68mm/min、冷却水强度为0.03MPa、冷却水温度为25℃和炉外在线除气的条件下采用热顶半连续铸造法制备得到直径为208mm的铸棒;
四、将步骤三得到的铸棒放置在退火炉中,在420℃的温度下保温13h进行第一级均匀化退火,然后在450℃的温度下保温23h进行第二级均匀化退火,完成后取出空冷;
五、将经步骤四处理的铸棒车去表面的氧化皮,得到直径为191mm的铝合金铸棒,并将铸棒切成长度为680mm的短铸棒;
六、将经步骤五得到的短铸棒放置在空气加热炉中加热,在铝合金短铸锭温度达到420℃~450℃后热挤压成型,得到直径为12mm铝合金线材;
七、将步骤六制得的铝合金线材进行中间退火;所述中间退火为在390℃下保温2.5小时;
八、将步骤七退火后的铝合金线材在变形率为15%的条件下通过拉伸模具进行冷拉;
九、将步骤八冷拉得到的铝合金铆钉线材在精度为±2.5℃的固溶热处理炉中固溶处理,得到固溶后的铝合金铆钉线材;所述固溶处理的温度为465℃,固溶处理的时间为1.5h,固溶处理的介质为水;
十、将步骤九得到的固溶后的铆钉线材放置在精度为±5℃的时效炉中进行时效处理,得高强度铝合金铆钉线材;即完成;所述时效处理的工艺为:在温度为115℃保温5h后,升温至135℃保温9h。
本实施例具备以下有益效果:
本实施例高强度航天用铝合金铆钉线材的制备方法,在合金成分设计上就有较高的优化效果,其主元素Zn高于现有用于铝合金制造的其他铝合金,显著提高了铝合金性能。通过保持适当的Mg、Cu含量确保了合金的热处理效果,从而提高了铝合金热处理的效果,提高了铝合金强度,另外,增加了Zr作为细化元素,保证了合金的延伸性能,增加了微量的V,可以提高线材的加工性能;同时,配合优化后的热处理工艺,确保了线材的性能达到了最佳的效果;
本实施例制备的航天用铝合金铆钉线材实体尺寸和表面质量良好,工业生产中成型性能好,综合力学性能优良,通过GB/T 16865《变形铝、镁及其合金加工制品拉伸试验用试样及方法》试验测得抗拉强度为615MPa,规定非比例延伸强度为526MPa,断后伸长率为7.5%;通过GB/T3250《铝及铝合金铆钉线与铆钉剪切试验方法及铆钉线铆接试验方法》试验测的T4态丝材的抗剪强度为345MPa。

Claims (3)

1.一种高强度航天用铝合金铆钉线材的制造方法,其特征在于:该方法按以下步骤进行:
一、按各元素质量百分比为Zn:6.5%~7.2%、Mg:2.8%~3.2%、Cu:1.0%~1.2%、Zr:0.08%~0.18%、V:0.05%~0.15%、Mn:≤0.10%、Si:≤0.08%、Fe:≤0.10%、Cr:≤0.10%和余量的Al称取纯锌锭、纯镁锭、电解铜、Al-Zr中间合金、Al-V中间合金和高纯铝锭作为原料,然后将原料加入到熔炼炉中,在720℃~740℃条件下熔炼6~8小时,得到铝合金熔液;
二、将步骤一得到的铝合金熔液导入静置炉中,在温度为720℃~740℃和通有氩氯混合气体的条件下精炼5min~15min,然后在温度为720℃~730℃和通入氩气的条件下精炼10min~20min,静置后得到铸造熔体;
三、将步骤二得到的铸造熔体在温度为720℃~740℃、铸造速度为65mm/min~70mm/min、冷却水强度为0.01MPa~0.04MPa、冷却水温度为20℃~30℃和炉外在线除气的条件下采用热顶半连续铸造法制备得到直径为205mm~210mm的铸棒;
四、将步骤三得到的铸棒放置在退火炉中,在400℃~420℃的温度下保温10h~15h进行第一级均匀化退火,然后在440℃~470℃的温度下保温20h~25h进行第二级均匀化退火,完成后取出空冷;
五、将经步骤四处理的铸棒车去表面的氧化皮,得到直径为190mm~192mm的铝合金铸棒,并将铸棒切成长度为650mm~700mm的短铸棒;
六、将经步骤五得到的短铸棒放置在空气加热炉中加热,在铝合金短铸锭温度达到420℃~450℃后热挤压成型,得到直径为10mm~12mm铝合金线材;
七、将步骤六制得的铝合金线材进行中间退火;
所述中间退火为在380℃~400℃下保温2~3小时;
八、将步骤七退火后的铝合金线材在变形率为10%~20%的条件下通过拉伸模具进行冷拉;
九、将步骤八冷拉得到的铝合金铆钉线材在精度为±2.5℃的固溶热处理炉中固溶处理,得到固溶后的铝合金铆钉线材;
所述固溶处理的温度为465℃,固溶处理的时间为1h~2h,固溶处理的介质为水;
十、将步骤九得到的固溶后的铆钉线材放置在精度为±5℃的时效炉中进行时效处理,得高强度铝合金铆钉线材;即完成;
所述时效处理的工艺为:在温度为115℃保温4~6h后,升温至135℃保温8~10h。
2.根据权利要求1所述的高强度航天用铝合金铆钉线材的制造方法,其特征在于:步骤一所述按元素质量百分比为Zn:6.8%、Mg:3.0%、Cu:1.1%、Zr:0.15%、V:0.08%、Mn:≤0.10%、Si:≤0.08%、Fe:≤0.10%、Cr:≤0.10%和余量的Al称取纯锌锭、纯镁锭、电解铜、Al-Zr中间合金、Al-V中间合金和高纯铝锭作为原料。
3.根据权利要求1所述的高强度航天用铝合金铆钉线材的制造方法,其特征在于:步骤二所述氩氯混合气体中按体积比包含氩气90%~94%和氯气6%~10%,并且氩氯混合气体中H2、O2、N2或H2O的体积浓度不大于2ppm,CH4体积浓度不大于1ppm。
CN201611218749.9A 2016-12-26 2016-12-26 一种高强度航天用铝合金铆钉线材的制造方法 Active CN106756333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611218749.9A CN106756333B (zh) 2016-12-26 2016-12-26 一种高强度航天用铝合金铆钉线材的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611218749.9A CN106756333B (zh) 2016-12-26 2016-12-26 一种高强度航天用铝合金铆钉线材的制造方法

Publications (2)

Publication Number Publication Date
CN106756333A CN106756333A (zh) 2017-05-31
CN106756333B true CN106756333B (zh) 2018-08-31

Family

ID=58926856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611218749.9A Active CN106756333B (zh) 2016-12-26 2016-12-26 一种高强度航天用铝合金铆钉线材的制造方法

Country Status (1)

Country Link
CN (1) CN106756333B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108103371B (zh) * 2017-12-15 2019-06-18 东北轻合金有限责任公司 一种高性能航天紧固件用铝合金线材制作方法
CN108149087B (zh) * 2017-12-27 2019-10-11 东北轻合金有限责任公司 一种航天用铝锂合金及利用铝锂合金制备型材的方法
CN110656264A (zh) * 2019-11-05 2020-01-07 东北轻合金有限责任公司 一种防护围栏用铝合金线材的制造方法
CN112813319A (zh) * 2020-12-28 2021-05-18 东北轻合金有限责任公司 一种超高强铆钉制造用铝合金线材的制备方法
CN115780558A (zh) * 2022-12-07 2023-03-14 东北轻合金有限责任公司 一种航空航天用7xxx铝合金铆钉线材的高效生产方法

Also Published As

Publication number Publication date
CN106756333A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106756333B (zh) 一种高强度航天用铝合金铆钉线材的制造方法
CN103103424B (zh) 一种采用双级时效制造航空用铝合金型材的方法
CN104805319B (zh) 一种2xxx系超大规格铝合金圆锭的制造方法
CN106636806B (zh) 一种细小晶粒中等强度铝合金及其制备方法与应用
CN112725671B (zh) 一种Al-Cu-Mg铝合金线材及其制备方法
CN104711468A (zh) 一种高强高耐热性铝合金材料及其制备方法
CN106591625A (zh) 一种具有高强度高韧性匹配的钛合金及其制备工艺
CN102330004B (zh) 一种铝合金模锻件的制造方法
CN108165848A (zh) 一种航空用铝合金型材的制造方法
CN106890865B (zh) 大直径aq80m镁合金饼材挤锻集成成形工艺
CN103160720A (zh) 一种铝合金棒材的制造方法
CN103898378B (zh) 高镁铝合金冷拉棒材及其制造方法
CN104178711A (zh) 一种航天用铝合金板材的制造方法
CN105331859A (zh) 一种700MPa级铝合金挤压型材的制备方法
CN105779826B (zh) 一种铝合金杆及其制备方法和铝合金线的制备方法
CN104294110B (zh) 一种能提高多元亚共晶铝硅合金力学性能的工艺方法
CN103952652B (zh) 一种航空用铝合金预拉伸板材的制造方法
CN110863128B (zh) 一种航空用640MPa级铝合金挤压材的制备方法
CN106947887B (zh) 一种高温钛合金成分设计及多向锻造工艺
CN105401021A (zh) 一种700MPa级铝合金挤压型材
CN105200288A (zh) 一种超高强铝合金棒材及其制造方法
CN103114229A (zh) 一种航空航天用铝合金铆钉线材及其制造方法
CN105908034A (zh) 一种铝合金圆棒及其制造方法
CN102787263B (zh) 一种高抗剪强度和高断后伸长率的航天用铝合金铆钉棒材的制造方法
CN106903294A (zh) 一种低成本非晶合金件的制备方法及低成本非晶合金件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant