CN106756254A - 一种获得复杂精密细晶铸件的制备方法 - Google Patents

一种获得复杂精密细晶铸件的制备方法 Download PDF

Info

Publication number
CN106756254A
CN106756254A CN201710072959.XA CN201710072959A CN106756254A CN 106756254 A CN106756254 A CN 106756254A CN 201710072959 A CN201710072959 A CN 201710072959A CN 106756254 A CN106756254 A CN 106756254A
Authority
CN
China
Prior art keywords
formwork
melt
fine grain
casting
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710072959.XA
Other languages
English (en)
Other versions
CN106756254B (zh
Inventor
高中堂
胡锐
郭卫
张传伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Xian University of Science and Technology
Original Assignee
Northwestern Polytechnical University
Xian University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University, Xian University of Science and Technology filed Critical Northwestern Polytechnical University
Priority to CN201710072959.XA priority Critical patent/CN106756254B/zh
Publication of CN106756254A publication Critical patent/CN106756254A/zh
Application granted granted Critical
Publication of CN106756254B publication Critical patent/CN106756254B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/04Influencing the temperature of the metal, e.g. by heating or cooling the mould
    • B22D27/045Directionally solidified castings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

本发明涉及一种获得复杂精密细晶铸件的制备方法,其包括(1)、熔体过热处理;(2)将步骤(1)得到的熔体降温至1410℃,降温速率为1.2~2℃/min;(3)将步骤(2)中降温后的熔体保温T保温小时;(4)将步骤(3)得到的熔体在电磁场作为电源的加热情况下沿浇口杯浇注到预热温度为1400℃的模壳中;(5)启动模壳下部的水冷铜盘,使模壳随下部水冷铜盘一起旋转,水冷铜盘在旋转螺杆的连接下整体向下运动,旋转角速度为150°~360°/秒,模壳中的熔体随着模壳向下运动,当部分模壳运动出加热电源后,其模壳中熔体温度降低,熔体便发生结晶,最终模壳中的熔体随着水冷托盘边运动边凝固,得到复杂精密细晶铸件。

Description

一种获得复杂精密细晶铸件的制备方法
技术领域
本发明涉及一种获得复杂精密细晶铸件的制备方法,属于金属材料制备领域。
背景技术
晶粒尺寸对金属材料的力学性能有极大的影响,金属和合金在晶粒尺寸细小时,不仅是强度高且韧性高,具有良好的综合力学性能。因此,在金属材料制备和生产过程中,获得细小晶粒(细晶)对于提高材料力学性能具有重要意义。特别是针对应用于航空航天领域较广泛的高温合金更是如此,高温合金是制造航空、航天发动机和燃气轮机等高温热端部件不可替代的材料,也广泛应用在石油化工、核工业、汽车等行业上。自20世纪40年代以来,航空发动机涡轮前进口温度从730℃上升到1700℃以上,其中高温合金的铸造技术进步发挥了非常重要的作用。
对于铸造高温合金,由于普通铸造方法制备的合金和获得的铸件晶粒粗大,枝晶组织发达,导致合金性能不高。
为细化铸造高温合金晶粒尺寸,发展了许多方法和技术来控制合金的凝固过程。熔体处理作为晶粒细化的重要手段,在高温合金中得到了广泛的应用,熔体凝固前的热历史以及后续的控温方法对能否获得细晶组织起到至关重要作用,通过对熔体进行特殊控温处理,可以得到较为理想的铸件和铸锭。人们已经发展了一些高温合金热控细晶铸造的方法,已在工业上使用的方法主要分为:深过冷和普通热控法。
中国专利局2005年3月23日公布了(公开号:CN1598005)名称为“一种深过冷熔体制备块体纳米晶合金的方法”的发明申请专利,实现了金属试样在先凝固玻璃包裹下慢速冷却达到深过冷而后快速凝固,或用惰性气体将合金熔体吹入冷却介质强制冷却的金属模中,快速凝固获得块体纳米晶合金异形件大多只能停留实验室研究阶段,工业化应用受到铸锭尺寸的限制。
针对电磁场在凝固过程中的应用特点,中国科学院金属研究所在国内外率先提出采用低压脉冲电磁场控制凝固过程,在本世纪初开展了低压脉冲磁场控制凝固的研究,分别应用于钢铁、镍基高温合金等材料中均取得细化和均匀效果。但上述应用中的过热度均低于100℃,高于此过热度,细化效果减弱或消失。而低的过热度,满足不了一些复杂精密铸件或薄壁铸件(最薄处1~5mm)的充型要求,限制了该技术在此类复杂精密铸件或薄壁铸件细晶铸造的应用。
美国的Howmet公司细晶铸造工艺Microcast是采用机械搅动和快速凝固相结合获得细小的晶胞组织,性能可与高温合金的锻件相媲美,但由于该工艺设备复杂以及控制熔体温度困难等因素,得到细晶铸件的成功率较低,限制了其工业化应用。
上述熔体处理方法的研究主要集中在深过冷、小体积过冷熔体以及传统热控凝固方法,深过冷方法目前停留在实验室阶段,工业化应用受到了极大现在,传统热控铸造方法得到铸件往往存在内部缩孔和缩松等缺陷,而真正获得内部无缩空缩松等其它缺陷的大体积铸件和复杂致密细晶铸件的方法鲜有报道。而随着航空、航天技术的发展,发动机热端部件设计中出现了越来越多的复杂长板状、筒形等结构件,如调节片部件,其长度超过30mm,而厚度仅有约1.5mm左右。而采用普通铸造工艺或深过冷方法生产此类结构件难以满足铸件质量要求,得不到理想组织,且铸件中易产生气孔和缩松等铸造缺陷。
综上所述,针对复杂铸件,希望开发出一种可以获得组织细小、充型性较好、致密且无缩孔缩松铸件的铸造方法,而控制熔体顺序凝固过程是细晶铸造方法的关键过程。
发明内容
发明目的:为克服现有技术中存在的浇注过程中充型不完整或者铸件组织粗大等问题,本发明提出了一种可以在工业上应用,通过对熔体进行等温处理和顺序凝固方式相结合可得到完整性较好、组织细化的精密铸件的制备方法。该方法可用于各种形状复杂的难充型异性铸件,可以通过控制顺序凝固的方式实现铸件的完全充型且无缩孔缩松,最后形成全界面细晶组织,用该铸造方法可生产出类锻造产品的质量,实现以铸代锻的设计理念。
技术方案:一种获得复杂精密细晶铸件的制备方法,包括以下步骤:
(1)、熔体过热处理
(11)首先将镍基高温合金Ni-22Cr-18W-1Mo放进石英坩埚内,并将石英坩埚放入真空电弧熔炼炉中,然后抽真空,并在真空度为10-3~10-2Pa时通入惰性气体,
(12)当炉压超过0.5Pa时,通过中频电磁场加热镍基高温合金Ni-22Cr-18W-1Mo至1450~1500℃,保温10~20min后得到熔体;
(2)缓慢降温
将步骤(1)得到的熔体降温至1410℃,降温速率为1.2~2℃/min,其中:
在降温过程中通过多个铂铑热电偶测量步骤(1)得到的熔体的温度,每个铂铑热电偶测得的最大温差值不超过3℃,
(3)保温
将步骤(2)中降温后的熔体保温T保温小时,保温时间其中:m为镍基高温合金的质量,单位为Kg;
(4)浇注
将步骤(3)得到的熔体在电磁场作为电源的加热情况下沿浇口杯浇注到预热温度为1400℃的模壳中,浇注速度为15~20kg/s,其中:
模壳处于中频电磁场中;
模壳为空心件,模壳的内腔与复杂精密细晶铸件的形状相适应,所述模壳的底部通过夹具与带有循环水的水冷铜盘固定连接,
(5)顺序凝固
启动模壳下部的水冷铜盘,使模壳随下部水冷铜盘一起旋转,且水冷铜盘在旋转螺杆的连接下整体向下运动,旋转角速度为150°~360°/秒,模壳中的熔体随着模壳向下运动,当部分模壳运动出加热电源后,其模壳中熔体温度降低,熔体便发生结晶,最终模壳中的熔体随着水冷托盘边运动边凝固,得到复杂精密细晶铸件。
进一步地,步骤(11)中的惰性气体为氩气。
本发明的原理如下:
预先对浇注熔体在电磁场的加热和对流作用下进行保温(其保温温度在浇注熔体液相线以上10℃左右),在特定温度保温是为了得到充型性较好且内部有较多原子团簇的熔体,电磁场的作用是保证整个熔体宏观温度场和微观溶质场均匀性较好,抑制温度相对较低熔体中固相的析出。经上述处理的熔体中形成均匀、稳定、数量众多的尺度在1~10nm原子团簇,且熔体仍具有极佳的流动性和充型能力。将此状态熔体浇注至外有加热设备的模壳中,模壳下部与铜盘接触,铜盘下部为可以旋转的冷却托盘。由于熔体中含有的大量均匀弥散分布有序原子团簇,可作为非均形核质点,起到自生形核剂作用,形核率大幅度提高,当温度降低到足以形核过冷度时,就可在整个熔体内同时非均匀形核,即发生同时凝固。当模壳随铜盘向下运动时,在加热设备中的熔体降到一定过冷度时可以瞬间同时结晶,模壳中的熔体可以随着托盘边运动边凝固,使得铸件的凝固界面顺序推进,最终获得致密性较好、充型性完整、无缩孔缩松、组织均匀细化的铸件。
有益效果:本发明公开的一种获得复杂精密细晶铸件的制备方法具有以下有益效果:
1、能够获得无传统铸锭的三晶区、无微观缩松、具有晶粒度级别为ASTM3级左右的细小等轴晶粒、微观偏析小、致密度高的细晶铸件;
2、得到高温合金铸件组织缺陷少,有效的提高了生产效率,降低了生产成本;
3、不受合金成分限制,即可制备有色金属和轻质铝合金细晶材料,也可制备高温合金等航空航天用材料。
附图说明
图1a为熔体在浇注前感应电源加热状态示意图;
图1b为熔体浇注模壳后在感应电源加热下顺序凝固示意图;
图2a为复杂精密细晶铸件的正面视图;
图2b为复杂精密细晶铸件的侧方视图;
图3a为具体实施例1中高温合金铸件在100倍下的金相照片;
图3b为具体实施例1中高温合金铸件在200倍下的金相照片;
图4a为具体实施例3中高温合金铸件在100倍下的金相照片;
图4b为具体实施例3中高温合金铸件在200倍下的金相照片;
图5为本发明公开的一种获得复杂精密细晶铸件的制备方法的流程图,其中:
1-铂铑热电偶;
2-过热高温合金熔体;
3-固定夹具;
4-浇口杯;
5-支架台;
6-感应线圈;
7-模壳;
8-液相线高温合金熔体;
9-水冷铜盘
10-旋转螺杆
具体实施方式:
下面对本发明的具体实施方式详细说明。
具体实施例1
实现本发明的制备方法的装置如图1a和1b所示,包括铂铑热电偶1、固定夹具3、浇口杯4、支架台5、感应线圈6、模壳7、水冷铜盘9和旋转螺杆10。
图2a和图2b为采用该工艺浇注出精密细晶铸件实物图,精密铸件中目标试样的晶粒度达到ASTM2-3(如图3a、图3b所示)。
如图5所示,一种获得复杂精密细晶铸件的制备方法,包括以下步骤:
(1)、熔体过热处理
(11)首先将镍基高温合金Ni-22Cr-18W-1Mo(表示合金中Ni:Cr:W:Mo的质量比为1:22:18:1)放进石英坩埚内,并将石英坩埚放入真空电弧熔炼炉中,然后抽真空,并在真空度为10-3Pa时通入惰性气体,
(12)当炉压超过0.5Pa时,通过中频电磁场加热镍基高温合金Ni-22Cr-18W-1Mo至1450℃,保温20min后得到过热高温合金熔体(也就是图1a中的序号2);
(2)缓慢降温
将步骤(1)得到的熔体降温至1410℃,降温速率为1.2℃/min,其中:
在降温过程中通过多个铂铑热电偶测量步骤(1)得到的熔体的温度,每个铂铑热电偶测得的最大温差值不超过3℃,
(3)保温
将步骤(2)中降温后的熔体(也就是附图1b中的液相线高温合金熔体8)保温T保温小时,保温时间其中:m为镍基高温合金的质量,单位为Kg;
(4)浇注
将步骤(3)得到的熔体在电磁场作为电源的加热情况下沿浇口杯浇注到预热温度为1400℃的模壳中,浇注速度为15kg/s,其中:
模壳处于中频电磁场中;
模壳为空心件,模壳的内腔与复杂精密细晶铸件的形状相适应,所述模壳的底部通过夹具与带有循环水的水冷铜盘固定连接,
(5)顺序凝固
启动模壳下部的水冷铜盘,使模壳随下部水冷铜盘一起旋转,且水冷铜盘在旋转螺杆的连接下整体向下运动,旋转角速度为150°/秒,模壳中的熔体随着模壳向下运动,当部分模壳运动出加热电源后,其模壳中熔体温度降低,熔体便发生结晶,最终模壳中的熔体随着水冷托盘边运动边凝固,得到复杂精密细晶铸件。
进一步地,步骤(11)中的惰性气体为氩气。
具体实施例2
一种获得复杂精密细晶铸件的制备方法,包括以下步骤:
(1)、熔体过热处理
(11)首先将镍基高温合金Ni-22Cr-18W-1Mo放进石英坩埚内,并将石英坩埚放入真空电弧熔炼炉中,然后抽真空,并在真空度为10-2Pa时通入惰性气体,
(12)当炉压超过0.5Pa时,通过中频电磁场加热镍基高温合金Ni-22Cr-18W-1Mo至1500℃,保温10min后得到熔体;
(2)缓慢降温
将步骤(1)得到的熔体降温至1410℃,降温速率为2℃/min,其中:
在降温过程中通过多个铂铑热电偶测量步骤(1)得到的熔体的温度,每个铂铑热电偶测得的最大温差值不超过3℃,
(3)保温
将步骤(2)中降温后的熔体保温T保温小时,保温时间其中:m为镍基高温合金的质量,单位为Kg;
(4)浇注
将步骤(3)得到的熔体在电磁场作为电源的加热情况下沿浇口杯浇注到预热温度为1400℃的模壳中,浇注速度为20kg/s,其中:
模壳处于中频电磁场中;
模壳为空心件,模壳的内腔与复杂精密细晶铸件的形状相适应,所述模壳的底部通过夹具与带有循环水的水冷铜盘固定连接,
(5)顺序凝固
启动模壳下部的水冷铜盘,使模壳随下部水冷铜盘一起旋转,且水冷铜盘在旋转螺杆的连接下整体向下运动,旋转角速度为360°/秒,模壳中的熔体随着模壳向下运动,当部分模壳运动出加热电源后,其模壳中熔体温度降低,熔体便发生结晶,最终模壳中的熔体随着水冷托盘边运动边凝固,得到复杂精密细晶铸件。
进一步地,步骤(11)中的惰性气体为氩气。
具体实施例3
一种获得复杂精密细晶铸件的制备方法,包括以下步骤:
(1)、熔体过热处理
(11)首先将镍基高温合金Ni-22Cr-18W-1Mo放进石英坩埚内,并将石英坩埚放入真空电弧熔炼炉中,然后抽真空,并在真空度为5×10-3Pa时通入惰性气体,
(12)当炉压超过0.5Pa时,通过中频电磁场加热镍基高温合金Ni-22Cr-18W-1Mo至1475℃,保温15min后得到熔体;
(2)缓慢降温
将步骤(1)得到的熔体降温至1410℃,降温速率为1.6℃/min,其中:
在降温过程中通过多个铂铑热电偶测量步骤(1)得到的熔体的温度,每个铂铑热电偶测得的最大温差值不超过3℃,
(3)保温
将步骤(2)中降温后的熔体保温T保温小时,保温时间其中:m为镍基高温合金的质量,单位为Kg;
(4)浇注
将步骤(3)得到的熔体在电磁场作为电源的加热情况下沿浇口杯浇注到预热温度为1400℃的模壳中,浇注速度为17kg/s,其中:
模壳处于中频电磁场中;
模壳为空心件,模壳的内腔与复杂精密细晶铸件的形状相适应,所述模壳的底部通过夹具与带有循环水的水冷铜盘固定连接,
(5)顺序凝固
启动模壳下部的水冷铜盘,使模壳随下部水冷铜盘一起旋转,且水冷铜盘在旋转螺杆的连接下整体向下运动,旋转角速度为240°/秒,模壳中的熔体随着模壳向下运动,当部分模壳运动出加热电源后,其模壳中熔体温度降低,熔体便发生结晶,最终模壳中的熔体随着水冷托盘边运动边凝固,得到复杂精密细晶铸件。复杂精密细晶铸件的金相图如图4a和图4b所示。
进一步地,步骤(11)中的惰性气体为氩气。
上面对本发明的实施方式做了详细说明。但是本发明并不限于上述实施方式,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。

Claims (2)

1.一种获得复杂精密细晶铸件的制备方法,其特征在于,包括以下步骤:
(1)、熔体过热处理
(11)首先将镍基高温合金Ni-22Cr-18W-1Mo放进石英坩埚内,并将石英坩埚放入真空电弧熔炼炉中,然后抽真空,并在真空度为10-3~10-2Pa时通入惰性气体,
(12)当炉压超过0.5Pa时,通过中频电磁场加热镍基高温合金Ni-22Cr-18W-1Mo至1450~1500℃,保温10~20min后得到熔体;
(2)缓慢降温
将步骤(1)得到的熔体降温至1410℃,降温速率为1.2~2℃/min,其中:
在降温过程中通过多个铂铑热电偶测量步骤(1)得到的熔体的温度,每个铂铑热电偶测得的最大温差值不超过3℃,
(3)保温
将步骤(2)中降温后的熔体保温T保温小时,保温时间其中:m为镍基高温合金的质量,单位为Kg;
(4)浇注
将步骤(3)得到的熔体在电磁场作为电源的加热情况下沿浇口杯浇注到预热温度为1400℃的模壳中,浇注速度为15~20kg/s,其中:
模壳处于中频电磁场中;
模壳为空心件,模壳的内腔与复杂精密细晶铸件的形状相适应,所述模壳的底部通过夹具与带有循环水的水冷铜盘固定连接,
(5)顺序凝固
启动模壳下部的水冷铜盘,使模壳随下部水冷铜盘一起旋转,且水冷铜盘在旋转螺杆的连接下整体向下运动,旋转角速度为150°~360°/秒,模壳中的熔体随着模壳向下运动,当部分模壳运动出加热电源后,其模壳中熔体温度降低,熔体便发生结晶,最终模壳中的熔体随着水冷托盘边运动边凝固,得到复杂精密细晶铸件。
2.根据权利要求1所述的一种获得复杂精密细晶铸件的制备方法,其特征在于,步骤(11)中的惰性气体为氩气。
CN201710072959.XA 2017-02-10 2017-02-10 一种获得复杂精密细晶铸件的制备方法 Expired - Fee Related CN106756254B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710072959.XA CN106756254B (zh) 2017-02-10 2017-02-10 一种获得复杂精密细晶铸件的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710072959.XA CN106756254B (zh) 2017-02-10 2017-02-10 一种获得复杂精密细晶铸件的制备方法

Publications (2)

Publication Number Publication Date
CN106756254A true CN106756254A (zh) 2017-05-31
CN106756254B CN106756254B (zh) 2018-02-27

Family

ID=58955827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710072959.XA Expired - Fee Related CN106756254B (zh) 2017-02-10 2017-02-10 一种获得复杂精密细晶铸件的制备方法

Country Status (1)

Country Link
CN (1) CN106756254B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396400A (zh) * 2018-11-29 2019-03-01 中国科学院金属研究所 一种大型复杂薄壁细晶铸件一体化成型方法和装置
CN111187930A (zh) * 2020-02-28 2020-05-22 沈阳金纳新材料股份有限公司 一种改善铸造合金中金属间化合物的方法
CN112743044A (zh) * 2020-12-29 2021-05-04 上海蓝铸特种合金材料有限公司 一种超细晶粒度高温合金叶轮的精密铸造方法
CN114032483A (zh) * 2021-11-22 2022-02-11 成都兴宇精密铸造有限公司 一种高温合金细晶铸件的制备方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1548258A (zh) * 2003-05-14 2004-11-24 中国科学院金属研究所 一种偏晶型合金薄板连铸方法
CN1598005A (zh) * 2003-09-17 2005-03-23 南京理工大学 深过冷熔体制备块体纳米晶合金的方法
CN103131980A (zh) * 2013-03-12 2013-06-05 西北工业大学 一种通过控制球晶稳定化实现细晶凝固方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1548258A (zh) * 2003-05-14 2004-11-24 中国科学院金属研究所 一种偏晶型合金薄板连铸方法
CN1598005A (zh) * 2003-09-17 2005-03-23 南京理工大学 深过冷熔体制备块体纳米晶合金的方法
CN103131980A (zh) * 2013-03-12 2013-06-05 西北工业大学 一种通过控制球晶稳定化实现细晶凝固方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
RUI HU等: ""Microstructural refinement of Ni-Cr-W superalloy by isothermal treatment near the liquidus"", 《MATERIALS LETTERS》 *
ZHONGTANG GAO等: ""Development of fine-grained strucutr in Ni-Cr-W based superalloy and its effect on the mechanical properties"", 《MATERIALS SCIENCE & ENGINEERING》 *
ZHONGTANG GAO等: ""Fine grained microstructure crystallographic feature and its effect on mechanical bahavior in Ni-Cr-W superalloy"", 《MATERIALS SCIENCE & ENGINEERING》 *
于保正,汤鑫,刘发信: ""温度参数对铸型搅动整体洗净铸造涡轮晶粒特性的影响"", 《航空材料学报》 *
刘林: ""高温合金精密铸造技术研究进展"", 《铸造》 *
徐志新等: ""核级蝶阀阀体铸造工艺数值模拟"", 《材料科学与工程》 *
高中堂等: ""电磁场下近液相线高温合金熔体处理非枝晶组织的形成"", 《金属学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109396400A (zh) * 2018-11-29 2019-03-01 中国科学院金属研究所 一种大型复杂薄壁细晶铸件一体化成型方法和装置
CN111187930A (zh) * 2020-02-28 2020-05-22 沈阳金纳新材料股份有限公司 一种改善铸造合金中金属间化合物的方法
CN111187930B (zh) * 2020-02-28 2021-10-01 沈阳金纳新材料股份有限公司 一种改善铸造合金中金属间化合物的方法
CN112743044A (zh) * 2020-12-29 2021-05-04 上海蓝铸特种合金材料有限公司 一种超细晶粒度高温合金叶轮的精密铸造方法
CN114032483A (zh) * 2021-11-22 2022-02-11 成都兴宇精密铸造有限公司 一种高温合金细晶铸件的制备方法及装置

Also Published As

Publication number Publication date
CN106756254B (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
CN106756254B (zh) 一种获得复杂精密细晶铸件的制备方法
Skryabin The study of influence of chemical composition of steel 35HGSL on the characteristics of shrinkage, casting defects and microstructure
CN102935507B (zh) 钛铝合金叶片坯件连续冷坩埚定向凝固铸造装置
JP2002045960A (ja) 非晶質合金の鋳造方法
CN102935506A (zh) 连续悬浮式冷坩埚定向凝固铸造装置
CN105598372A (zh) 一种近液相线浇注的铝合金熔模铸造方法及熔模铸造装置
CN109396400B (zh) 一种大型复杂薄壁细晶铸件一体化成型方法和装置
CN106756372B (zh) 一种高性能铍铝-稀土合金的制备方法及其制备的产品
CN103131980B (zh) 一种通过控制球晶稳定化实现细晶凝固方法
JP2006500219A (ja) 非晶質合金板材の製造方法とその装置、及びそれを利用して製造された非晶質合金板材
US10751792B2 (en) Continuous precision forming device and process for amorphous alloy
CN102051567A (zh) 一种可调式行波磁场细化铝合金的精密铸造方法
CN103008623A (zh) 利用强磁场细化晶粒的方法及其专用金属凝固铸造装置
CN114309549A (zh) 一种用于h13热作模具钢的生产装置
CN102719688B (zh) 一种能提高多元锌铝合金热疲劳性能的工艺方法
WO2016082561A1 (zh) 一种非晶态合金构件成形方法
Jiang et al. Novel technologies for the lost foam casting process
KR101225123B1 (ko) 비정질 합금 또는 비정질 복합재료의 판상 제품 제조 방법
CN101298094A (zh) 一种施加复合交变电磁场改善连铸空心管坯质量的方法和装置
CN103484802B (zh) 一种获得公斤级高温合金过冷熔体的制备方法
CN214442897U (zh) 一种电磁能中铸管浇铸装备
JPS5870955A (ja) 継ぎ目なし管の製造方法
CN112024828A (zh) 一种发动机缸体铸造生产工艺
CN206689388U (zh) 一种玻璃包覆悬浮深过冷快速定向凝固装置
CN111618533B (zh) 一种长寿命、低成本烙铁头的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180227

Termination date: 20200210