CN106753638A - 一种基于纳米零价铁的沼气干式脱硫方法 - Google Patents

一种基于纳米零价铁的沼气干式脱硫方法 Download PDF

Info

Publication number
CN106753638A
CN106753638A CN201611162881.2A CN201611162881A CN106753638A CN 106753638 A CN106753638 A CN 106753638A CN 201611162881 A CN201611162881 A CN 201611162881A CN 106753638 A CN106753638 A CN 106753638A
Authority
CN
China
Prior art keywords
biogas
nano zero
zero valence
valence iron
desulfurization process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611162881.2A
Other languages
English (en)
Other versions
CN106753638B (zh
Inventor
苏良湖
张明珠
张龙江
韩志华
孙旭
陈玉东
陈梅
刘臣炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Environmental Sciences MEP
Original Assignee
Nanjing Institute of Environmental Sciences MEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Environmental Sciences MEP filed Critical Nanjing Institute of Environmental Sciences MEP
Priority to CN201611162881.2A priority Critical patent/CN106753638B/zh
Publication of CN106753638A publication Critical patent/CN106753638A/zh
Application granted granted Critical
Publication of CN106753638B publication Critical patent/CN106753638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/101Removal of contaminants
    • C10L3/102Removal of contaminants of acid contaminants
    • C10L3/103Sulfur containing contaminants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明属于能源与环境技术领域,涉及一种基于纳米零价铁的沼气干式脱硫方法。将沼气通入装填有纳米零价铁的填充柱,控制填充柱温度为170℃~300℃,即可高效去除沼气中的硫化氢。本发明基于纳米零价铁的沼气干式脱硫方法,具有工艺简单、硫化氢去除效率高、硫容大等优点。

Description

一种基于纳米零价铁的沼气干式脱硫方法
技术领域
本发明属于能源与环境技术领域,涉及一种基于纳米零价铁的沼气干式脱硫方法。
背景技术
沼气是一种潜力巨大的清洁可再生能源,其的资源化利用对环境、健康、经济和节约能源均有裨益。沼气的主要成分为甲烷和二氧化碳,其利用途径多元,如热量和蒸汽的生产、电力/热电联产,或者作为车用燃料。在所有利用方式中,沼气都必须根据其进一步利用目的去除杂质,如硫化物。
沼气中的硫化物会腐蚀内燃机并缩短其寿命,也会减少金属管道、气罐、压缩机等寿命。H2S不仅危害人体健康,而且容易转换为SO2和H2SO4,加剧对机械设备的腐蚀。对于沼气热电联产,可接受的H2S含量大约为100~500 mg/m3,具体要求与选择的设备有关。而当用作车辆燃料时,需要进一步将H2S含量降低至<5 mg/m3。当注入民用天然气管道系统时,H2S浓度要求≤6~20 mg/m3。此外,H2S还具有恶臭阈值极低(<0.7 μg/ m3),并对哺乳动物和水栖物种表现出高毒性。
纳米零价铁(nZVI),由于它具有粒径小,比表面积大,以及快速污染物转化的高活性,已广泛地用于处理有毒有害污染物。纳米零价铁颗粒对污染物的具体去除机理(之间具有相联性)包括吸附、铁溶解、铁共沉淀,同时伴随氧化或还原,这些反应的机制还受到吸附或沉淀到纳米零价铁颗粒表面的有机或无机物质的影响。
目前纳米零价铁用于脱硫的研究,都聚焦于水环境中。如发明人发表的论文Theuse of the core-shell structure of zero-valent iron nanoparticles (NZVI) forlong-term removal of sulphide in sludge during anaerobic digestion.Environmental Science: Processes & Impacts, 2015, 17(12), 2013-2021,以及Sheng-Hsun Chaung等发表论文Nanoscale Zero-Valent Iron for Sulfide Removalfrom Digested Piggery Wastewater. Journal of Nanomaterials, 2014, 1-10。纳米零价铁在水环境中可高效去除硫化物,其原理在于:纳米零价铁在水环境中经历表面羟基化,在聚合物表面和单个粒子之间形成一个薄的表面层(厚度约2~4 nm),该表面层主要成分为氧化铁(或非晶氧化物),表面化学计量比接近FeOOH,可以与硫化物高效反应。但采用纳米零价铁进行湿法脱硫,存在带入水蒸气、废水处理以及纳米零价铁再生难等问题。
在干法脱硫中,传统技术常采用氧化铁、氢氧化铁、活性炭等脱除沼气中的硫化氢,但存在去除效率低或者硫容偏低等问题。目前尚无纳米零价铁干法脱除硫化氢的报道,而普通铁粉在500℃以下的脱硫效率极低,没有应用价值。目前我国沼气利用仍处于初步阶段,深度净化技术缺乏,特别是在硫化氢去除方面,迫切寻求效率高、硫容量大的新型脱硫技术,为沼气的深度利用提供技术支撑。
发明内容
本发明提出一种基于纳米零价铁的沼气干式脱硫方法,该方法应用了纳米零价铁所具有的纳米尺寸结构,在特定温度条件下剧烈降低铁-硫化物反应的活化能,显著增强了硫化氢对零价铁颗粒的攻击性,可在低温(<300℃)条件下高效去除硫化氢,具有工艺简单、硫容大等优点。
本发明的目的在于提供一种基于纳米零价铁的沼气干式脱硫方法。
为实现上述目的,本发明采用以下技术方案:
一种基于纳米零价铁的沼气干式脱硫方法,其特征在于包括以下步骤:
(1)将纳米零价铁与惰性填料混合均匀,并装填入填充柱;
(2)将沼气脱除水蒸气和氧气后,通过上述的填充柱,即可高效去除沼气中的硫化氢。
上述的沼气干式脱硫方法,其特征在于,所述的纳米零价铁与惰性填料的质量比为1:20~1:100。
上述的沼气干式脱硫方法,其特征在于,所述的纳米零价铁与惰性填料优选的质量比为1:30~1:50。
上述的沼气干式脱硫方法,其特征在于,所述的纳米零价铁的粒径为10~100 nm。
上述的沼气干式脱硫方法,其特征在于,所述的纳米零价铁的粒径优选为10~50nm。
上述的沼气干式脱硫方法,其特征在于,填充柱的温度为170℃~300℃。
上述的沼气干式脱硫方法,其特征在于,填充柱的温度优选为200℃~250℃。
上述的沼气干式脱硫方法,其特征在于,所述的惰性填料为天然石英砂、石榴石、金刚砂或陶粒的任意一种,优选陶粒。
上述的沼气干式脱硫方法,其特征在于,所述的惰性填料的粒径为40~120目,优选的粒径为80~100目。
上述的沼气干式脱硫方法,其特征在于,所述的沼气,其对纳米零价铁的体积空速为500 h-1~1600 h-1,优选的体积空速为500~1000 h-1
本发明同现有技术相比,具有如下优点和有益效果:
本发明具有工艺简单的特点,纳米零价铁的脱硫性能高,硫化氢去除效率高,可用于沼气的深度净化。
附图说明
图1是沼气脱硫性能在线评价装置示意图,模拟沼气钢瓶1、质量流量计2、保温反应炉3、石英管4、进样六通阀5、氮气钢瓶6、气相色谱GC 7、微机系统8。
具体实施方式
以下结合附图所示实施例对本发明作进一步的说明。
沼气脱硫在线性能评价装置如图1所示,包括沼气源1、质量流量计2、保温反应炉3、石英反应管4、进样六通阀5、氮气钢瓶6、气相色谱GC 7、微机系统8。
沼气脱硫性能评价方法如下:将纳米零价铁与惰性材料混合均匀;在石英反应管4装填约1cm的石英棉,在石英棉上填放5g的纳米零价铁和惰性填料的样品;开启保温反应炉3,控制炉体温度为反应温度;开启沼气源1,沼气脱除水蒸气和氧气,组分为1%H2S、60% CH4、39% CO2,通过质量流量计2控制气体流量,沼气通过装填有纳米零价铁和惰性填料的石英反应管4;利用氮气钢瓶6驱动进样六通阀5,利用气相色谱GC7定时分析气体样品的硫化氢浓度,气相色谱GC7配有FPD检测器;微机系统8配有气相色谱工作站和保温反应炉温控系统,用于数据处理和温度控制。
脱硫性能x/M (mg H2S/g)计算公式如下:
Q:进气流量(m3/s);
w:纳米零价铁的质量(g);
MW:硫化氢的分子量;
VM:摩尔体积,22.4 mL/mmol;
c0:进气的硫化氢浓度(ppmv);
c(t):出气的硫化氢浓度(ppmv);
t:饱和时间(s)。
实施例1
按质量比1:20将纳米零价铁与天然石英砂混合均匀,并装填入填充柱,控制填充柱温度为170℃;将沼气脱除水蒸气和氧气后,通过上述的填充柱,即可高效去除沼气中的硫化氢。其中纳米零价铁的粒径为50 nm,石英砂粒径为40目,沼气对纳米零价铁的体积空速为500 h-1。利用附图1所述的沼气脱硫在线性能评价装置,测得纳米零价铁的脱硫性能达521mg H2S/g。
实施例2
按质量比1:100将纳米零价铁与金刚砂混合均匀,并装填入填充柱,控制填充柱温度为250℃;将沼气脱除水蒸气和氧气后,通过上述的填充柱,即可高效去除沼气中的硫化氢。其中纳米零价铁的粒径为20 nm,陶粒粒径为120目,沼气对纳米零价铁的体积空速为1600 h-1。利用附图1所述的沼气脱硫在线性能评价装置,测得纳米零价铁的脱硫性能达602 mgH2S/g。
实施例3
按质量比1:50将纳米零价铁与陶粒混合均匀,并装填入填充柱,控制填充柱温度为300℃;将沼气脱除水蒸气和氧气后,通过上述的填充柱,即可高效去除沼气中的硫化氢。其中纳米零价铁的粒径为10 nm,金刚砂粒径为100目,沼气对纳米零价铁的体积空速为800 h-1。利用附图1所述的沼气脱硫在线性能评价装置,测得纳米零价铁的脱硫性能达705 mg H2S/g。
实施例4
按质量比1:30将纳米零价铁与石榴石混合均匀,并装填入填充柱,控制填充柱温度为200℃;将沼气脱除水蒸气和氧气后,通过上述的填充柱,即可高效去除沼气中的硫化氢。其中纳米零价铁的粒径为100 nm,石榴石粒径为80目,沼气对纳米零价铁的体积空速为1000h-1。利用附图1所述的沼气脱硫在线性能评价装置,测得纳米零价铁的脱硫性能达632 mgH2S/g。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和应用本发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于这里的实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。

Claims (10)

1.一种基于纳米零价铁的沼气干式脱硫方法,其特征在于,包括以下步骤:
(1)将纳米零价铁与惰性填料混合均匀,并装填入填充柱;
(2)将沼气脱除水蒸气和氧气后,通入上述的填充柱,即可高效去除沼气中的硫化氢。
2.根据权利要求1所述的沼气干式脱硫方法,其特征在于,所述的纳米零价铁与惰性填料的质量比为1:20~1:100。
3.根据权利要求1所述的沼气干式脱硫方法,其特征在于,所述的纳米零价铁与惰性填料优选的质量比为1:30~1:50。
4.根据权利要求1所述的沼气干式脱硫方法,其特征在于,所述的纳米零价铁的粒径为10~100 nm。
5.根据权利要求1所述的沼气干式脱硫方法,其特征在于,所述的纳米零价铁的粒径优选为10~50nm。
6.根据权利要求1所述的沼气干式脱硫方法,其特征在于,填充柱的温度为170℃~300℃。
7.根据权利要求1所述的沼气干式脱硫方法,其特征在于,填充柱的温度优选为200℃~250℃。
8.根据权利要求1所述的沼气干式脱硫方法,其特征在于,所述的惰性填料为天然石英砂、石榴石、金刚砂或陶粒的任意一种,优选为陶粒。
9.根据权利要求1所述的沼气干式脱硫方法,其特征在于,所述的惰性填料的粒径为40~120目,优选的粒径为80~100目。
10.根据权利要求1所述的沼气干式脱硫方法,其特征在于,所述的沼气对纳米零价铁的体积空速为500 h-1~1600 h-1,优选的体积空速为500 h-1~1000 h-1
CN201611162881.2A 2016-12-15 2016-12-15 一种基于纳米零价铁的沼气干式脱硫方法 Active CN106753638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611162881.2A CN106753638B (zh) 2016-12-15 2016-12-15 一种基于纳米零价铁的沼气干式脱硫方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611162881.2A CN106753638B (zh) 2016-12-15 2016-12-15 一种基于纳米零价铁的沼气干式脱硫方法

Publications (2)

Publication Number Publication Date
CN106753638A true CN106753638A (zh) 2017-05-31
CN106753638B CN106753638B (zh) 2020-09-15

Family

ID=58892619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611162881.2A Active CN106753638B (zh) 2016-12-15 2016-12-15 一种基于纳米零价铁的沼气干式脱硫方法

Country Status (1)

Country Link
CN (1) CN106753638B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113322114A (zh) * 2021-05-07 2021-08-31 宁夏亘峰嘉能能源科技股份有限公司 一种煤矸石基型煤固硫剂
CN115285970A (zh) * 2022-08-17 2022-11-04 浙江工商大学 一种提高厌氧消化和含硫气体净化性能的猪粪沼渣基附铁水热炭及其制备和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101229588A (zh) * 2007-10-29 2008-07-30 王惠民 大气除硫专用铁粉
US20120061324A1 (en) * 2008-03-28 2012-03-15 Global Material Technologies, Inc. Element removal process and apparatus
CN102887614A (zh) * 2012-10-18 2013-01-23 同济大学 纳米零价铁去除污泥中有害物质的方法
US20140069872A1 (en) * 2009-09-18 2014-03-13 The Texas A&M University System Method for removing molybdate from water using an activated iron treatment system
CN105358235A (zh) * 2013-06-19 2016-02-24 新技术企业股份有限公司 用于吸附硫化氢的高活性纳米铁催化剂

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101229588A (zh) * 2007-10-29 2008-07-30 王惠民 大气除硫专用铁粉
US20120061324A1 (en) * 2008-03-28 2012-03-15 Global Material Technologies, Inc. Element removal process and apparatus
US20140069872A1 (en) * 2009-09-18 2014-03-13 The Texas A&M University System Method for removing molybdate from water using an activated iron treatment system
CN102887614A (zh) * 2012-10-18 2013-01-23 同济大学 纳米零价铁去除污泥中有害物质的方法
CN105358235A (zh) * 2013-06-19 2016-02-24 新技术企业股份有限公司 用于吸附硫化氢的高活性纳米铁催化剂

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
吴幼青等: "《高温煤气脱硫——Ⅰ.铁基脱硫剂的相态特征和活性》", 《燃料化学学报》 *
王翠萍 主编: "《煤焦化产品回收与加工》", 30 April 2014, 煤炭工业出版社 *
郭琇等: "《零价铁在环境污染治理应用中的研究进展》", 《仲恺农业工程学院学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113322114A (zh) * 2021-05-07 2021-08-31 宁夏亘峰嘉能能源科技股份有限公司 一种煤矸石基型煤固硫剂
CN113322114B (zh) * 2021-05-07 2023-01-03 宁夏亘峰嘉能能源科技股份有限公司 一种煤矸石基型煤固硫剂
CN115285970A (zh) * 2022-08-17 2022-11-04 浙江工商大学 一种提高厌氧消化和含硫气体净化性能的猪粪沼渣基附铁水热炭及其制备和应用

Also Published As

Publication number Publication date
CN106753638B (zh) 2020-09-15

Similar Documents

Publication Publication Date Title
Jia et al. Study on the Hg0 removal characteristics and synergistic mechanism of iron-based modified biochar doped with multiple metals
Yang et al. Magnetic rattle-type Fe3O4@ CuS nanoparticles as recyclable sorbents for mercury capture from coal combustion flue gas
Xu et al. [MoS4] 2–cluster bridges in Co–Fe layered double hydroxides for mercury uptake from S–Hg mixed flue gas
Al Mamun et al. Removal of hydrogen sulfide (H2S) from biogas using zero-valent iron
Zhao et al. Hg0 capture over CoMoS/γ-Al2O3 with MoS2 nanosheets at low temperatures
Yang et al. Surface-engineered sponge decorated with copper selenide for highly efficient gas-phase mercury immobilization
Huang et al. Synthesis and characterization of γ-Fe2O3 for H2S removal at low temperature
Liu et al. Performance and mechanism of CuS-modified MWCNTs on mercury removal: Experimental and density functional theory study
Cristiano et al. H2S adsorption on nanostructured iron oxide at room temperature for biogas purification: Application of renewable energy
Dou et al. Enhanced adsorption of gaseous mercury on activated carbon by a novel clean modification method
He et al. Magnetically recyclable Fe3O4 doped flower-like MoS2: Efficient removal of elemental mercury
Dong et al. Magnetic γ-Fe2O3-loaded attapulgite sorbent for Hg0 removal in coal-fired flue gas
Zhao et al. Preparation of hydrogen sulfide adsorbent derived from spent Fenton-like reagent modified biochar and its removal characteristics for hydrogen sulfide
CN103601262B (zh) 一种利用给水厂污泥去除废水中硫化氢的吸附柱方法
Sun et al. Gas cleaning and hydrogen sulfide removal for COREX coal gas by sorption enhanced catalytic oxidation over recyclable activated carbon desulfurizer
Ling et al. Synergic adsorption of H2S using high surface area iron oxide–carbon composites at room temperature
Li et al. Strengthen the affinity of element mercury on the carbon-based material by adjusting the coordination environment of single-site manganese
Dou et al. Removal of gaseous H2S using microalgae porous carbons synthesized by thermal/microwave KOH activation
Cui et al. Study of the properties of adsorption of SO2–thermal regeneration cycle of activated coke modified by oxidization
Bak et al. Multi-stage adsorptive purification process for improving desulfurization performance of biogas
CN106753638A (zh) 一种基于纳米零价铁的沼气干式脱硫方法
Zhou et al. Influence of Mo doping on mercury capture and SO2 tolerance of MoxFe6Mn1-xOy magnetic sorbent
Wang et al. In situ grown Co3O4 nanosheets in the interlayer space of g-C3N4 for efficient removal of Hg0 from flue gas
Li et al. Mechanisms of gas-phase mercury immobilized by metal sulfides from combustion flue gas: A mini review
Wang et al. Comprehensive application of oolitic hematite for H2S removal at high temperature: performance and mechanism

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant