CN106753377A - 多功能硫化铕纳米晶、制备方法及其在磁性和荧光双生物成像方面的应用 - Google Patents
多功能硫化铕纳米晶、制备方法及其在磁性和荧光双生物成像方面的应用 Download PDFInfo
- Publication number
- CN106753377A CN106753377A CN201611060254.8A CN201611060254A CN106753377A CN 106753377 A CN106753377 A CN 106753377A CN 201611060254 A CN201611060254 A CN 201611060254A CN 106753377 A CN106753377 A CN 106753377A
- Authority
- CN
- China
- Prior art keywords
- eus
- nanocrystalline
- soluble
- water
- europium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/77—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
- C09K11/7728—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
- C09K11/7729—Chalcogenides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F17/00—Compounds of rare earth metals
- C01F17/20—Compounds containing only rare earth metals as the metal element
- C01F17/288—Sulfides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6486—Measuring fluorescence of biological material, e.g. DNA, RNA, cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N24/00—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
- G01N24/08—Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
- G01N24/088—Assessment or manipulation of a chemical or biochemical reaction, e.g. verification whether a chemical reaction occurred or whether a ligand binds to a receptor in drug screening or assessing reaction kinetics
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/02—Particle morphology depicted by an image obtained by optical microscopy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/04—Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/10—Particle morphology extending in one dimension, e.g. needle-like
- C01P2004/16—Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/42—Magnetic properties
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/60—Optical properties, e.g. expressed in CIELAB-values
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Nanotechnology (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Inorganic Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Biomedical Technology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Materials Engineering (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Manufacturing & Machinery (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biophysics (AREA)
- Optics & Photonics (AREA)
- Geology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
多功能硫化铕(EuS)纳米晶、制备方法及其在磁性和荧光双生物成像方面的应用,属于稀土技术领域。首先,选用稀土铕的化合物和硫醇类试剂反应,用具有还原性烷基化合物和烷基酸作为稳定剂,在无水无氧条件下缓慢升温至反应温度,反应一段时间后冷却至室温,用丙酮沉淀,离心后分散在溶剂中;再用无水甲醇沉淀,离心后分散在溶剂中,重复几次,最终分散在非极性溶剂中,得到油溶性EuS纳米晶。然后将表面活性剂修饰在油溶性EuS纳米晶表面,将其从油相转移至水相中并分散均匀,最终得到适用于生物成像的水溶性EuS纳米晶。该水溶性EuS纳米晶具有荧光、磁性、低生物毒性等多种功能,可以实现磁性和荧光双成像等生物影像学方面的应用。
Description
技术领域
本发明属于稀土技术领域,具体涉及一种一步法制备的多功能硫化铕(EuS)纳米晶、制备方法及其在磁性和荧光双生物成像方面的应用。
背景技术
核磁共振成像因其具有较深的组织穿透力,并以无创方式探查,提供了理想的三维软组织细节,现已成为现代医学越来越广泛应用的检查手段。然而,其低的空间分辨率以及无法进行实时监测大大限制了其应用范围。荧光成像具有更高的分辨率并具有实现实时成像的可能,但其空间分辨率和组织穿透力较低。因而发展一种具有多模式生物成像的造影剂在临床诊断与手术方案制定等方面得到了越来越广泛的关注。目前,已报道合成多种的多功能造影剂,如:Fe3O4@C@Ag(Biomaterials,2013,34,571-581.)、Fe3O4@Cu2–xS(J.Am.Chem.Soc.,2013,135,8571-8577.)、Au–Fe3O4(Chem.Commun.,2013,49,4938-4940.)、Au-Gd-DTPA(Chem.Commun.,2008,4930–4932.)等,这些造影剂多为多种单一功能的材料集成在一起,彼此之间功能相互影响与削弱,并且合成的方法繁琐。因此开发一种具有多种功能的单一纳米成像材料已成为研究热点。
稀土铕EuX(X=S,Se,Te)纳米晶因其独特的磁性和荧光性质,是一种理想的集多种功能于一身、可应用于多种生物成像手段的潜在造影剂材料。然而目前已报道合成的铕纳米晶,如:Chem.Commun.,2005,242;J.Mater.Chem.,2005,15,4209;J.Phys.Chem.B.,2003,107,2193;J.Phys.Chem.B.,2006,110,9008等均为油相粒子,无法应用在生物体当中,而可适用于生物体的多功能稀土铕纳米晶未见报道。因此,探索以简单有效的方法合成可应用于生物体的稀土铕纳米晶成为重要的研究方向。
发明内容
本发明提供了一种从简单原料出发制备多功能硫化铕(EuS)纳米晶,将其从油相转移至水相并获得良好分散,实现其在磁性和荧光双成像等生物影像学方面的应用。
首先,选用稀土铕的化合物和硫醇类试剂反应,用具有还原性烷基化合物和烷基酸作为稳定剂,在无水无氧条件下缓慢升温至反应温度,反应一段时间后冷却至室温,用丙酮沉淀,离心后分散在溶剂中;再用无水甲醇沉淀,离心后分散在溶剂中,重复几次,最终分散在非极性溶剂中,得到油溶性EuS纳米晶。然后将表面活性剂修饰在EuS纳米晶表面,将其从油相转移至水相中并分散均匀,最终得到适用于生物成像的水溶性EuS纳米晶。该水溶性EuS纳米晶具有荧光、磁性、低生物毒性等多种功能,可以实现磁性和荧光双成像等生物影像学方面的应用。
本发明所述的用于多功能生物成像的水溶性EuS纳米晶,其由如下步骤制备得到:
(1)称取0.01g~1g稀土铕的化合物(可以为卤化铕、硫酸铕、硝酸铕、醋酸铕),0.05mL~10mL硫醇类试剂(可以为正庚硫醇、正辛硫醇、正己硫醇、正十二硫醇、正十四硫醇、正十八硫醇),0.1mL~10mL还原性烷基化合物(可以为三辛基膦、1,2-十六烷二醇、1,2-十二烷二醇、油胺),0.05mL~5mL烷基酸(可以为油酸、十二酸、脂肪酸),5mL~50mL高沸点(高沸点的温度范围是370℃以上)溶剂(可以是十八烯、液体石蜡、煤油)于烧瓶中,在真空、70℃~150℃的条件下加热30min~2h后,将反应体系内转换成氮气条件,升温至200℃~350℃后反应10min~5h;反应结束冷却至室温,用无水丙酮沉淀;离心后将沉淀分散至非极性溶剂中(可以是三氯甲烷、甲苯、二氯甲烷、四氯甲烷、正己烷),再用无水甲醇沉淀,重复离心、将沉淀分散至非极性溶剂、用无水甲醇沉淀操作2~4次;最后将得到的EuS纳米晶再分散至非极性溶剂得到油溶性EuS纳米晶溶液,油溶性EuS纳米晶的浓度为0.05mg/mL~100mg/mL;
(2)量取2mL~50mL去离子水于反应烧瓶中,向其加入0.01g~10g表面活性剂(可以为十二烷基磺酸钠、十六烷基三甲基溴化铵、P123、F127、卵磷脂、脂肪酸甘油酯、聚山梨酯、蔗糖酯等),搅拌1min~2h(优选为5min~30min),加热至35℃~80℃;取0.05mL~5mL步骤(1)得到的油溶性EuS纳米晶溶液,搅拌条件下以1~5滴/分钟的速度逐滴滴加到上述含有表面活性剂的溶液中,表面活性剂的质量与EuS纳米晶的质量比为100~2:1(优选为50~5:1);搅拌待溶液中的非极性溶剂挥发后,表面活性剂通过亲疏水相互作用包覆在油溶性纳米晶表面,再超声处理1min~30min(优选为5min~15min),得到稳定分散在水相中的水溶性EuS纳米晶。
以本发明所述方法得到的水溶性EuS纳米晶为棒状粒子,尺寸均匀(图1);具有良好的蓝色荧光发射(图2)和超顺磁性(图3);将水溶性EuS纳米晶加入含有宫颈癌细胞(HeLa)的水溶液体系中共同培养,水溶性EuS纳米晶会通过细胞膜进入宫颈癌细胞中并显示蓝色荧光,表明水溶性EuS纳米晶可以成功应用于细胞的荧光标记和荧光成像等方面(图4)。将水溶性EuS纳米晶溶液注射入小鼠肿瘤组织后,能获得核磁共振成像图,表明水溶性EuS纳米晶可作为核磁共振成像造影剂(图5)。
本发明制备的水溶性EuS纳米晶具有以下特点:纳米晶尺寸均匀,水相分散性好,良好的生物相容性,低生物毒性,具有优良的荧光发射及超顺磁性等多种功能。另外此种水溶性EuS纳米晶材料制备方法简单、容易操作、重复性好、可以大量生产。适用于磁共振和荧光双成像、生物荧光探针、磁学标记检测等生物影像学应用领域。
附图说明
图1:实施例1所制备水溶性EuS纳米晶电子显微镜TEM图,粒子为棒状,分散性良好,纳米棒长为30nm,宽为8nm。
图2:实施例2所制备水溶性EuS纳米晶的荧光光谱,可以看出其荧光的激发峰位在375nm,发射峰在475nm;插图为紫外光下EuS纳米晶的水溶液照片,表明了EuS纳米晶在水中分散均匀,具有优良的蓝色荧光。
图3:实施例3制备的EuS纳米晶在室温下磁滞曲线,表明其为超顺磁性。
图4:实施例1所制备水溶性EuS纳米晶与HeLa细胞共培养后的激光共聚焦荧光显微镜照片,EuS纳米晶可以进入细胞且分布在细胞质中,显示明亮的蓝色荧光,表明EuS纳米晶可以应用在生物荧光成像方面。
图5:实施例2所制备的EuS纳米晶水溶液注射入小鼠肿瘤前、后的肿瘤组织对比核磁共振成像图,从图中可以看出未注射EuS的小鼠(a,b)的肿瘤在核磁共振成像中与正常组织信号强度没有区别;而在肿瘤部位注射了EuS后的小鼠(c,d)在磁共振成像中其肿瘤组织信号强度明显强于正常组织(图中虚线标出白色区域),表明水溶性EuS纳米晶可以作为造影剂应用到核磁共振成像中(加粗的黑线是测试时横断面的线)。
具体实施方式
实施例1
(1)取氯化铕(0.0732g)、正十四硫醇(3mL)、三辛基膦(2mL)、油酸(0.22mL)、十八烯(5mL)于50mL烧瓶中,抽真空至0.01MPa,升温至70℃,保持1h后,将真空转换成高纯氮气,缓慢升温至290℃,反应30min。反应温度降至室温,用无水丙酮沉淀;离心后将沉淀分散到氯仿中,再用无水甲醇沉淀,重复离心、将沉淀分散到氯仿中、用无水甲醇沉淀操作步骤3次,最后将得到的EuS纳米晶沉淀再分散至氯仿中得到油溶性EuS纳米晶溶液,浓度为70mg/mL
(2)在15mL去离子水中加入0.25g十六烷基三甲基溴化铵,搅拌30min后将溶液加热至50℃。取2mL步骤(1)制备的油溶性EuS纳米晶溶液,边搅拌边以每分钟2滴的速度逐滴滴加到上述十六烷基三甲基溴化铵的水溶液中。搅拌待有机相完全挥发后,超声处理10min,得到透明微黄的溶液,即为以十六烷基三甲基溴化铵稳定的水溶性EuS纳米晶溶液,EuS纳米晶形貌为纳米棒,长度为30nm;水溶性EuS纳米晶溶液在紫外光照射下显示良好的蓝色荧光。
实施例2
(1)取氯化铕(0.0336g)、正十二硫醇(2.5mL)、油胺(1mL)、油酸(0.125mL)、十八烯(10mL)于50mL烧瓶中,抽真空至0.01MPa,升温至100℃,保持2h后,将真空转换成高纯氮气气体,缓慢升温至290℃,反应20min。反应温度降至室温,用无水丙酮沉淀,离心后将沉淀分散到氯仿中,再用无水甲醇沉淀,重复离心、将沉淀分散到氯仿中、用无水甲醇沉淀操作步骤2次,最后将得到的EuS纳米晶沉淀再分散至氯仿中得到油溶性EuS纳米晶溶液,浓度为35mg/mL。
(2)在10mL去离子水中加入0.15g的F127,搅拌10min后将溶液加热至40℃。取3mL步骤(1)制备的油溶性EuS纳米晶溶液,边搅拌边以每分钟1滴的速度逐滴滴加到上述F127的水溶液中。搅拌待有机相完全挥发后,超声处理15min,得到透明微黄的溶液,即为以F127稳定的水溶性EuS纳米晶溶液,EuS纳米晶形貌为纳米棒,长度为28nm,宽为7nm。水溶性EuS纳米晶溶液在紫外光照射下显示良好的蓝色荧光。
实施例3
(1)取氯化铕(0.0732g)、正辛硫醇(2.5mL)、1,2-十六烷二醇(2mL)、油酸(0.44mL)、十八烯(10mL)于50mL烧瓶中,抽真空至0.01MPa,升温至80℃,保持1h后,将真空转换成高纯氮气气体,缓慢升温至290℃,反应1h。反应温度降至室温,用无水丙酮沉淀;离心后将沉淀分散到氯仿中,再用无水甲醇沉淀;重复离心、将沉淀分散到氯仿中、用无水甲醇沉淀操作步骤3次,最后将得到的EuS纳米晶沉淀再分散至氯仿中得到油溶性EuS纳米晶溶液,浓度为50mg/mL。
(2)在20mL去离子水中加入0.5g十二烷基磺酸钠,搅拌20min后将溶液加热至45℃。取5mL步骤(1)制备的油溶性EuS纳米晶溶液,边搅拌边以每分钟5滴的速度逐滴滴加到上述十二烷基磺酸钠的水溶液中。搅拌待有机相完全挥发后,超声处理5min,得到透明淡黄色的溶液,即为以十二烷基磺酸钠稳定的水溶性EuS纳米晶溶液,该水溶性EuS纳米晶在室温下具有超顺磁性质。EuS纳米晶形貌为纳米棒,长度为32nm,宽为8nm。水溶性EuS纳米晶溶液在紫外光照射下显示良好的蓝色荧光。
Claims (5)
1.一种多功能生物成像的水溶性EuS纳米晶的制备方法,其步骤如下:
(1)称取0.01g~1g稀土铕的化合物,0.05mL~10mL硫醇类试剂,0.1mL~10mL还原性烷基化合物,0.05mL~5mL烷基酸,5mL~50mL高沸点溶剂于烧瓶中,在真空、70℃~150℃的条件下加热30min~2h后,将反应体系内转换成氮气条件,升温至200℃~350℃后反应10min~5h;反应结束冷却至室温,用无水丙酮沉淀;离心后将沉淀分散至非极性溶剂中,再用无水甲醇沉淀,重复离心、将沉淀分散至非极性溶剂、用无水甲醇沉淀操作2~4次;最后将得到的EuS纳米晶再分散至非极性溶剂得到油溶性EuS纳米晶溶液,油溶性EuS纳米晶的浓度为0.05mg/mL~100mg/mL;
(2)量取2mL~50mL去离子水于反应烧瓶中,向其加入0.01g~10g表面活性剂,搅拌1min~2h,加热至35℃~80℃;取0.05mL~5mL步骤(1)得到的油溶性EuS纳米晶溶液,搅拌条件下以1~5滴/分钟的速度逐滴滴加到上述含有表面活性剂的溶液中,表面活性剂的质量与油溶性EuS纳米晶的质量比为100~2:1;搅拌待溶液中的非极性溶剂挥发后,表面活性剂通过亲疏水相互作用包覆在油溶性纳米晶表面,再超声处理1min~30min,得到稳定分散在水相中的水溶性EuS纳米晶。
2.如权利要求1所述的一种多功能生物成像的水溶性EuS纳米晶的制备方法,其特征在于:步骤(1)中所述的稀土铕的化合物为卤化铕、硫酸铕、硝酸铕或醋酸铕;所述的硫醇类试剂为正庚硫醇、正辛硫醇、正己硫醇、正十二硫醇、正十四硫醇或正十八硫醇;所述的还原性烷基化合物为三辛基膦、1,2-十六烷二醇、1,2-十二烷二醇或油胺;所述的烷基酸为油酸、十二酸或脂肪酸;所述的高沸点溶剂是十八烯、液体石蜡或煤油;所述的非极性溶剂是三氯甲烷、甲苯、二氯甲烷、四氯甲烷或正己烷。
3.如权利要求1所述的一种多功能生物成像的水溶性EuS纳米晶的制备方法,其特征在于:步骤(2)中所述的表面活性剂为十二烷基磺酸钠、十六烷基三甲基溴化铵、P123、F127、卵磷脂、脂肪酸甘油酯、聚山梨酯或蔗糖酯;搅拌的时间为5min~30min;表面活性剂的质量与EuS纳米晶的质量比为50~5:1;超声处理的时间为5min~15min。
4.一种多功能生物成像的水溶性EuS纳米晶,其特征在于:是由权利要求1~3任何一项所述的方法制备得到。
5.权利要求4所述的多功能生物成像的水溶性EuS纳米晶在磁性或荧光双成像中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611060254.8A CN106753377A (zh) | 2016-11-28 | 2016-11-28 | 多功能硫化铕纳米晶、制备方法及其在磁性和荧光双生物成像方面的应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611060254.8A CN106753377A (zh) | 2016-11-28 | 2016-11-28 | 多功能硫化铕纳米晶、制备方法及其在磁性和荧光双生物成像方面的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106753377A true CN106753377A (zh) | 2017-05-31 |
Family
ID=58912604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611060254.8A Pending CN106753377A (zh) | 2016-11-28 | 2016-11-28 | 多功能硫化铕纳米晶、制备方法及其在磁性和荧光双生物成像方面的应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106753377A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112608335A (zh) * | 2020-12-29 | 2021-04-06 | 江南大学 | 一种手性硫化铕纳米粒子的合成方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102115145A (zh) * | 2010-11-23 | 2011-07-06 | 吉林大学 | 具有荧光和磁性的稀土铕纳米晶的制备方法 |
CN103011258A (zh) * | 2012-11-05 | 2013-04-03 | 北京理工大学 | 一种使疏水性纳米颗粒同时实现水相转移与细胞核靶向性的方法 |
CN104876256A (zh) * | 2015-04-20 | 2015-09-02 | 河南师范大学 | 一种水溶性硫化锌量子点的制备方法 |
-
2016
- 2016-11-28 CN CN201611060254.8A patent/CN106753377A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102115145A (zh) * | 2010-11-23 | 2011-07-06 | 吉林大学 | 具有荧光和磁性的稀土铕纳米晶的制备方法 |
CN103011258A (zh) * | 2012-11-05 | 2013-04-03 | 北京理工大学 | 一种使疏水性纳米颗粒同时实现水相转移与细胞核靶向性的方法 |
CN104876256A (zh) * | 2015-04-20 | 2015-09-02 | 河南师范大学 | 一种水溶性硫化锌量子点的制备方法 |
Non-Patent Citations (1)
Title |
---|
YUANQING SUN: "Fluorescence-Magnetism Functional EuS Nanocrystals with Controllable Morphologies for Dual Bioimaging", 《ACS APPLIED MATERIALS & INTERFACES》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112608335A (zh) * | 2020-12-29 | 2021-04-06 | 江南大学 | 一种手性硫化铕纳米粒子的合成方法 |
CN112608335B (zh) * | 2020-12-29 | 2021-10-29 | 江南大学 | 一种手性硫化铕纳米粒子的合成方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Multifunctional rare-earth self-assembled nanosystem for tri-modal upconversion luminescence/fluorescence/positron emission tomography imaging | |
Yang et al. | Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species | |
Zeng et al. | Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4: Gd/Yb/Er nanorods for blood vessel visualization | |
Li et al. | Hydrophilic, upconverting, multicolor, lanthanide‐doped NaGdF4 nanocrystals as potential multifunctional bioprobes | |
Xia et al. | Core–shell NaYF4: Yb3+, Tm3+@ FexOy nanocrystals for dual-modality T2-enhanced magnetic resonance and NIR-to-NIR upconversion luminescent imaging of small-animal lymphatic node | |
Wang et al. | Upconversion nanoparticles: synthesis, surface modification and biological applications | |
Damasco et al. | Size-tunable and monodisperse Tm3+/Gd3+-doped hexagonal NaYbF4 nanoparticles with engineered efficient near infrared-to-near infrared upconversion for in vivo imaging | |
Wei et al. | Cysteine modified rare-earth up-converting nanoparticles for in vitro and in vivo bioimaging | |
Qiu et al. | Recent advances in lanthanide-doped upconversion nanomaterials: synthesis, nanostructures and surface modification | |
Gai et al. | Recent progress in rare earth micro/nanocrystals: soft chemical synthesis, luminescent properties, and biomedical applications | |
Cao et al. | High-quality water-soluble and surface-functionalized upconversion nanocrystals as luminescent probes for bioimaging | |
Zhou et al. | Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties | |
Xiong et al. | Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors | |
Yin et al. | Lanthanide-doped GdVO 4 upconversion nanophosphors with tunable emissions and their applications for biomedical imaging | |
Zhai et al. | Growth of lanthanide-doped LiGdF4 nanoparticles induced by LiLuF4 core as tri-modal imaging bioprobes | |
Suter et al. | Real-time-monitoring of the synthesis of β-NaYF4: 17% Yb, 3% Er nanocrystals using NIR-to-visible upconversion luminescence | |
Wang et al. | Single ultrasmall Mn 2+-doped NaNdF 4 nanocrystals as multimodal nanoprobes for magnetic resonance and second near-infrared fluorescence imaging | |
CN103224787B (zh) | 稀土掺杂碱土金属氟化物纳米材料及其制备与应用 | |
Radunz et al. | Evolution of size and optical properties of upconverting nanoparticles during high-temperature synthesis | |
Hou et al. | Recent advances of pure organic room temperature phosphorescence materials for bioimaging applications | |
CN108904800B (zh) | 基于纳米钯异质生长的上转换纳米杂化体系、制备方法及应用 | |
Yang et al. | Photoswitchable upconversion nanophosphors for small animal imaging in vivo | |
CN106118628B (zh) | 一种具有核壳结构的上转换荧光纳米材料的制备方法 | |
CN103865537A (zh) | 一种稀土上转换纳米荧光探针及其制备和应用 | |
Luo et al. | Magnetic regulation of the luminescence of hybrid lanthanide-doped nanoparticles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20170531 |