CN106751442B - 一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法 - Google Patents

一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN106751442B
CN106751442B CN201610992919.2A CN201610992919A CN106751442B CN 106751442 B CN106751442 B CN 106751442B CN 201610992919 A CN201610992919 A CN 201610992919A CN 106751442 B CN106751442 B CN 106751442B
Authority
CN
China
Prior art keywords
particle
ether
nano
polyether
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610992919.2A
Other languages
English (en)
Other versions
CN106751442A (zh
Inventor
张嘎
郭丽和
赵福燕
王廷梅
王齐华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201610992919.2A priority Critical patent/CN106751442B/zh
Publication of CN106751442A publication Critical patent/CN106751442A/zh
Application granted granted Critical
Publication of CN106751442B publication Critical patent/CN106751442B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/78Measuring, controlling or regulating of temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76498Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76531Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2248Oxides; Hydroxides of metals of copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/004Additives being defined by their length
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料,该复合材料的组成及各组分的体积分数为:聚醚醚酮树脂55~94.4%、增强纤维5~30%、高熔点纳米颗粒0.5~10%、低熔点纳米颗粒0.1~5%;高熔点纳米颗粒为纳米SiO2或纳米TiO2;低熔点纳米颗粒为纳米Bi2O3或纳米CuO。本发明还公开了该复合材料的制备方法。以上两种不同熔点纳米颗粒的同时加入,显著缩短了聚醚醚酮基复合材料摩擦过程中的跑合阶段,摩擦界面上释放出的纳米颗粒可促进在对偶表面迅速形成润滑特性的转移膜,两种纳米填料表现出明显的协同效应,提高了聚醚醚酮材料的摩擦学性能。

Description

一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制 备方法
技术领域
本发明涉及一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法,属于自润滑复合材料领域。
背景技术
聚醚醚酮基复合材料是一种具有高强度、高模量、耐热性以及较高化学稳定性和自润滑性能的热塑性工程塑料,广泛应用于干摩擦条件下运行的滑动轴承。然而,由于纯的聚醚醚酮树脂材料通常表现出较高的摩擦系数和磨损率,在实际应用中,需要对其进行增强和自润滑改性来改善其摩擦学性能。
将增强填料、固体润滑剂以及无机纳米陶瓷颗粒加入到聚醚醚酮树脂中,不仅可以提高复合材料的力学性能,同时也可以改善其耐磨减摩性能。研究表明,在金属对偶表面形成的具有润滑特性的转移膜是使聚合物复合材料具有良好的摩擦学性能的主要因素之一。
在聚合物基材料中添加纳米尺度陶瓷颗粒被证明能够提高材料的摩擦学性能。然而,文献报导的自润滑复合材料中仅包含单一种类的纳米陶瓷颗粒,至今尚没有关于不同物理、化学性质的纳米氧化物颗粒的耦合对聚合物复合材料摩擦学性能影响的研究报导。耦合不同功能的纳米氧化物颗粒,发挥不同种类纳米颗粒间的协同作用,是设计制备高性能纳米自润滑材料的新思路。
发明内容
本发明的目的在于提供一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法。
本发明所述材料在摩擦过程中,两种具有不同熔点的纳米颗粒被释放到摩擦界面上,通过界面闪温作用在材料表面烧结形成自润滑性能优异的摩擦膜。高熔点纳米颗粒提高转移膜的承载能力,而低熔点纳米颗粒促进摩擦烧结的发生,从而显著缩短材料的“跑合阶段”,通过不同熔点纳米颗粒的协同降低材料的摩擦与磨损。
本发明将两种不同熔点的纳米氧化物颗粒同时加入到聚醚醚酮基复合材料中,通过研究其摩擦学性能发现:与两种纳米颗粒中的单一组分添加的聚合物基复合材料相比,两种纳米颗粒耦合对材料的摩擦学性能的提高具有协同效应。即:在更短的时间经过“跑合阶段”达到平衡,从而使聚醚醚酮基纳米复合材料具有较小的摩擦系数和磨损率。
一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料,其特征在于该复合材料的组成及各组分的体积分数为:聚醚醚酮树脂 55~94.4%、增强纤维 5~30%、高熔点纳米颗粒0.5~10%、低熔点纳米颗粒 0.1~5%;所述高熔点纳米颗粒为纳米SiO2或纳米TiO2;所述低熔点纳米颗粒为纳米Bi2O3或纳米CuO。
所述聚醚醚酮树脂为粉料或粒料。
所述增强纤维为短碳纤维或短玻璃纤维,单丝直径为5~30μm,长度为20~500μm。
所述高熔点纳米颗粒和低熔点纳米颗粒的粒度均为10~100nm。
如上所述多元氧化物填充聚醚醚酮基自润滑纳米复合材料的制备方法,其特征在于具体步骤为:
A) 将高熔点纳米颗粒和低熔点纳米颗粒进行机械混合,然后加入聚醚醚酮树脂和增强纤维进一步混合;
B) 将A)中混合均匀的物料置于双螺杆挤出机中熔融混炼并挤出,将熔融混炼的挤出料经注塑机注塑成型。
所述增强纤维经超声清洗处理后干燥使用,清洗增强纤维的溶剂为无水乙醇或丙酮。
所述双螺杆挤出机的一区加热温度为370~375℃,二区加热温度为380~385℃,三区加热温度为390~395℃,四区加热温度为400~405℃,螺杆转速为100~900rpm。
所述注塑机的注射模具温度为170~200℃,注射筒温度375~385℃,注射背压2~4MPa,注射压力170~180MPa。
附图说明
图1 为本发明所述自润滑纳米复合材料的摩擦系数随时间的变化图(图中PEEK:聚醚醚酮、SCF:短碳纤维)。
具体实施方式
下面通过具体实施例进一步说明本发明,但本实施例并不用于限制本发明,凡是采用本发明的相似方法及其相似变化,均应列入本发明的保护范围。所述试剂和原料,如无特殊说明,均从商业途径获得。
实施例1
一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米CuO颗粒:0.3%,纳米SiO2颗粒:1%,聚醚醚酮粉料:88.7%,短碳纤维:10%。首先,将纳米CuO和纳米SiO2颗粒进行机械混合,然后加入聚醚醚酮粉料和短碳纤维进一步混合。将上述机械混合均匀的粉料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短碳纤维经超声清洗处理后干燥使用,清洗的溶剂为无水乙醇。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为400rpm;注射机的注射模具温度为180℃,注射筒温度380℃,注射背压3MPa,注射压力175MPa。
实施例2
一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米CuO颗粒:3%,纳米TiO2颗粒:7%,聚醚醚酮粒料:75%,短玻璃纤维:15%。首先,将纳米CuO和纳米TiO2颗粒进行机械混合,然后加入聚醚醚酮粒料和短玻璃纤维进一步混合。将上述机械混合均匀的物料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短玻璃纤维经超声清洗处理后干燥使用,清洗的溶剂为丙酮。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为200rpm;注射机的注射模具温度为190℃,注射筒温度385℃,注射背压4MPa,注射压力180MPa。
实施例3
一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米Bi2O3颗粒:4%,纳米SiO2颗粒:9%,聚醚醚酮粉料:67%,短碳纤维:20%。首先,将纳米Bi2O3和纳米SiO2颗粒进行机械混合,然后加入聚醚醚酮粉料和短碳纤维进一步混合。将上述机械混合均匀的粉料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短碳纤维经超声清洗处理后干燥使用,清洗的溶剂为丙酮。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为300rpm;注射机的注射模具温度为200℃,注射筒温度375℃,注射背压4MPa,注射压力170MPa。
实施例4
一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米Bi2O3颗粒:1%,纳米TiO2颗粒:5%,聚醚醚酮粉料:84%,短玻璃纤维:10%。首先,将纳米Bi2O3和纳米TiO2颗粒进行机械混合,然后加入聚醚醚酮粉料和短玻璃纤维进一步混合。将上述机械混合均匀的粉料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短玻璃纤维经超声清洗处理后干燥使用,清洗的溶剂为无水乙醇。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为350rpm;注射机的注射模具温度为175℃,注射筒温度380℃,注射背压3MPa,注射压力175MPa。
对比例1:材料制作方法及设备参数与实施例1相同,其中纳米颗粒只使用了体积分数为1%的纳米SiO2颗粒。
对比例2:材料制作方法及设备参数与实施例1相同,其中纳米颗粒只使用了体积分数为1%的纳米CuO颗粒。
其中实施例1及对比例1和对比例2的体积组分详见下表:
将实施例1、对比例1和对比例2中试样加工成12mm×12mm×19mm的试样块。在高速环-块摩擦试验机上,对实施例1、对比例1及对比例2的试样块分别进行至少重复三次的摩擦磨损性能分析。测试条件为:对偶钢环为GCr15,初始表面粗糙度Ra=0.27,钢环的直径为49.22mm,试验载荷为300N,滑动速度为1m/s,摩擦磨损试验时间为5h。
实施例1、对比例1和对比例2在干摩擦条件下高速环-块摩擦磨损试验数据结果如下表所示:
其中,实施例1的摩擦系数与磨损率较对比例1、对比例2都有明显降低。此外,由实施例和对比例的摩擦系数随时间的变化曲线(见附图)可以看出,两种不同熔点的纳米颗粒通过协同作用大幅度缩短了摩擦过程中的“跑合阶段”。
本发明在材料组成与性能设计上综合考虑不同熔点的纳米氧化物颗粒之间的协同效应。通过材料配方的优化设计,使摩擦界面上释放出的纳米颗粒在对偶表面迅速形成优良润滑特性的转移膜,不仅提高了聚醚醚酮复合材料的耐磨减摩性,还大大缩短了复合材料在摩擦过程中的“跑合阶段”,从而使聚醚醚酮基纳米复合材料在摩擦过程中能够更快地达到平衡,表现出更好的使用稳定性。

Claims (8)

1.一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料,其特征在于该复合材料的组成及各组分的体积分数为:聚醚醚酮树脂 55~94.4%、增强纤维 5~30%、高熔点纳米颗粒0.5~10%、低熔点纳米颗粒 0.1~5%;所述高熔点纳米颗粒为纳米SiO2或纳米TiO2;所述低熔点纳米颗粒为纳米Bi2O3或纳米CuO;所述增强纤维为短碳纤维或短玻璃纤维。
2.如权利要求1所述的复合材料,其特征在于所述聚醚醚酮树脂为粉料或粒料。
3.如权利要求1所述的复合材料,其特征在于所述增强纤维的单丝直径为5~30μm,长度为20~500μm。
4.如权利要求1所述的复合材料,其特征在于所述高熔点纳米颗粒和低熔点纳米颗粒的粒度均为10~100nm。
5.如权利要求1至4中任一项所述多元氧化物填充聚醚醚酮基自润滑纳米复合材料的制备方法,其特征在于具体步骤为:
A) 将高熔点纳米颗粒和低熔点纳米颗粒进行机械混合,然后加入聚醚醚酮树脂和增强纤维进一步混合;
B) 将A)中混合均匀的物料置于双螺杆挤出机中熔融混炼并挤出,将熔融混炼的挤出料经注塑机注塑成型。
6.如权利要求5所述的制备方法,其特征在于所述增强纤维经超声清洗处理后干燥使用,清洗增强纤维的溶剂为无水乙醇或丙酮。
7.如权利要求5所述的制备方法,其特征在于所述双螺杆挤出机的一区加热温度为370~375℃,二区加热温度为380~385℃,三区加热温度为390~395℃,四区加热温度为400~405℃,螺杆转速为100~900rpm。
8.如权利要求5所述的制备方法,其特征在于所述注塑机的注射模具温度为170~200℃,注射筒温度375~385℃,注射背压2~4MPa,注射压力170~180MPa。
CN201610992919.2A 2016-11-11 2016-11-11 一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法 Active CN106751442B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610992919.2A CN106751442B (zh) 2016-11-11 2016-11-11 一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610992919.2A CN106751442B (zh) 2016-11-11 2016-11-11 一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN106751442A CN106751442A (zh) 2017-05-31
CN106751442B true CN106751442B (zh) 2018-09-25

Family

ID=58973582

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610992919.2A Active CN106751442B (zh) 2016-11-11 2016-11-11 一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN106751442B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107286571A (zh) * 2017-07-21 2017-10-24 安特普工程塑料(苏州)有限公司 一种可注塑耐高温耐磨复合材料及其制备方法
CN108164924A (zh) * 2017-11-28 2018-06-15 中国科学院兰州化学物理研究所 一种适用于海水边界润滑工况的聚合物复合材料及其制备方法
CN108517104B (zh) * 2018-04-16 2020-11-20 河南省豫星微钻有限公司 一种聚醚醚酮复合材料及其制备方法
CN109364305B (zh) * 2018-11-27 2021-05-04 中国科学院兰州化学物理研究所 一种纳米或微米陶瓷颗粒填充的聚醚醚酮基人工关节材料
CN109796725B (zh) * 2018-12-17 2020-07-17 南京航空航天大学 一种碳纤维表面化学接枝纳米SiO2增强聚醚醚酮复合材料及其制备方法
CN111205592A (zh) * 2020-03-26 2020-05-29 中国科学院兰州化学物理研究所 一种纳米氮化钛填充的聚醚醚酮复合润滑材料及其制备方法
CN111621108B (zh) * 2020-05-14 2022-02-18 浙江长盛滑动轴承股份有限公司 聚合物复合材料及金属基网填充聚合物软带的制备方法
CN112500681B (zh) * 2020-12-24 2022-02-11 中国科学院兰州化学物理研究所 一种协同增强高温聚合物多元纳米复合材料

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150958A (zh) * 1996-04-22 1997-06-04 中国科学院兰州化学物理研究所 纳米微粒填充耐磨材料及制备方法
CN1270188A (zh) * 2000-04-17 2000-10-18 中国科学院兰州化学物理研究所 耐水抗磨自润滑材料及制备方法
CN102977549A (zh) * 2012-12-30 2013-03-20 南京肯特复合材料有限公司 改性peek、制备方法及其在通讯领域连接器上的应用
CN103450631A (zh) * 2013-09-09 2013-12-18 苏州德尔泰高聚物有限公司 一种聚醚醚酮电缆料及其制备方法
CN105419225A (zh) * 2015-11-24 2016-03-23 南京航空航天大学 一种用于超声电机的聚醚醚酮复合材料及其制备方法
CN105524411A (zh) * 2015-11-03 2016-04-27 南京肯特复合材料有限公司 耐热耐磨peek塑材及其制备方法
CN105713344A (zh) * 2014-12-05 2016-06-29 黑龙江鑫达企业集团有限公司 纳米粒子/cf混杂增强peek复合材料及其制备方法
CN105713347A (zh) * 2014-12-05 2016-06-29 黑龙江鑫达企业集团有限公司 一种汽车空调传动齿轮用改性材料及其制备方法
CN105733180A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 一种利用特制偶联剂处理SiO2增强PEEK的制备
CN106090015A (zh) * 2016-06-20 2016-11-09 中国科学院兰州化学物理研究所 一种具有材料协同效应的两级式塑料滑动轴承

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150958A (zh) * 1996-04-22 1997-06-04 中国科学院兰州化学物理研究所 纳米微粒填充耐磨材料及制备方法
CN1270188A (zh) * 2000-04-17 2000-10-18 中国科学院兰州化学物理研究所 耐水抗磨自润滑材料及制备方法
CN102977549A (zh) * 2012-12-30 2013-03-20 南京肯特复合材料有限公司 改性peek、制备方法及其在通讯领域连接器上的应用
CN103450631A (zh) * 2013-09-09 2013-12-18 苏州德尔泰高聚物有限公司 一种聚醚醚酮电缆料及其制备方法
CN105713344A (zh) * 2014-12-05 2016-06-29 黑龙江鑫达企业集团有限公司 纳米粒子/cf混杂增强peek复合材料及其制备方法
CN105713347A (zh) * 2014-12-05 2016-06-29 黑龙江鑫达企业集团有限公司 一种汽车空调传动齿轮用改性材料及其制备方法
CN105733180A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 一种利用特制偶联剂处理SiO2增强PEEK的制备
CN105524411A (zh) * 2015-11-03 2016-04-27 南京肯特复合材料有限公司 耐热耐磨peek塑材及其制备方法
CN105419225A (zh) * 2015-11-24 2016-03-23 南京航空航天大学 一种用于超声电机的聚醚醚酮复合材料及其制备方法
CN106090015A (zh) * 2016-06-20 2016-11-09 中国科学院兰州化学物理研究所 一种具有材料协同效应的两级式塑料滑动轴承

Also Published As

Publication number Publication date
CN106751442A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106751442B (zh) 一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法
Geng et al. Enhanced through‐plane thermal conductivity of polyamide 6 composites with vertical alignment of boron nitride achieved by fused deposition modeling
CN101735554B (zh) 聚醚醚酮复合材料及其制备方法和应用
Lu et al. Microstructure control of highly oriented short carbon fibres in SiC matrix composites fabricated by direct ink writing
da Costa et al. RTM processing and electrical performance of carbon nanotube modified epoxy/fibre composites
Wilczyński et al. Experimental study for starve‐fed single screw extrusion of thermoplastics
Hmeidat et al. Processing and mechanical characterization of short carbon fiber-reinforced epoxy composites for material extrusion additive manufacturing
CN102250446B (zh) 高尺寸稳定性耐磨擦聚醚醚酮复合材料及其制备方法
CN102093716B (zh) 聚苯硫醚/聚醚砜基复合材料、制备方法及由其制备的耐磨件
CN103275448B (zh) 一种改性填料离子增强型聚四氟乙烯复合材料的制备方法
Zhuang et al. Mechanical properties of potassium titanate whiskers reinforced poly (ether ether ketone) composites using different compounding processes
US20150073088A1 (en) Composite of filler and polymer resin and method for preparing the same
Fredi et al. Melt-spun polypropylene filaments containing paraffin microcapsules for multifunctional hybrid yarns and smart thermoregulating thermoplastic composites
Xiaochun et al. Preparation and characterization of carbon fiber/polypropylene composites via a tri‐screw in‐line compounding and injection molding
Wilczyński et al. Experimental study of melting of polymer blends in a starve fed single screw extruder
CN109777036A (zh) 一种聚醚醚酮基耐磨复合材料及其制备方法
Wang et al. Modification effects of short carbon fibers on mechanical properties and fretting wear behavior of UHMWPE composites
Law et al. Experimental analysis and theoretical modeling of the mechanical behavior of short glass fiber and short carbon fiber reinforced polycarbonate hybrid composites
Mu et al. Tribological and mechanical properties of PBT composites with microcapsules and potassium titanate whiskers
Han et al. Thermotropic liquid crystalline polymer reinforced polypropylene composites enhanced with carbon nanotubes for use in fused filament fabrication
CN115785671A (zh) 一种气凝胶/聚苯硫醚自润滑摩擦材料及其制备方法
Xu et al. Formation of in situ CB/PET microfibers in CB/PET/PE composites by slit die extrusion and hot stretching
CN102702653B (zh) 聚四氟乙烯-聚苯酯复合制品及其制备方法
Zheng et al. Morphology of gas‐assisted and conventional injection molded polycarbonate/polyethylene blend
Lee et al. Novel approach to fibrillation of LCP in an LCP/PP blend

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant