CN106732515B - 一种具有p-n异质结的BG/ZnO纳米复合材料的制备方法及其用途 - Google Patents

一种具有p-n异质结的BG/ZnO纳米复合材料的制备方法及其用途 Download PDF

Info

Publication number
CN106732515B
CN106732515B CN201611142182.1A CN201611142182A CN106732515B CN 106732515 B CN106732515 B CN 106732515B CN 201611142182 A CN201611142182 A CN 201611142182A CN 106732515 B CN106732515 B CN 106732515B
Authority
CN
China
Prior art keywords
zno
heterojunction
nanocomposite
preparation
zno nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611142182.1A
Other languages
English (en)
Other versions
CN106732515A (zh
Inventor
李村
方敏
王瑶
朱维菊
徐颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201611142182.1A priority Critical patent/CN106732515B/zh
Publication of CN106732515A publication Critical patent/CN106732515A/zh
Application granted granted Critical
Publication of CN106732515B publication Critical patent/CN106732515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有p‑n异质结的BG/ZnO纳米复合材料的制备方法及其用途,其中BG/ZnO纳米复合材料是以BG为p型半导体,以ZnO为n型半导体,水热合成的具有p‑n异质结的纳米复合材料。通过形成p‑n异质结能够促进光生电子和空穴的分离并且通过将空穴从n型半导体ZnO的价带转移到P型半导体BG的价带上来抑制电子/空穴对的复合来提高光催化降解效率。该复合材料作为光催化剂使用对废水中的有机染料具有很高的光降解效率。

Description

一种具有p-n异质结的BG/ZnO纳米复合材料的制备方法及其 用途
技术领域
本发明涉及一种具有p-n异质结的BG/ZnO纳米复合材料的制备方法及其用途,属于光催化剂材料合成领域。
背景技术
环境和能源是二十一世纪人们亟待解决的重大问题,作为清洁能源的太阳能的使用不会对环境造成污染,不会导致温室效应和全球气候变化,所以越来越多的国家加大对太阳能的利用,更多的学者在开发各种光电新型材料和光电新技术来扩大对太阳能的利用,光催化技术应运而生。
光催化技术作为一种可以在室温下直接利用太阳光作为光源来驱动反应的特异性能的技术,是一种理想的环境污染治理技术和洁净能源生产技术。光催化技术可以直接在常温常压的温和条件下,采用空气中的氧气作为氧化剂且光催化技术能够将有机污染物直接降解为水和二氧化碳等无机小分子等特点。基于这些特点,光催化技术受到各国学者和专家的高度重视,大量的研究力量探究光催化的基础理论、应用技术和工程化研究。因此,光催化技术成为了今年来国内外最活跃的研究领域之一。
光催化技术的原理为半导体材料在紫外光或者可见光的照射下,将光能转化为化学能,进而促进有机污染物的降解的过程。当光能大于或者等于半导体材料的带隙能时,光生电子会从半导体材料的价带跃迁到材料的导带上,进而形成载流子和电子空穴对。空穴具有强氧化性,电子具有还原性,它们可以进一步反应生成强氧化性的羟基自由基将有机染料氧化分解成无害的小分子从而达到光催化降解的效果。但是在实际实验操作中,光生电子和空穴对特别容易复合,降低了生成的羟基自由基的浓度进而影响光催化的效果。为了提高半导体材料的光催化效率,即有效的抑制光生电子和空穴的复合,通常通过(1)复合其他的半导体材料(2)与金属掺杂(3)碳包覆等方法来有效的使光生电子和空穴转移到半导体材料的表面来提高光降解效率。
不同的半导体材料具有不同的能带结构即其导带和价带的位置的不同和导带价带间带隙的大小差异。在光催化过程中,由于异质结的形成,两种半导体材料间导带和价带位置的差异,可以有效地促进光生电子和空穴的分离,并可以通过较小帯隙的组分增加材料在可见光区域的吸收而提高光催化效率。如果两种半导体材料分别为n型半导体材料和p型半导体材料,当两种不同类型的材料表面接触时,会在材料表面形成p-n异质结,p-n结本身形成的内建电场可以有效地促进光生电子和空穴的分离,使电子和空穴分别集中于n型和p型半导体内,抑制光生电子和空穴的复合,进而提高其光催化降解有机污染物效率。这是一种有效提高光催化降解效率的方法。
发明内容
本发明旨在提供一种具有p-n异质结的BG/ZnO纳米复合材料的制备方法及其用途,本发明BG/ZnO纳米复合材料可以加快电子/空穴的分离,有效的抑制电子/空穴的复合进而提高光催化效率。
石墨烯作为一种新型材料,具有优越的电化学性质。但是纯石墨烯的帯隙为零,通过掺杂硼元素得到的硼掺杂石墨烯(BG),可以将石墨烯由半金属变为p型半导体,然后将p型半导体BG与n型半导体ZnO复合形成一种具有高催化效率的p-n异质结BG/ZnO纳米复合材料。本发明纳米复合材料作为光催化剂使用对废水中的有机染料具有很高的光降解效率。
本发明具有p-n异质结的BG/ZnO纳米复合材料,是以BG为p型半导体,以ZnO为n型半导体,水热合成的具有p-n异质结的纳米复合材料,包括如下步骤:
1、向100ml三角烧瓶中加入20mL浓度为2mg/mL的氧化石墨烯悬浮液,然后再加入0.45ml浓度为1M的四氢呋喃硼烷溶液,80℃下搅拌反应4天,四氢呋喃洗涤,获得硼掺杂石墨烯悬浮液;
2、将0.744g硝酸锌和0.4g氢氧化钠加入到步骤1获得的硼掺杂石墨烯悬浮液中,60℃下搅拌反应2小时,随后升温至120℃反应4小时,反应结束后冷却,抽滤并洗涤、干燥,获得具有p-n异质结的BG/ZnO纳米复合材料。
本发明BG/ZnO纳米复合材料可在催化降解废水中的有机染料时作为光催化剂使用。
所述有机染料包括曙红、罗丹明B、亚甲基蓝等。
以本发明BG/ZnO纳米复合材料作为光催化剂催化降解有机染料,以亚甲基蓝染料为例,过程如下:
取30mg制备的BG/ZnO纳米复合材料,加入到100ml浓度为20ppm的亚甲基蓝溶液中,在室温、避光环境下吸附30min,然后在300W氙灯照射下(可见光催化活性评价时,使用400纳米波长截止滤波片)进行光催化测试。
本发明的有益效果体现在:
1、p型半导体材料BG是通过较温和的一步溶剂热法合成,使用四氢呋喃硼烷溶液将氧化石墨烯的还原和硼掺杂石墨烯的过程同时完成。
2、本发明BG/ZnO纳米复合材料是通过简单、易操作的水热法合成。
3、本发明BG/ZnO纳米复合材料在光降解有机染料方面具有较高的光催化降解效率。
4、本发明BG/ZnO纳米复合材料在可见光照条件下也具有较高的光催化降解效率。
附图说明
图1为本发明BG/ZnO纳米复合材料的XRD图。。从图1中可以看出样品所有的衍射峰都与纯的六方相纤锌矿结构的氧化锌(粉末衍射标准卡片号:36-1451)相对应。
图2为本发明BG/ZnO纳米复合材料的SEM图。从图2中可以看出,ZnO由厚度为20纳米左右的片状组装成直径为1微米的球状物,其中片层状物质的为硼掺杂石墨烯。
图3为本发明BG/ZnO纳米复合材料降解亚甲基蓝的光催化效率图。从图3中可以看出BG/ZnO复合材料的光催化效率比纯ZnO的高,当光照40分钟后,降解率超过90%。
图4为本发明BG/ZnO纳米复合材料可见光照射降解亚甲基蓝的光催化效率图。从图4中可以看出BG/ZnO复合材料的光催化效率比纯ZnO的明显高,当光照40分钟后,降解率超过70%。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1:纳米复合材料BG/ZnO的制备
1、向100ml三角烧瓶中加入20mL浓度为2mg/mL的氧化石墨烯悬浮液,然后再加入0.45ml浓度为1M四氢呋喃硼烷溶液,80℃下搅拌反应4天,四氢呋喃洗涤,获得硼掺杂石墨烯悬浮液;
2、将0.744g硝酸锌和0.4g氢氧化钠加入到步骤1获得的硼掺杂石墨烯悬浮液中,60℃下搅拌反应2小时,随后将反应液转移至反应釜中于120℃下反应4小时,反应结束后冷却,抽滤并洗涤、干燥,获得具有p-n异质结的BG/ZnO纳米复合材料。
实施例2:光催化效率实验
取30mg实施例1制备的BG/ZnO纳米复合材料,加入到100ml浓度为20ppm的亚甲基蓝溶液中,在避光环境下吸附30min,然后在氙灯照射下进行光催化测试(可见光催化活性评价时,使用400nm波长截止滤波片),光催化的降解效率为:
其中C0是光照开始前的亚甲基蓝的初始浓度,C为每隔一段时间测得的亚甲基蓝的浓度。
光催化降解情况见图3、图4。

Claims (2)

1.一种具有p-n异质结的BG/ZnO 纳米复合材料的制备方法,其特征在于包括如下步骤:
(1)向反应器中加入20mL浓度为2mg/mL的氧化石墨烯悬浮液,然后再加入0.45ml浓度为1M的四氢呋喃硼烷溶液,80℃下搅拌反应4天,四氢呋喃洗涤,获得硼掺杂石墨烯悬浮液;
(2)将0.744g硝酸锌和0.4g氢氧化钠加入到步骤(1)获得的硼掺杂石墨烯悬浮液中,水热反应获得具有p-n异质结的BG/ZnO 纳米复合材料;所述水热反应是先于60℃下搅拌反应2小时,随后升温至120℃反应4小时。
2.一种权利要求1所述制备方法制备的具有p-n异质结的BG/ZnO 纳米复合材料的用途,其特征在于:
所述BG/ZnO 纳米复合材料在催化降解废水中有机染料时作为光催化剂使用;
所述有机染料包括曙红、罗丹明B、亚甲基蓝。
CN201611142182.1A 2016-12-12 2016-12-12 一种具有p-n异质结的BG/ZnO纳米复合材料的制备方法及其用途 Active CN106732515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611142182.1A CN106732515B (zh) 2016-12-12 2016-12-12 一种具有p-n异质结的BG/ZnO纳米复合材料的制备方法及其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611142182.1A CN106732515B (zh) 2016-12-12 2016-12-12 一种具有p-n异质结的BG/ZnO纳米复合材料的制备方法及其用途

Publications (2)

Publication Number Publication Date
CN106732515A CN106732515A (zh) 2017-05-31
CN106732515B true CN106732515B (zh) 2019-06-07

Family

ID=58876026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611142182.1A Active CN106732515B (zh) 2016-12-12 2016-12-12 一种具有p-n异质结的BG/ZnO纳米复合材料的制备方法及其用途

Country Status (1)

Country Link
CN (1) CN106732515B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114054025A (zh) * 2021-03-04 2022-02-18 中国科学院宁波材料技术与工程研究所 一种半导体纳米材料及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289181B (zh) * 2008-05-29 2010-09-01 中国科学院化学研究所 掺杂石墨烯及其制备方法
WO2013062304A1 (ko) * 2011-10-24 2013-05-02 서강대학교산학협력단 태양광을 이용한 이산화탄소의 환원 장치 및 환원 방법
CN104250006B (zh) * 2014-09-24 2016-04-27 江苏大学 一种超临界二氧化碳制备硼掺杂三维石墨烯的方法
CN104986755B (zh) * 2015-06-15 2017-04-12 江苏大学 一种硫杂石墨烯/氧化锌纳米复合材料的制备方法及其用途

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Metal-free B-doped grapheme with efficient electrocatalytic activity for hydrogen evolution reaction;Bhaskar R.Sathe 等;《Catalysis Science & Technology》;20140313;第4卷;第2024页左栏第1-7行、第2025页2.4 Synthesis of B-substituted graphene (B-SuG) *
氧化锌/石墨烯复合材料的水热制备及其光催化性能;马晶 等;《中国科技论文》;20150930;第10卷(第18期);1.2.2 氧化锌/石墨烯的制备,3 结论 *

Also Published As

Publication number Publication date
CN106732515A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
Prasad et al. Graphitic carbon nitride based ternary nanocomposites: From synthesis to their applications in photocatalysis: A recent review
Guo et al. A one-pot sealed ammonia self-etching strategy to synthesis of N-defective g-C3N4 for enhanced visible-light photocatalytic hydrogen
Tahir La-modified TiO2/carbon nanotubes assembly nanocomposite for efficient photocatalytic hydrogen evolution from glycerol-water mixture
Huang et al. Broad spectrum response flower spherical-like composites CQDs@ CdIn2S4/CdS modified by CQDs with up-conversion property for photocatalytic degradation and water splitting
CN101791565B (zh) 一种TiO2@石墨相氮化碳异质结复合光催化剂及其制备方法
CN106732524B (zh) 一种α/β-氧化铋相异质结光催化剂及其制法和用途
Li et al. Photo-assisted selective catalytic reduction of NO by Z-scheme natural clay based photocatalyst: Insight into the effect of graphene coupling
Tian et al. A novel P-doped g-C3N4/Zn0. 8Cd0. 2S composite photocatalyst for degradation of methylene blue under simulated sunlight
Jiang et al. Preparation of magnetically retrievable flower-like AgBr/BiOBr/NiFe2O4 direct Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity
CN110773213B (zh) 一维硫化镉/二维碳化钛复合光催化剂及其制备方法与应用
CN109174082B (zh) 一种制备BiVO4/MnO2复合光催化氧化剂的方法
CN102861597B (zh) 一种响应可见光的光解水制氢催化剂及其制备方法
CN111203231B (zh) 硫化铟锌/钒酸铋复合材料及其制备方法和应用
CN103611551B (zh) 硫化铋/氧化钼铋异质结光催化复合材料的制备方法
CN107442139B (zh) 用于高效降解龙胆紫的片状Z型SnS2/Bi2MoO6异质结光催化材料的制备方法
Sun et al. Designing double Z-scheme heterojunction of g-C3N4/Bi2MoO6/Bi2WO6 for efficient visible-light photocatalysis of organic pollutants
CN109663605B (zh) 一种二元2D/2D CdIn2S4/BiOCl纳米复合光催化剂的制备方法及应用
CN107051548B (zh) 一种简易制备六边形CdO/CdS异质结纳米复合材料的方法
CN104056620A (zh) 一种可见光催化剂及其制备方法与应用
CN103977806B (zh) 一种光催化降解材料Co掺杂纳米ZnO及其制备方法
CN108704645B (zh) 一种铜-氧化钛复合光催化剂及其制备方法与应用
CN103785429B (zh) 一种磷酸银/石墨烯/二氧化钛纳米复合材料及制备方法
Guan et al. Study of sheetlike BiOI/rodlike Bi5O7I composite photocatalyst by in situ crystallization of BiOI with pH-dependence for Hg0 removal
CN109589985B (zh) 掺杂纳米锗酸锌的制备方法及其催化还原二氧化碳
CN108927197B (zh) 一种高催化性能的g-C3N4的制备方法和用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant