CN106715998A - 用于区分天然气和沼气的方法和装置 - Google Patents

用于区分天然气和沼气的方法和装置 Download PDF

Info

Publication number
CN106715998A
CN106715998A CN201580040564.0A CN201580040564A CN106715998A CN 106715998 A CN106715998 A CN 106715998A CN 201580040564 A CN201580040564 A CN 201580040564A CN 106715998 A CN106715998 A CN 106715998A
Authority
CN
China
Prior art keywords
gas
hydrogen
sample
combustible gas
biological
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580040564.0A
Other languages
English (en)
Other versions
CN106715998B (zh
Inventor
弗雷德里克·恩奎斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Because Phyken Co Ltd
Original Assignee
Because Phyken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Because Phyken Co Ltd filed Critical Because Phyken Co Ltd
Publication of CN106715998A publication Critical patent/CN106715998A/zh
Application granted granted Critical
Publication of CN106715998B publication Critical patent/CN106715998B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/225Gaseous fuels, e.g. natural gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/005H2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Emergency Alarm Devices (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种用于确定一气体样品是源自生物过程还是来自正被测试且包含一公用可燃气的一可燃气设施的方法,其特征在于,与存在于公用可燃气中的相比样品中的氢气的一增长的浓度作为样品源自生物腐烂过程而不是来自被测试的气体设施的证据。

Description

用于区分天然气和沼气的方法和装置
技术领域
本发明涉及一种用于在寻找地下公用可燃气(utility gas)管道泄漏时非常快速地确定注册气体信号(registered gas signals)的来源为沼气或公用可燃气的方法。
背景技术
世界各地的法规要求可燃气网络(gas networks)的定期检查以检查未知的泄漏。对此的原因主要是保护公众免受由于在建筑物和其他密闭空间中可燃气聚集而引起的火灾和爆炸。泄漏检查通常通过移动对可燃气的主要成分之一灵敏的一检测器至承载气体的管道上方的地面的表面上来进行。
对于压缩天然气(CNG)主要成分通常为甲烷,而液化石油气(LPG)主要含有丁烷和丙烷。除了这两种更常见的气体类型之外,即使管道网络仍然非常有限仍然有一生物气(biogas)的生成。生物气主要包含甲烷。在管道或容器中分布的这种可燃气体在下文中均表示为公用可燃气。
世界上某些地方使用的可燃气体的一第四种类型称为煤气或制造气(MG)。这包含高水平的氢气(hydrogen)且从公用可燃气的以上定义排除。
如果注册一公用可燃气信号,它可以来自两个主要来源;受检查的可燃气设施(gas installation)或从生物腐烂过程。这样的生物来源的实例覆盖废物倾倒、分解污水、垃圾填埋场等。源自这些来源的气体以包括沼气(marsh gas)、土壤气体、填埋气体和下水道气体的许多名称已知。在下文中的术语沼气用作生物来源的可燃气体源的一共同特征。为了避免在沼气信号上的不必要的挖掘,希望能够区分来自被测管道的真实气体泄漏和来自沼气的指示。
用于区分公用可燃气和沼气的最常见方法是对气体组分进行分析以确定乙烷气体和/或较重的碳氢化合物如丙烷和丁烷的存在。大多数天然气源含有0.5%~8%的乙烷,而沼气不含任何显著量(significant amounts)的乙烷。
目前没有在甲烷和乙烷之间具有一足够高的选择性以使得可以实时进行这样的一分析的可商购的气体传感器。因此,该分析通常使用一气相色谱仪(GC)将气体样品的不同组分分离成在不同时间离开色谱柱的脉冲来进行。由于不同组分的这种时间分离,即使使用一非选择性传感器分析是可能的。
GC可以为一实验室仪器,在这种情况下,一气体样品被收集在某种类型的容器中,该容器被送往一实验室进行分析。还可以使用现场可操作的GCs。这些可以是专用仪器或集成到一管道泄漏测量仪器中的小型GC模块。现场GC且特别是集成到一泄漏检测器中的那些通常比实验室单元更不灵敏并且样品浓度必须高于1%或至少0.5%以在样品中进行乙烷的一某种检测。
这个事实通常使得必需钻探探头孔通过铺路以允许收集足够高的一气体浓度。这使得有效测试时间显著更长且通常在30分钟或更长的数量级。
另一种区分方式为通过嗅闻气体或通过使用一特定的检测器来检测存在的气味剂。“手动”方法简单且成本低但不完全可靠并且用于气味剂的检测器通常是比用于乙烷检测的那些相关的类似的延迟和更高成本的更高等级的GC。因为气味剂浓度比乙烷浓度低几个数量级所以需要一更好性能的GC。
在任何情况下,沼气和公用可燃气之间的某些区分为一缓慢的且不总是完全可靠的过程且有一更简单和更快的方法的需要。
发明内容
本发明的一个目的是提供一种用于在检测掩埋的公用可燃气管道泄漏的常规过程期间确定一检测到的气体信号的来源的改进的方法。这是根据独立权利要求1和4的特征部分来实现的。
乙烷分析方法的主要困难为可以独立测量甲烷和乙烷的可负担和选择性的传感器的缺乏。观察两种气体混合物的组成以区分开,可以看出存在至少一种不同的其它组分:氢气。
调查公用可燃气的报道的含量很少有任何引用的氢气水平。因此,似乎氢气的量不显著。另一方面,在沼气中,通常存在一显著量的氢气。大量不同的微生物在厌氧条件下产生氢气并且因此通常在沼气中发现氢气。报道的氢气浓度水平从百万分之几百和高达1或2%。
本发明通过使用一高灵敏度和氢气选择性气体检测器来解决乙烷测试的上述限制。为了使该程序正常工作,有必要使检测器对氢气比对存在于主要是可燃气体但也有CO2的天然气中的任何气体更灵敏几个数量级。还有必要的是,检测器不对降低的氧气含量作出反应(这对于可燃气体传感器来说并不罕见)。
天然气中不存在氢气可以容易地通过用氢气选择性传感器测试天然气确认。
具有所需质量的检测器由瑞典的英福康公司(INFICON AB)制造和销售。这些检测器对于氢气的选择性与甲烷相比大5个数量级。
换句话说,本发明基于在一可燃气设施的一泄漏测试期间获取的气体样品被附加地使用以便确定样品是源自可燃气设施内的公用可燃气还是来自生物腐烂过程的气体的原理。如果不是先前已知的,则应确定公用可燃气的氢气含量。如果检测的气体中的氢气含量显著更高,则样品源自生物腐烂过程。因此,本发明的方法可以描述为包括以下步骤:
-从地面下方获得一气体样品,
-测试气体样品中氢气的存在,
-将气体样品内的氢气水平与待测试的可燃气设施内的公用可燃气的已知的氢气水平进行比较,
-如果氢气浓度高于公用可燃气氢气的浓度,决定气体样品源自生物腐烂过程。
源自生物腐烂过程的一气体样品的替代和更简单的指示是氢气浓度高于百万分之5(ppm)或高于100ppm。
附图说明
该图示出了本发明的一实施方式。
具体实施方式
一可燃气管道(gas pipeline)12为在地表面14下方的一可燃气设施的一部分。可燃气管道12的密封性将利用一泄漏检测器16进行测试。泄漏检测器16的测量探针18定位在地表面14上或进入在地面14下方的在可燃气管线12且假设一可能的泄漏的区域中的一钻孔中。一沼气产生区域20在接近测试探针18的地表面14下方。因此,探针18从管道12泄漏的气体或源自沼气产生区域20内的生物腐烂过程的气体采样。
气体分析器16检测气体样品内的气体。可燃气设施内的公用可燃气包含甲烷和/或较重的烃类,而源自生物腐烂过程的气体(沼气)主要包含甲烷。在任何情况下,这将由检测器的感测机构拾取。
为了确定样品是源自公用可燃气设施(可燃气管道12)还是源自沼气产生区域20(源自生物腐烂过程的气体),气体样品的氢气含量由泄漏检测器16确定。泄漏检测器包括一氢气选择性传感器17且因此对氢气灵敏。检测氢气含量是否高于某一阈值。阈值可以基于公用可燃气内先前已知的氢气浓度。取决于公用可燃气的组分和在可燃气设施的中假设的生物腐烂过程的类型,阈值可选地为例如5ppm或100ppm或甚至更大。

Claims (9)

1.一种用于确定一气体样品是源自生物过程还是来自正被测试且包含一公用可燃气的一可燃气设施的方法,
其特征在于
与在所述的公用可燃气中的相比所述的样品中氢气的一增长的浓度被用作所述的样品源自生物腐烂过程而不是来自所述的受测试的可燃气设施的证据。
2.根据权利要求1所述的方法,其特征在于,使用一氢气选择性气体传感器用于评价所述的样品中的氢气含量。
3.根据权利要求1或2所述的方法,其特征在于,在评价所述的样品中的氢气含量之前,所述的氢气选择性气体传感器用于检查包含在所述的可燃气设施中的所述的公用可燃气中的氢气浓度低于一预定水平。
4.一种用于确定一气体样品源自生物腐烂过程或来自正被测试且包含一公用可燃气的一可燃气设施的装置,
其特征在于
一氢气选择性气体传感器(17)集成在用于评价所述的样品中氢气含量的一现场可操作检测器(16)中且所述的检测器(16)可与一管道(12)泄漏测量气体检测器(16)同时使用。
5.根据权利要求4所述的装置,其特征在于,所述的氢气选择性气体传感器(17)集成在一管道(12)泄漏测量气体检测器(16)中。
6.根据权利要求1至3中任一项所述的方法或根据权利要求4或5所述的装置,其特征在于,所述的氢气分析与所述的气体泄漏测量同时进行。
7.根据权利要求1至3中任一项所述的方法或根据权利要求6所述的装置,其特征在于,源自生物腐烂过程中的不需要的信号被实时阻挡。
8.根据权利要求1至3中任一项所述的方法或根据前述任一项权利要求所述的装置,其特征在于,高于5ppm的一氢气含量用于作为所述的样品源自生物腐烂过程的证据。
9.根据权利要求1至3中任一项所述的方法或根据前述任一项权利要求所述的装置,其特征在于,至少100ppm的一氢气浓度用于作为所述的样品源自生物腐烂过程的证据。
CN201580040564.0A 2014-07-29 2015-07-20 用于区分天然气和沼气的方法和装置 Active CN106715998B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14178963.6 2014-07-29
EP14178963.6A EP2980583B1 (en) 2014-07-29 2014-07-29 Method and device for discrimination between natural gas and swamp gas
PCT/EP2015/066555 WO2016016036A1 (en) 2014-07-29 2015-07-20 Method and device for discrimination between natural gas and swamp gas

Publications (2)

Publication Number Publication Date
CN106715998A true CN106715998A (zh) 2017-05-24
CN106715998B CN106715998B (zh) 2019-12-10

Family

ID=51265499

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580040564.0A Active CN106715998B (zh) 2014-07-29 2015-07-20 用于区分天然气和沼气的方法和装置

Country Status (7)

Country Link
US (1) US10338050B2 (zh)
EP (2) EP2980583B1 (zh)
JP (1) JP6632603B2 (zh)
KR (1) KR102367829B1 (zh)
CN (1) CN106715998B (zh)
RU (1) RU2695669C2 (zh)
WO (1) WO2016016036A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580903A (zh) * 2018-11-21 2019-04-05 郑州畅威物联网科技有限公司 一种用于地下密闭空间的沼气天然气智能判别系统
CN113465826A (zh) * 2021-05-26 2021-10-01 北京市燃气集团有限责任公司 一种燃气泄漏检测方法与装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023105261A1 (en) * 2021-12-06 2023-06-15 Abu Dhabi National Oil Company Method and system for assessing and certifying the origin of hydrogen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507558A (en) * 1983-02-22 1985-03-26 Honeywell Inc. Selective leak-detector for natural gas
US4618855A (en) * 1984-12-14 1986-10-21 Genelco, Inc. Soil pollution monitoring system
US4996431A (en) * 1989-02-10 1991-02-26 Gas Research Institute Selective gas detecting apparatus
US20080179199A1 (en) * 2006-12-19 2008-07-31 Coignet Philippe A Economical and Reliable Gas Sensor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322688A (en) 1976-08-14 1978-03-02 Kanto Koki Selffprofileegrinding device
US4507588A (en) * 1983-02-28 1985-03-26 Board Of Trustees Operating Michigan State University Ion generating apparatus and method for the use thereof
JPH0453557Y2 (zh) 1987-12-02 1992-12-16
US4958076A (en) * 1989-02-10 1990-09-18 Gas Research Institute Selective natural gas detecting apparatus
JPH05322688A (ja) * 1992-05-18 1993-12-07 Seibu Gas Kk ガス漏洩検出方法及びその装置
JPH1123403A (ja) 1997-07-08 1999-01-29 Tokyo Gas Chem Kk 埋設ガス配管から漏洩する燃料ガスの検知調査方法及びその装置
DE10157191A1 (de) * 2001-11-23 2003-06-05 Fritzmeier Georg Gmbh & Co Mikrobiologische Energiequelle zum Antrieb eines Verbrauchers
US7027924B2 (en) 2002-10-31 2006-04-11 Itt Manufacturing Enterprises, Inc Detecting natural gas pipeline failures
RU2371713C2 (ru) * 2007-11-07 2009-10-27 Некоммерческая организация Институт проблем химической физики Российской академии наук (статус государственного учреждения) (ИПХФ РАН) Сенсор для детектирования водорода и способ его изготовления
RU2389992C1 (ru) * 2009-01-28 2010-05-20 Общество с ограниченной ответственностью Научно-технический Центр "ТАТА" (ООО НТЦ "ТАТА") Способ определения локальной и интегральной негерметичности изделий и устройство для его осуществления
US9739758B2 (en) * 2011-10-20 2017-08-22 Picarro, Inc. Methods for gas leak detection and localization in populated areas using isotope ratio measurements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4507558A (en) * 1983-02-22 1985-03-26 Honeywell Inc. Selective leak-detector for natural gas
US4618855A (en) * 1984-12-14 1986-10-21 Genelco, Inc. Soil pollution monitoring system
US4996431A (en) * 1989-02-10 1991-02-26 Gas Research Institute Selective gas detecting apparatus
US20080179199A1 (en) * 2006-12-19 2008-07-31 Coignet Philippe A Economical and Reliable Gas Sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109580903A (zh) * 2018-11-21 2019-04-05 郑州畅威物联网科技有限公司 一种用于地下密闭空间的沼气天然气智能判别系统
CN109580903B (zh) * 2018-11-21 2021-05-25 郑州畅威物联网科技有限公司 一种用于地下密闭空间的沼气天然气智能判别系统
CN113465826A (zh) * 2021-05-26 2021-10-01 北京市燃气集团有限责任公司 一种燃气泄漏检测方法与装置

Also Published As

Publication number Publication date
JP6632603B2 (ja) 2020-01-22
EP3175233A1 (en) 2017-06-07
US10338050B2 (en) 2019-07-02
RU2017106266A3 (zh) 2018-12-11
EP2980583A1 (en) 2016-02-03
KR102367829B1 (ko) 2022-02-24
RU2695669C2 (ru) 2019-07-25
RU2017106266A (ru) 2018-08-28
EP2980583B1 (en) 2019-10-30
EP3175233B1 (en) 2023-05-24
JP2017523421A (ja) 2017-08-17
US20170227513A1 (en) 2017-08-10
WO2016016036A1 (en) 2016-02-04
CN106715998B (zh) 2019-12-10
KR20170038026A (ko) 2017-04-05

Similar Documents

Publication Publication Date Title
Carvajal-Ortiz et al. Critical considerations when assessing hydrocarbon plays using Rock-Eval pyrolysis and organic petrology data: Data quality revisited
Singh et al. Mine fire gas indices and their application to Indian underground coal mine fires
Daling et al. Improved and standardized methodology for oil spill fingerprinting
Hower et al. The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents
Lee et al. Fumarolic gas composition of the Tatun Volcano Group, northern Taiwan
CN106715998A (zh) 用于区分天然气和沼气的方法和装置
CN107831298B (zh) 现场校验变压器油中溶解气体监测装置性能的方法及系统
US10436708B2 (en) Method for quantifying the amount of optically interfering gas impurities
TWI575479B (zh) 汽油洩漏之土壤氣體監測及預警系統
Ghosh et al. Sensor array for manhole gas analysis
JP2682882B2 (ja) 可燃性ガスのガス種を識別する方法およびその装置
Aelion et al. Simplified methods for monitoring petroleum‐contaminated ground water and soil vapor
Adamson et al. Laboratory validation study of new vapor‐phase‐based approach for groundwater monitoring
Amodio et al. Odour impact assessment by a multiparametric system (electronic noses/CH4-NMHC analyser)
Hristov et al. METHODICAL APPROACH FOR FORECASTING POSSIBLE ZONES OF FAULT SYSTEMS LEAKAGE RELATED TO HYDROCARBON ACCUMULATIONS.
Wu et al. Determining source-specific terrigenous organic carbon contributions in sediments from the Yellow River estuary, Northeast China: A test of source apportionment models
BIETLOT et al. ASSESSMENT OF THE CONTRIBUTION OF LOW EMISSIVE AREAS TO THE TOTAL FLUX OF BIOGAS DIFFUSING THROUGH THE OVERALL COVER OF LANDFILLS IN WALLONIA
Haddad et al. Analysis of Hydrocarbons in Samples Provided from the Cruise of the R/V WEATHERBIRD II, May 23-26, 2010
EP3933403A1 (en) Natural gas and hydrogen detector and method for detecting the concentration of hydrogen within a gas sample
US3607074A (en) Seepage gasoline detection
Day Evaluating Soil Gas Migration Testing in the Energy Sector
Visser et al. California GAMA Special Study: Excess Nitrogen and Methane in Noble Gas Samples
Visser et al. GAMA: AMBIENT GROUNDWATER MONITORING &ASSESSMENT PROGRAM SPECIAL STUDY
Osnowski et al. On-Site Corrosion Inhibitor Detection for Improved Corrosion Management
CN116385237A (zh) 一种石油污染物的危险特性评估方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant