CN106715738B - 韧性高温钼基合金 - Google Patents

韧性高温钼基合金 Download PDF

Info

Publication number
CN106715738B
CN106715738B CN201580033290.2A CN201580033290A CN106715738B CN 106715738 B CN106715738 B CN 106715738B CN 201580033290 A CN201580033290 A CN 201580033290A CN 106715738 B CN106715738 B CN 106715738B
Authority
CN
China
Prior art keywords
alloy
vanadium
niobium
molybdenum
microns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201580033290.2A
Other languages
English (en)
Other versions
CN106715738A (zh
Inventor
龚家栋
大卫·R·斯奈德
杰森·T·塞巴斯蒂安
威廉·亚瑟·康慈
阿比吉特·米斯拉
詹姆斯·A·莱特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Questek Innovations LLC
Original Assignee
Questek Innovations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Questek Innovations LLC filed Critical Questek Innovations LLC
Publication of CN106715738A publication Critical patent/CN106715738A/zh
Application granted granted Critical
Publication of CN106715738B publication Critical patent/CN106715738B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/005Selecting particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K9/00Rocket-engine plants, i.e. plants carrying both fuel and oxidant therefor; Control thereof
    • F02K9/97Rocket nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/08Heating by electric discharge, e.g. arc discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/26Manufacture essentially without removing material by rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本文提供一种合金,制备所述合金的方法,以及包含所述合金的制品。所述合金可以包含,按重量计,约0.01%至约1%的钒,0%至约0.04%的碳,0%至约8%的铌,0%至约1%的钛,0%至约0.04%的硼,0%至约1%的钨,0%至约1%的钽,0%至约1%的铪和0%至约1%的钌,余量基本上为钼以及偶存元素和杂质。

Description

韧性高温钼基合金
相关申请的交叉引用
本申请要求2014年4月23日提交的美国临时申请61/983,362的优先权,其全部内容通过引用并入本申请。
政府利益声明
本发明是根据由国防高级研究计划署授予的合同号为W31P4Q-09-C-0450和W91CRB-11-C-0014在政府支持下进行的。政府对本发明具有一定的权利。
背景技术
火箭推进应用以及用于航空航天和发电的下一代更高效率的涡轮发动机要求更高的温度,该温度比由当前镍基合金可提供的温度更高。镍基合金的当前最高工作温度(~1100℃)接近其熔融温度的90%。这对它们的最大应用温度施加了理论限制。因此,需要一种能够满足上述高温应用和其他苛刻的商业服务需求的合金。
发明内容
一方面,公开了一种合金,包含,按重量计,约0.01%至约1%的钒,0%至约0.04%的碳,0%至约8%的铌,0%至约1%的钛,0%至约0.04%的硼,0%至约1%的钨,0%至约1%的钽,0%至约1%的铪,以及0%至约1%的钌,余量基本上是钼以及偶存元素和杂质。
另一方面,公开了一种合金,包含,按重量计,约0.01%至约1%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约1%的钛,以及0%至约0.04%的硼,余量基本上是钼以及偶存元素和杂质。
另一方面,公开了一种合金,包含,按重量计,约0.05%至约0.55%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约0.5%的钛,以及0%至约0.04%的硼,余量基本上是钼以及偶存元素和杂质。
另一方面,公开了通过以下工艺制备的合金,该工艺包括:制备一种熔融物(melt),所述熔融物包括,按重量计,约0.05%至约0.55%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约0.5%的钛,以及0%至约0.04%的硼,余量基本上为钼以及偶存元素和杂质。所述熔融物可以通过双交流自耗电极(double alternating currentconsumable electrode)真空熔炼制备成具有规定尺寸的锭块。所述的锭块可被挤压(例如,在1350℃)成规定尺寸的形状。
另一方面,公开了一种制品,包含一种合金,所述合金包括:按重量计,约0.05%至约0.55%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约0.5%的钛,以及0%至约0.04%的硼,余量基本上为钼以及偶存元素和杂质。
附图说明
图1是示例性的钼基合金与商用合金TZM的韧脆转变温度(DBTT)的对比曲线图。
图2是示例性的钼基合金与商用合金TZM的0.2%残余变形抗拉屈服强度(offsettensile yield strength)与温度的关系的对比曲线图。
图3是示例性的钼基合金与商用合金TZM的拉伸断面收缩百分比与温度的关系的对比曲线图。
图4是示例性的钼基合金与商用合金TZM在500℃下的拉伸断面收缩百分比与0.2%残余变形残余变形抗拉屈服强度的关系的对比曲线图。
图5是示例性的钼基合金与商用合金TZM在1000℃下的拉伸断面收缩百分比与0.2%残余变形抗拉屈服强度的关系的对比曲线图。
图6是示例性的钼基合金与商用合金TZM的重结晶温度对比图表。QT-TZM是在实验室中制备的TZM,而Starck-TZM是市售的TZM。
具体实施方式
本文公开了钼基合金,制备所述合金的方法,以及包含所述合金的制品。所公开的合金含有足够量的元素以增强晶界内聚性。这些元素可包括铌(niobium),钒(vanadium),钌(ruthenium),硼(boron)和碳(carbon)。
钼基合金相对于现有合金表现出改进的物理性能。所述合金可提供的高温性能超过现有镍基合金性能。此外,所公开的钼基合金可具有高强度,抵抗晶间破裂,以及优于现有商用钼合金的韧性中的一种或多种性能。
晶界工程(grain boundary engineering)用于增强钼合金的韧性。研究表明,减小非合金钼的晶粒尺寸对韧性具有有益效果,而引入氧则是不利的。密度泛函理论(Density Funtional Theory,DFT)的计算显示,硼和碳可增强晶界的内聚力,而氮和氧则会使晶界脆化。在合金钼中,研究表明,尽管固熔体中大量的合金元素对韧性是有害的,但少量的矾,铌,钌和钛对韧性是无害的,而锆,铬和铝对韧性是有害的。
通过进行DFT计算来识别和验证各种合金元素的晶界内聚力效应。计算结果表明,钒,铌和钌可改善晶界内聚力并增强韧性,而锆,钛和铝则会脆化晶界并降低韧性。鉴于这些结果,所公开的合金被设计为包含足够量的元素以增强晶界内聚力。这些元素可能包括铌,钒,钌,硼和碳。
另外,所公开的合金包含粒子形成元素,其促进细晶粒的形成并增强合金的韧性。这种粒子形成元素可以包括碳,硼,铌,钒,钛,钨,钽,铪,钌和钼。粒子形成元素可以形成钉扎(pin)合金晶界的碳化物和硼化物粒子。碳化物和硼化物粒子可以包括但不限于碳化铌(niobium carbide),碳化钒(vanadium carbide),碳化钛(titanium carbide)和硼化钼(molybdenum boride),或上述化合物的组合。
在所公开的合金中使用替代元素组分可以增强晶界的内聚力,从而不容易发生晶间破裂并改善韧性。
尽管钼具有2623℃的熔融温度和低密度,使其在高性能合金应用中成为替代镍的具有吸引力的候选者,但其差的抗氧化性和微弱的韧性限制了它此前的应用。应用最广泛的钼基合金是钛-锆-钼合金,TZM(由0.5%的钛,0.1%的锆,0.02%的碳,余量为钼组成)。TZM在目前使用的商用钼基合金中占约90%。TZM的微观结构包括钉扎晶界并防止晶界再结晶的钛和锆的碳化物。该特征由于细晶粒尺寸而提供高温强度。然而,在形成碳化物之后残留在溶液中的钛,锆和碳原子可能会偏析(segregate)到晶界界面并且对晶界的内聚性产生不利影响。反过来,这可能会促进TZM中常见的破坏模式,即断裂期间的晶间破裂。换句话说,当受到应力时,普通市售的包含钛和/或锆的钼合金在断裂期间容易发生晶间破裂,因为钛和锆向晶界偏析会使这些合金的晶界脆化。所公开的合金可以克服TZM的这些缺点并提供优异的性能。
I.术语定义
除非另有定义,本文使用的所有技术和科学术语具有与本领域的普通技术人员通常理解的相同的含义。如有冲突,以本文(包括定义)为准。下面描述了优选的方法和材料,但与本文所述相似或等同的方法和材料可用于本发明的实践或测试。本文提及的所有出版物,专利申请,专利及其他参考文献的全部内容通过引用并入本文。本文公开的材料,方法,以及实施例仅用于说明,而不是限制性的。
除非上下文另有明确说明,否则在说明书和所附权利要求中使用的单数形式的“一”,“一个”和“该”包括复数指代。如本文所使用的术语“包含”,“包括”,“具有”,“具有”,“可以”,“含有”及其变体旨在是开放式的过渡短语,术语或词语,其不排除另外的动作或结构的可能性。无论是否明确阐述,本文还预期“包含”本文呈现的实施例或元件,“由本文呈现的实施例或元件组成”和“基本上由本文呈现的实施例或元件组成”的其它实施例。
连接词“或”包括与该连接词相关联的一个或多个所列元素的任何和所有组合。例如,短语“包括A或B的装置”可以指包括A(其中B不存在)的装置,包括B(其中A不存在)的装置或者存在A和B两者的装置。短语“A,B,...和N中的至少一个”或“A,B,...N中的至少一个或其组合”在最广泛的意义上被定义为表示从A,B,...和N构成的群组中选择的一个或多个元素,也就是说,表示元素A,B,...或N中的一个或多个的任何组合,包括单独的一种元素或与一种或多种其它元素的组合,其也可以包括与未列出的其它元素的组合。
结合数量使用的修饰语“约”包括所述值,并且具有上下文所规定的含义(例如,其至少包括与特定量的测量相关联的误差程度)。修饰语“约”也应被认为是公开了由两个端点的绝对值定义的范围。例如,表述“约2至约4”还公开了范围“2至4”。术语“约”可以指所指数量的正或负10%。例如,“约10%”可以表示9%至11%的范围,“约1”可以指0.9-1.1。“约”的其它含义可从上下文显而易见,例如四舍五入,因此,例如“约1”也可意指0.5至1.4。
本文所述的任何记载的范围应理解为涵盖并包括该范围内的所有值,而不需要明确的记载。
II.合金
所公开的合金可以包含钒(vanadium),碳(niobium),铌(niobium),钛(titanium),硼(boron),钨(tungsten),钽(tantalum),铪(hafnium),钌(ruthenium)和钼(molybdenum),以及偶存元素和杂质。
所述合金可以包含,按重量计,约0.01%至约1.0%的钒,约0%至约0.04%的碳,0%至约8.0%的铌,0%至约1.0%的钛,0%至约0.04%的硼,0%至约1.0%的钨,0%至约1.0%的钽,0%至约1.0%的铪和0%至约1.0%的钌,余量基本上为钼以及偶存元素和杂质。应当理解的是,本文所述的合金可以仅由上述组分组成,或者可以基本上由这些组分组成,或者在其他实施例中,可以包含其它组分。
所述合金可以包含,按重量计,约0.01%至约1.0%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约1.0%的钛,以及0%至约0.04%的硼,余量基本上是钼以及偶存元素和杂质。
所述合金可以包含,按重量计,约0.05%至约0.55%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约0.5%的钛,以及0%至约0.04%的硼,余量基本上是钼以及偶存元素和杂质。
所述合金可以包含,按重量计,约0.05%至约0.55%的钒,约0.01%至约0.02%的碳,0%至约0.54%的铌,0%至约0.5%的钛,以及0%至约0.04%的硼,余量基本上是钼以及偶存元素和杂质。
所述合金可以包含,按重量计,约0.01%至约1.0%的钒,约0.05%至约1.0%的钒,约0.07%至约1.0%的钒,约0.08%至约1.0%的钒,约0.09%至约1.0%的钒,约0.01%至约0.55%的钒,约0.05%至约0.55%的钒,约0.07%至约0.55%的钒,约0.08%至约0.55%的钒,约0.09%至约0.55%的钒,约0.07%至约0.53%的钒,约0.05%至约0.1%的钒,约0.07%至约0.1%的钒,约0.08%至约0.1%的钒,约0.09%至约0.1%的钒,约0.32%至约0.55%的钒,约0.41%至约0.55%的钒,或者约0.42%至约0.55%的钒。所述合金可以包含,按重量计,0.01%至1.0%的钒,0.05%至1.0%的钒,0.07%至约1.0%的钒,0.08%至1.0%的钒,0.09%至1.0%的钒,0.01%至0.55%的钒,0.05%至0.55%的钒,0.07%至0.55%的钒,0.08%至0.55%的钒,0.09%至0.55%的钒,0.07%至0.53%的钒,0.05%至0.1%的钒,0.07%至0.1%的钒,0.08%至0.1%的钒,0.09%至0.1%的钒,0.32%至0.55%的钒,0.41%至0.55%的钒,或者0.42%至0.55%的钒。所述合金可以包含,按重量计,0.01%,0.02%,0.03%,0.04%,0.05%,0.051%,0.052%,0.053%,0.054%,0.055%,0.056%,0.057%,0.058%,0.059%,0.06%,0.061%,0.062%,0.063%,0.064%,0.065%,0.066%,0.067%,0.068%,0.069%,0.07%,0.071%,0.072%,0.073%,0.074%,0.075%,0.076%,0.077%,0.078%,0.079%,0.08%,0.081%,0.082%,0.083%,0.084%,0.085%,0.086%,0.087%,0.088%,0.089%,0.09%,0.091%,0.092%,0.093%,0.094%,0.095%,0.096%,0.097%,0.098%,0.099%,0.1%,0.2%,0.3%,0.31%,0.32%,0.33%,0.34%,0.35%,0.36%,0.37%,0.38%,0.39%,0.4%,0.41%,0.42%,0.43%,0.44%,0.45%,0.46%,0.47%,0.48%,0.49%,0.5%,0.51%,0.52%,0.53%,0.54%,或者0.55%的钒。所述合金可以包含,按重量计,约0.07%的钒,约0.08%的钒,约0.09%的钒,约0.32%的钒,约0.41%的钒,或者约0.42%的钒。
所述合金可以包含,按重量计,0%至约0.04%的碳,约0.01%至约0.04%的碳,或者约0.01%至约0.02%的碳。所述合金可以包含,按重量计,0%至0.04%的碳,0.01%至0.04%的碳,或者0.01%至0.02%的碳。所述合金可以包含,按重量计,0.001%,0.002%,0.003%,0.004%,0.005%,0.006%,0.007%,0.008%,0.009%,0.01%,0.011%,0.012%,0.013%,0.014%,0.015%,0.016%,0.017%,0.018%,0.019%,0.02%,0.021%,0.022%,0.023%,0.024%,0.025%,0.026%,0.027%,0.028%,0.029%,0.03%,0.031%,0.032%,0.033%,0.034%,0.035%,0.036%,0.037%,0.038%,0.039%,或者0.04%的碳。所述合金可以包括,按重量计,约0.01%的碳,约0.011%的碳,约0.012%的碳,约0.014%的碳,约0.015%的碳,约0.02%的碳,约0.03%的碳,或约0.04%的碳。
所述合金可以包括,按重量计,约0%至约8.0%的铌,约0.01%至约0.55%的铌,约0.01%至约0.15%的铌,约0.07%至约0.15%的铌,约0.5%至约0.55%的铌,约6.0%至约8.0%的铌,或者约6.4%至约6.5%的铌。所述合金可以包含,按重量计,0.01%至0.55%的铌,0.01%至0.15%的铌,0.07%至0.15%的铌,0.5%至约0.55%的铌,6.0%至8.0%的铌,或者6.4%至6.5%的铌。所述合金可以包含,按重量计,0.01%,0.011%,0.012%,0.013%,0.014%,0.015%,0.016%,0.017%,0.018%,0.019%,0.02%,0.021%,0.022%,0.023%,0.024%,0.025%,0.026%,0.027%,0.028%,0.029%,0.03%,0.031%,0.032%,0.033%,0.034%,0.035%,0.036%,0.037%,0.038%,0.039%,0.04%,0.041%,0.042%,0.043%,0.044%,0.045%,0.046%,0.047%,0.048%,0.049%,0.05%,0.051%,0.052%,0.053%,0.054%,0.055%,0.056%,0.057%,0.058%,0.059%,0.06%,0.061%,0.062%,0.063%,0.064%,0.065%,0.066%,0.067%,0.068%,0.069%,0.07%,0.071%,0.072%,0.073%,0.74%,0.075%,0.076%,0.077%,0.078%,0.079%,0.08%,0.081%,0.082%,0.083%,0.084%,0.085%,0.086%,0.087%,0.088%,0.089%,0.09%,0.091%,0.092%,0.093%,0.094%,0.095%,0.096%,0.097%,0.098%,0.099%,0.1%,0.11%,0.12%,0.13%,0.14%,0.15%,0.5%,0.51%,0.52%,0.53%,0.54%,0.55%,6.4%,6.41%,6.42%,6.43%,6.44%,6.45%,6.46%,6.47%,6.48%,6.49%,或者6.5%的铌。所述合金可以包含,按重量计,约0.012%的铌,约0.071%的铌,约0.54%的铌,或者约6.43%的铌。
所述合金可以包含,按重量计,约0%至约0.5%的钛,或者约0.4%至约0.5%的钛。所述合金可以包含,按重量计,0%至0.5%的钛,或者0.4%至0.5%的钛。所述合金可以包含,按重量计,0.4%,0.41%,0.42%,0.43%,0.44%,0.45%,0.46%,0.47%,0.48%,0.49%,或者0.5%的钛。所述合金可以包含,按重量计,约0.41%的钛,约0.43%的钛,或者约0.5%的钛。
所述合金可以包含,按重量计,约0%至约0.04%的硼,约0.01%至约0.04%的硼,或者约0.024%至约0.036%的硼。所述合金可以包含,按重量计,0%至0.04%的硼,0.01%至0.4%的硼,或者0.024%至0.036%的硼。所述合金可以包含,按重量计,0.024%,0.025%,0.026%,0.027%,0.028%,0.029%,0.031%,0.032%,0.033%,0.034%,0.035%,0.036%,0.037%,0.038%,0.039%,或者0.04%的硼。所述合金可以包含,按重量计,约0.02%的硼,约0.024%的硼,约0.036%的硼,或约0.04%的硼。
所述合金可以包含,按重量计,0%至约1.0%的钨,约0.1%至约1.0%的钨,约0.2%至约1.0%的钨,约0.3%至约1.0%的钨,约0.4%至约1.0%的钨,约0.5%至约1.0%的钨,约0.6%至约1.0%的钨,约0.7%至约1.0%的钨,约0.8%至约1.0%的钨,或者约0.9%至约1.0%的钨。所述合金可以包含,按重量计,0%至1.0%的钨,0.1%至1.0%的钨,0.2%至1.0%的钨,0.3%至1.0%的钨,0.4%至1.0%的钨,0.5%至1.0%的钨,0.6%至1.0%的钨,0.7%至1.0%的钨,0.8%至1.0%的钨,或者0.9%至1.0%的钨。所述合金可以包含,按重量计,0.1%,0.2%,0.3%,0.4%,0.5%,0.6%,0.7%,0.8%,0.9%,或者1.0%的钨。所述合金可以包含,按重量计,约0.1%的钨,约0.2%的钨,约0.3%的钨,约0.4%的钨,约0.5%的钨,约0.6%的钨,约0.7%的钨,约0.8%的钨,约0.9%的钨,或者约1.0%的钨。
所述合金可以包含,按重量计,0%至约1.0%的钽,约0.1%至约1.0%的钽,约0.2%至约1.0%的钽,约0.3%至约1.0%的钽,约0.4%至约1.0%的钽,约0.5%至约1.0%的钽,约0.6%至约1.0%的钽,约0.7%至约1.0%的钽,约0.8%至约1.0%的钽,或者约0.9%至约1.0%的钽。所述合金可以包含,按重量计,0%至1.0%的钽,0.1%至1.0%的钽,0.2%至1.0%的钽,0.3%至1.0%的钽,0.4%至1.0%的钽,0.5%至1.0%的钽,0.6%至1.0%的钽,0.7%至1.0%的钽,0.8%至1.0%的钽,或者0.9%至1.0%的钽。所述合金可以包含,按重量计,0.1%,0.2%,0.3%,0.4%,0.5%,0.6%,0.7%,0.8%,0.9%,或者1.0%的钽。所述合金可以包含,按重量计,约0.1%的钽,约0.2%的钽,约0.3%的钽,约0.4%的钽,约0.5%的钽,约0.6%的钽,约0.7%的钽,约0.8%的钽,约0.9%的钽,或者约1.0%的钽。
所述合金可以包含,按重量计,0%至约1.0%的铪,约0.1%至约1.0%的铪,约0.2%至约1.0%的铪,约0.3%至约1.0%的铪,约0.4%至约1.0%的铪,约0.5%至约1.0%的铪,约0.6%至约1.0%的铪,约0.7%至约1.0%的铪,约0.8%至约1.0%的铪,或者约0.9%至约1.0%的铪。所述合金可以包含,按重量计,0%至1.0%的铪,0.1%至1.0%的铪,0.2%至1.0%的铪,0.3%至1.0%的铪,0.4%至1.0%的铪,0.5%至1.0%的铪,0.6%至1.0%的铪,0.7%至1.0%的铪,0.8%至1.0%的铪,或者0.9%至1.0%的铪。所述合金可以包含,按重量计,0.1%,0.2%,0.3%,0.4%,0.5%,0.6%,0.7%,0.8%,0.9%,或者1.0%的铪。所述合金可以包含,按重量计,约0.1%的铪,约0.2%的铪,约0.3%的铪,约0.4%的铪,约0.5%的铪,约0.6%的铪,约0.7%的铪,约0.8%的铪,约0.9%的铪,或者约1.0%的铪。
所述合金可以包含,按重量计,0%至约1.0%的钌,约0.1%至约1.0%的钌,约0.2%至约1.0%的钌,约0.3%至约1.0%的钌,约0.4%至约1.0%的钌,约0.5%至约1.0%的钌,约0.6%至约1.0%的钌,约0.7%至约1.0%的钌,约0.8%至约1.0%的钌,或者约0.9%至约1.0%的钌。所述合金可以包含,按重量计,0%至1.0%的钌,0.1%至1.0%的钌,0.2%至1.0%的钌,0.3%至1.0%的钌,0.4%至1.0%的钌,0.5%至1.0%的钌,0.6%至1.0%的钌,0.7%至1.0%的钌,0.8%至1.0%的钌,或者0.9%至1.0%的钌。所述合金可以包含,按重量计,0.1%,0.2%,0.3%,0.4%,0.5%,0.6%,0.7%,0.8%,0.9%,或者1.0%的钌。所述合金可以包含,按重量计,约0.1%的钌,约0.2%的钌,约0.3%的钌,约0.4%的钌,约0.5%的钌,约0.6%的钌,约0.7%的钌,约0.8%的钌,约0.9%的钌,或者约1.0%的钌。
所述合金可以包含,按重量计,余量的钼以及偶存元素和杂质。术语“偶存元素和杂质”可以包括铁,锆,氢,氮和氧中的一种或多种。
所述偶存元素和杂质,例如铁和锆可能源于使用低成本废料(例如铁钒或再循环的TZM等)的做法。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,0.08%的钒,0.01%的碳和6.43%的铌,余量包含钼、偶存元素和杂质,所述偶存元素和杂质例如为从使用低成本废料(例如铁钒或再循环的TZM等)的做法中产生的铁和锆。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,0.42%的钒,0.01%的碳和0.12%的铌,余量包含钼、偶存元素和杂质,所述偶存元素和杂质例如为从使用低成本废料(例如铁钒或再循环的TZM等)的做法中产生的铁和锆。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,0.41%的钒,0.01%的碳,0.54%的铌,0.43%的钛和0.02%的硼,余量包含钼、偶存元素和杂质,所述偶存元素和杂质例如为从使用低成本废料(例如铁钒或再循环的TZM等)的做法中产生的铁和锆。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,0.32%的钒,0.01%的碳,0.07%的铌和0.02%的硼,余量包含钼、偶存元素和杂质,所述偶存元素和杂质例如为从使用低成本废料(例如铁钒或再循环的TZM等)的做法中产生的铁和锆。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,0.09%的钒,0.01%的碳,0.41%的钛和0.04%的硼,余量包含钼、偶存元素和杂质,所述偶存元素和杂质例如为从使用低成本废料(例如铁钒或再循环的TZM等)的做法中产生的铁和锆。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,0.08%的钒,0.01%的碳和6.43%的铌,余量由钼和偶存元素和杂质组成,所述偶存元素和杂质例如为从使用低成本废料(例如铁钒或再循环的TZM等)的做法中产生的铁和锆。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,0.42%的钒,0.01%的碳和0.12%的铌,余量由钼和偶存元素和杂质组成,所述偶存元素和杂质例如为从使用低成本废料(例如铁钒或再循环的TZM等)的做法中产生的铁和锆。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,0.41%的钒,0.01%的碳,0.54%的铌,0.43%的钛和0.02%的硼,余量由钼和偶存元素和杂质组成,所述偶存元素和杂质例如为从使用低成本废料(例如铁钒或再循环的TZM等)的做法中产生的铁和锆。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,0.32%的钒,0.01%的碳,0.07%的铌和0.02%的硼,余量由钼和偶存元素和杂质组成,所述偶存元素和杂质例如为从使用低成本废料(例如铁钒或再循环的TZM等)的做法中产生的铁和锆。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,0.09%的钒,0.01%的碳,0.41%的钛和0.04%的硼,余量由钼和偶存元素和杂质组成,所述偶存元素和杂质例如为从使用低成本废料(例如铁钒或再循环的TZM等)的做法中产生的铁和锆。所述偶存元素和杂质可以包括氢(例如,最高0.01%),氮(例如,最高0.01%),及氧(例如,最高0.02%)中的一种或多种。
所述合金可以包含,按重量计,低于0.1%的锆,低于0.05%的锆,低于0.01%的锆,或者低于0.001%的锆。所述合金可以基本上不含锆(例如,所述合金可以含有其含量低于检测限的锆)。在一实施例中,所述合金不包含锆。
在500℃下,所述合金可以具有500MPa至1000MPa,515MPa至1000MPa,600MPa至1000MPa,607MPa至1000MPa,750MPa至1000MPa,758MPa至1000MPa,820MPa至1000MPa,823MPa至1000MPa,978MPa至1000MPa,或者980MPa至1000MPa的0.2%残余变形屈服强度。在500℃下,所述合金可以具有至少500MPa,至少515MPa,至少550MPa,至少600MPa,至少607MPa,至少650MPa,至少700MPa,至少750MPa,至少758MPa,至少800MPa,至少820MPa,至少823MPa,至少850MPa,至少900MPa,至少950MPa,至少978MPa,或者至少980MPa的0.2%残余变形屈服强度。在500℃下,所述合金可以具有500MPa,510MPa,515MPa,520MPa,530MPa,540MPa,550MPa,560MPa,570MPa,580MPa,590MPa,600MPa,601MPa,602MPa,603MPa,604MPa,605MPa,606MPa,607MPa,608MPa,609MPa,610MPa,620MPa,630MPa,640MPa,650MPa,660MPa,670MPa,680MPa,690MPa,700MPa,710MPa,720MPa,730MPa,740MPa,750MPa,751MPa,752MPa,753MPa,754MPa,755MPa,756MPa,757MPa,758MPa,759MPa,760MPa,770MPa,780MPa,790MPa,800MPa,810MPa,820MPa,821MPa,822MPa,823MPa,824MPa,825MPa,826MPa,827MPa,828MPa,829MPa,830MPa,840MPa,850MPa,860MPa,870MPa,880MPa,890MPa,900MPa,910MPa,920MPa,930MPa,940MPa,950MPa,960MPa,970MPa,971MPa,972MPa,973MPa,974MPa,975MPa,976MPa,977MPa,978MPa,979MPa,980MPa,990MPa,或者1000MPa的0.2%残余变形屈服强度。在500℃下,所述合金可以具有约500MPa,约515MPa,约550MPa,约600MPa,约607MPa,约650MPa,约700MPa,约750MPa,约758MPa,约800MPa,约820MPa,约823MPa,约850MPa,约900MPa,约950MPa,约978MPa,或者约980MPa的0.2%残余变形屈服强度。所述0.2%残余变形屈服强度可以根据ASTM E21测得。
在1000℃下,所述合金可以具有300MPa至800MPa,320MPa至800MPa,324MPa至800MPa,447MPa至800MPa,450MPa至800MPa,559MPa至800MPa,570MPa至800MPa,654MPa至800MPa,670MPa至800MPa,756MPa至800MPa,或者770MPa至800MPa的0.2%残余变形屈服强度。在1000℃下,所述合金可以具有至少300MPa,至少320MPa,至少324MPa,至少350MPa,至少400MPa,至少447MPa,至少450MPa,至少500MPa,至少550MPa,至少559MPa,至少570MPa,至少600MPa,至少650MPa,至少654MPa,至少700MPa,至少750MPa,至少756MPa,或者至少770MPa的0.2%残余变形屈服强度。在1000℃下,所述合金可以具有300MPa,310MPa,320MPa,321MPa,322MPa,323MPa,324MPa,325MPa,326MPa,327MPa,328MPa,329MPa,330MPa,340MPa,350MPa,360MPa,370MPa,380MPa,390MPa,400MPa,410MPa,420MPa,430MPa,440MPa,441MPa,442MPa,443MPa,444MPa,445MPa,446MPa,447MPa,448MPa,449MPa,450MPa,460MPa,470MPa,480MPa,490MPa,500MPa,510MPa,520MPa,530MPa,540MPa,550MPa,551MPa,552MPa,553MPa,554MPa,555MPa,556MPa,557MPa,558MPa,559MPa,560MPa,570MPa,580MPa,590MPa,600MPa,610MPa,620MPa,630MPa,640MPa,650MPa,651MPa,652MPa,653MPa,654MPa,655MPa,656MPa,657MPa,658MPa,659MPa,660MPa,670MPa,680MPa,690MPa,700MPa,710MPa,720MPa,730MPa,740MPa,750MPa,751MPa,752MPa,753MPa,754MPa,755MPa,756MPa,757MPa,758MPa,759MPa,760MPa,770MPa,780MPa,790MPa,或者800MPa的0.2%残余变形屈服强度。在1000℃下,所述合金可以具有约300MPa,约320MPa,约324MPa,约350MPa,约400MPa,约447MPa,约450MPa,约500MPa,约550MPa,约559MPa,约570MPa,约600MPa,约650MPa,约654MPa,约670MPa,约700MPa,约750MPa,约756MPa,或者约770MPa的0.2%残余变形屈服强度。所述0.2%残余变形屈服强度可以根据ASTM E21测得。
在500℃下,所述合金可以具有25%至80%,30%至70%,45%至70%,45%至80%,49%至70%,62%至70%,68%至70%,或者68%至80%的拉伸断面收缩(tensilereduction in area)。在500℃下,所述合金可以具有至少25%,至少30%,至少35%,至少40%,至少45%,至少49%,至少50%,至少55%,至少60%,至少62%,至少65%,至少68%,至少70%,或者至少80%的拉伸断面收缩。在500℃下,所述合金可以具有25%,26%,27%,28%,29%,30%,31%,32%,33%,34%,35%,36%,37%,38%,39%,40%,41%,42%,42%,43%,44%,45%,46%,47%,48%,49%,50%,51%,52%,53%,54%,55%,56%,57%,58%,59%,60%,61%,62%,63%,64%,65%,66%,67%,68%,69%,70%,71%,72%,73%,74%,75%,76%,77%,78%,79%,或者80%的拉伸断面收缩。在500℃下,所述合金可以具有约30%,约35%,约40%,约45%,约49%,约50%,约55%,约60%,约62%,约65%,或者约68%的拉伸断面收缩。所述拉伸断面收缩可以根据ASTM E21测得。
在1000℃下,所述合金可以具有55%至75%,59%至75%,64%至75%,69%至75%,70%至75%,或者71%至75%的拉伸断面收缩。在1000℃下,所述合金可以具有至少55%,至少59%,至少60%,至少64%,至少65%,至少69%,至少70%,至少71%,或者至少75%的拉伸断面收缩。在1000℃下,所述合金可以具有55%,56%,57%,58%,59%,60%,61%,62%,63%,64%,65%,66%,67%,68%,69%,70%,71%,72%,73%,74%,或者75%的拉伸断面收缩。在1000℃下,所述合金可以具有约55%,约59%,约60%,约64%,约65%,约69%,约70%,或者约71%的拉伸断面收缩。所述拉伸断面收缩可以根据ASTM E21测得。
所述合金可以具有1150℃至1350℃,1175℃至1350℃,1225℃至1350℃,或者1325℃至1350℃的重结晶温度(recrystallization temperature)。合金可以具有至少1150℃,至少1175℃,至少1200℃,至少1250℃,至少1275℃,至少1300℃,至少1325℃,或者至少1350℃的重结晶温度。合金可以具有1150℃,1160℃,1170℃,1175℃,1180℃,1190℃,1200℃,1210℃,1220℃,1225℃,1230℃,1240℃,1250℃,1260℃,1270℃,1275℃,1280℃,1290℃,1300℃,1310℃,1320℃,1325℃,1330℃,1340℃,或者1350℃的重结晶温度。合金可以具有约1175℃,约1200℃,约1250℃,约1275℃,约1300℃,或者约1325℃的重结晶温度。
所述合金可以具有-100℃至300℃,-85℃至300℃,-85℃至0℃,-85℃至-40℃,或者-85℃至-50℃的韧脆转变温度(ductile to brittle transition temperature)。所述合金可以具有300℃或至少300℃,200℃或至少200℃,100℃或至少100℃,50℃或至少50℃,0℃或至少0℃,-40℃或至少-40℃,-50℃或至少-50℃,或者-85℃或至少-85℃的韧脆转变温度。所述合金可以具有-100℃,-90℃,-85℃,-80℃,-75℃,-70℃,-65℃,-60℃,-65℃,-60℃,-55℃,-50℃,-45℃,-40℃,-35℃,-30℃,-25℃,-20℃,-15℃,-10℃,-5℃,0℃,10℃,20℃,30℃,40℃,50℃,100℃,150℃,200℃,250℃,或者300℃的韧脆转变温度。所述合金可以具有约-85℃,约-50℃,约-40℃,约0℃,约200℃,或者约300℃的韧脆转变温度。所述韧脆转变温度可以根据Cockeram B.V.Metal Mater.Trans.33A(2002)3685的程序测得。
所述合金可以具有MC,M2C,MB,M3B2,M2B,或B2M粒子或其组合的晶粒钉扎粒子分布(grain pinning dispersion)。所述MC,M2C,MB,M3B2,M2B,或B2M颗粒可以包括铌,钒,钛,钨,钽,铪,钌,或者钼。例如,在每种情形下,M可以独立地选自由铌,钒,钛,钨,钽,铪,钌和钼构成的组合。示例性的晶粒钉扎粒子包括但不限于NbC,Nb2C,NbB,Nb3B2,Nb2B,B2Nb,VC,V2C,VB,V3B2,V2B,B2V,TiC,Ti2C,TiB,Ti3B2,Ti2B,B2Ti,WC,W2C,WB,W3B2,W2B,B2W,TaC,Ta2C,TaB,Ta3B2,Ta2B,B2Ta,HfC,Hf2C,HfB,Hf3B2,Hf2B,B2Hf,RuC,Ru2C,RuB,Ru3B2,Ru2B,B2Ru,MoC,Mo2C,MoB,Mo3B2,Mo2B,和B2Mo。所述合金可以具有包含任一上述粒子或其组合的晶粒钉扎粒子分布。
所述合金可以具有10至70微米,10至60微米,20至60微米,20至55微米,20至50微米,20至40微米,20至38微米,38至70微米,38至60微米,40至70微米,45至70微米,50至70微米,50至60微米,或者50至55微米的平均晶粒宽度。所述合金可以具有约10至约70微米,约10至约60微米,约20至约60微米,约20至约55微米,约20至约50微米,约20至约40微米,约20至约38微米,约38至约70微米,约38至约60微米,约40至约70微米,约45至约70微米,约50至约70微米,约50至约60微米,或者约50至约55微米的平均晶粒宽度。所述合金可以具有10微米,11微米,12微米,13微米,14微米,15微米,16微米,17微米,18微米,19微米,20微米,21微米,22微米,23微米,24微米,25微米,26微米,27微米,28微米,29微米,30微米,31微米,32微米,33微米,34微米,35微米,36微米,37微米,38微米,39微米,40微米,41微米,42微米,43微米,44微米,45微米,46微米,47微米,48微米,49微米,50微米,51微米,52微米,53微米,54微米,55微米,56微米,57微米,58微米,59微米,60微米,61微米,62微米,63微米,64微米,65微米,66微米,67微米,68微米,69微米,或者70微米的平均晶粒宽度。所述合金可以具有约20微米,约38微米,约50微米,或者约55微米的平均晶粒宽度。所述平均晶粒宽度可以通过ASTM E112测量。
III.合金的制备方法
所述合金可以通过双交流自耗电极真空熔炼制备成10磅,直径为2.5英寸长为6英寸的锭块。锭块可以在1350℃下被挤压成1英寸*0.4英寸的棒,并在1200℃下热轧成特定厚度的板,以测试所需的性能。
IV.制品
在此还公开了包括所公开的合金的制品。示例性的制品包括但不限于火箭推进器,火箭发动机喷嘴和涡轮发动机。
实例
制备钼合金并测试其物理性能。还制备了对照实施例(TZM)并测试用于对比。表1示出了示例性合金(合金A-E)的设计和组成。
表1.原料合金的组成重量百分比
Figure BDA0001186115800000131
*重量百分比由ICP-OES测得;**重量百分比由Leco-IGA测得
实例1:合金A
制备标称组成为以重量百分比计0.42的V,0.12的Nb,0.015的C和余量钼的熔融物。该合金通过双交流自耗电极真空熔融制备成10磅,直径为2.5英寸长为6英寸的锭块。锭锭块在1350℃下被挤压成1英寸*0.4英寸的棒,并在1200℃下热轧成0.15英寸厚的板以用于拉伸测试,以及热轧成0.04英寸厚的板以用于三点弯曲测试。所有测试在热轧状态下完成。
实例2:合金B
制备标称组成为以重量百分比计0.41的V,0.54的Nb,0.43的Ti,0.014的C,0.024的B和余量钼的熔融物。该合金通过双交流自耗电极真空熔融制备成10磅,直径为2.5英寸长为6英寸的锭块。该锭块在1350℃下被挤压成1英寸*0.4英寸的棒,并在1200℃下热轧成0.15英寸厚的板以用于拉伸测试,以及热轧成0.04英寸厚的板以用于三点弯曲测试。所有测试在热轧状态下完成。
实例3:合金C
制备标称组成为以重量百分比计0.077的V,6.43的Nb,0.011的C,和余量钼的熔融物。该合金通过双交流自耗电极真空熔融制备成10磅,直径为2.5英寸长为6英寸的锭块。该锭块在1350℃下被挤压成1英寸*0.4英寸的棒,并在1200℃下热轧成0.15英寸厚的板以用于拉伸测试,以及热轧成0.04英寸厚的板以用于三点弯曲测试。所有测试在热轧状态下完成。
实例4:合金D
制备标称组成为以重量百分比计0.32的V,0.071的Nb,0.012的C,0.024的B,和余量钼的熔融物。该合金通过双交流自耗电极真空熔融制备成10磅,直径为2.5英寸长为6英寸的锭块。该锭块在1350℃下被挤压成1英寸*0.4英寸的棒,并在1200℃下热轧成0.15英寸厚的板以用于拉伸测试,以及热轧成0.04英寸厚的板以用于三点弯曲测试。所有测试在热轧状态下完成。
实例5:合金E
制备标称组成为以重量百分比计0.088的V,0.41的Ti,0.015的C,0.036的B,和余量钼的熔融物。该合金通过双交流自耗电极真空熔融制备成10磅,直径为2.5英寸长为6英寸的锭块。该锭块在1350℃下被挤压成1英寸*0.4英寸的棒,并在1200℃下热轧成0.15英寸厚的板以用于拉伸测试,以及热轧成0.04英寸厚的板以用于三点弯曲测试。所有测试在热轧状态下完成。
对照实例6:TZM
制备标称组成为以重量百分比计0.35的Ti,0.097的Zr,0.02的C和余量钼的熔融物。该合金通过双交流自耗电极真空熔融制备成10磅,直径为2.5英寸长为6英寸的锭块。该锭块在1350℃下被挤压成1英寸*0.4英寸的棒,并在1200℃下热轧成0.15英寸厚的板以用于拉伸测试,以及热轧成0.04英寸厚的板以用于三点弯曲测试。所有测试在热轧状态下完成。
合金的物理测试
如上所述,每种合金制备10磅的锭块用于制备试样。每种合金被双真空熔融(交流自耗电极熔融)成直径为2.5英寸直径×6英寸长的锭块。在1350℃下挤压成1英寸*0.4英寸的棒之后,将合金轧成板。从热轧板上切下试样。
对试样进行三点弯曲测试以确定每种合金的韧脆转变温度(DBTT)。DBTT通过文献中使用的三点弯曲测试方法测定,例如通过在Cockeram B.V.Metal Mater.Trans.33A(2002)3685中所描述的方法进行测定。在一系列温度下测试板试样。如果可以实现测试板的90°弯曲而不产生裂纹,则试样被认为是“韧性的”。图1和表2示出了这些测试的结果。合金A,B,D和E表现出比TZM更好的韧脆转变温度。
还根据ASTM E21在一系列温度下对每种合金进行了抗拉屈服强度的测定。图2显示出合金B,C和E展示出与TZM的抗拉屈服强度相似或更好的抗拉屈服强度。
还根据ASTM E21在这些温度下对每种合金的拉伸断面收缩进行了测定。图3显示出合金A,B,D和E在高达1000℃的温度下表现出优于TZM的韧性。
图4和5示出了在500℃(图3)和1000℃(图4)下每种合金的抗拉屈服强度与拉伸断面收缩的交会图。这些交会图用于证明合金A-E在可实现的强度范围内表现出韧性增强的一致趋势。
对于每种合金在一小时内发生100%重结晶的重结晶温度也被测定。图6示出了合金A-E的重结晶温度与实验室制备的TZM和市售的TZM(购自H.C.Starck)的重结晶温度的对比。合金A、D和E表现出与市售TZM相当或比其更高的重结晶温度。
如表2和图1-6所示,所公开的合金具有与TZM相当或优于TZM的物理性能。
表2
Figure BDA0001186115800000151
DBTT=韧脆转变温度;%RA=拉伸断面收缩百分比
以轧制板材料的短横向上的平均截线长度(mean linear intercept length)作为晶粒尺寸的测量值。晶粒在轧制方向上被大量拉长,并在短横向上变平,因此该测量值代表晶粒的短尺寸。按照ASTM E112的标准进行测量。表3示出了与TZM相比合金A-E的这些测量的结果。
表3
合金 平均截线(微米)
合金A 20
合金B 50
合金C 55
合金D 50
合金E 38
TZM 40
应当理解的是,在不脱离本发明的精神或中心特征的情况下,本公开可以体现其它具体形式。因此,方面和实施例的公开在所有方面被认为是说明性的而不是限制性的,并且权利要求不限于本文给出的具体内容。因此,尽管已经示出和描述了具体实施例,但是在不背离本发明的精神的情况下可以想到许多修改,并且保护范围仅由所附权利要求的范围限制。除非另有说明,本文列出的所有百分比均为重量百分比。
出于完整性的原因,本文的各个方面在以下编号的条款中阐述:
条款1.一种合金,包含,按重量计,约0.01%至约1%的钒,0%至约0.04%的碳,0%至约8%的铌,0%至约1%的钛,0%至约0.04%的硼,0%至约1%的钨,0%至约1%的钽,0%至1%的铪和0%至约1%的钌,余量基本上为钼以及偶存元素和杂质。
条款2.如条款1所述的合金,其中所述合金包含,按重量计,约0.01%至约1%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约1%的钛和0%至约0.04%的硼,余量基本上是钼以及偶存元素和杂质。
条款3.如条款1所述的合金,其中所述合金包含,按重量计,约0.05%至约0.55%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约0.5%的钛和0%至约0.04%的硼,余量基本上为钼以及偶存元素和杂质。
条款4.如条款1-3任一项所述的合金,其中所述合金不包含锆。
条款5.如条款1-4任一项所述的合金,其中,在1000℃下所述合金具有大于300Mpa的根据ASTM E21测得的0.2%残余变形抗拉屈服强度。
条款6.如条款1-4任一项所述的合金,其中,在500℃下所述合金具有大于500Mpa的根据ASTM E21测得的0.2%残余变形抗拉屈服强度。
条款7.如条款1-4任一项所述的合金,其中,在1000℃下所述合金具有大于55%的根据ASTM E21测得的拉伸断面收缩。
条款8.如条款1-4任一项所述的合金,其中,在500℃下所述合金具有大于25%的根据ASTM E21测得的拉伸断面收缩。
条款9.如条款1-4任一项所述的合金,其中所述合金具有大于1150℃的重结晶温度。
条款10.如条款1-4任一项所述的合金,其中所述合金具有300℃或小于300℃的韧脆转变温度(DBTT)。
条款11.如条款1-4任一项所述的合金,其中所述合金包含MC,M2C,MB,M3B2,M2B,或B2M粒子或者其组合的晶粒钉扎粒子分布。
条款12.如条款11所述的合金,其中在每一粒子中的M独立地选自由铌,钒,钛,钨,钽,铪,钌和钼构成的群组。
条款13.如条款1-4任一项所述的合金,其中铌,钒,钌,硼和碳原子,或其组合增强晶界内聚力。
条款14.如条款1-4任一项所述的合金,其中所述合金的平均晶粒宽度为15至60微米。
条款15.如条款1-4任一项所述的合金,其中所述合金包含约0.08%的钒,约0.01%的碳,以及约6.43%的铌。
条款16.如条款1-4任一项所述的合金,其中所述合金包含0%至约0.54%的铌。
条款17.如条款16所述的合金,其中所述合金具有0℃或者小于0℃的韧脆转变温度(DBTT)。
条款18.如条款1-4任一项所述的合金,其中所述合金包含约0.42%的钒,约0.01%的碳,以及0.01%的铌。
条款19.如条款1-4任一项所述的合金,其中所述合金包含约0.41%的钒,约0.01%的碳,约0.54%的铌,约0.43%的钛,以及约0.02%的硼。
条款20.如条款1-4任一项所述的合金,其中所述合金包含约0.32%的钒,约0.01%的碳,约0.07%的铌,以及约0.02%的硼。
条款21.如条款1-4任一项所述的合金,其中所述合金包含约0.09%的钒,约0.01%的碳,约0.41%的钛,以及约0.04%的硼。
条款22.一种制备合金的方法,包括:制备一种熔融物,该熔融物包含,按重量计,0.01%至约1%的钒,0%至约0.04%的碳,0%至约8%的铌,0%至约1%的钛,0%至约0.04%的硼,0%至约1%的钽,0%至约1%的铪和0%至约1%的钌,余量基本上是钼以及偶存元素和杂质。
条款23.如条款22所述的方法,其中所述合金包含,按重量计,约0.01%至约1%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约1%的钛和0%至约0.04%的硼,余量基本上是钼以及偶存元素和杂质。
条款24.如条款22所述的方法,其中所述合金包含,按重量计,约0.05%至约0.55%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约0.5%的钛和0%至约0.04%的硼,余量基本上为钼以及偶存元素和杂质。
条款25.如条款22所述的方法,其中所述熔融物通过双交流自耗电极真空熔炼制备成具有规定尺寸的锭块。
条款26.如条款25所述的方法,进一步地包括将所述锭块挤压成规定尺寸的形状。
条款27.如条款26所述的方法,其中所述锭块在1350℃下被挤压的。
条款28.如条款22所述的方法,其中所述合金在1000℃下具有大于300Mpa的根据ASTM E21测得的0.2%残余变形抗拉屈服强度。
条款29.如条款22所述的方法,其中所述合金在500℃下具有大于500Mpa的根据ASTM E21测得的0.2%残余变形抗拉屈服强度。
条款30.如条款22所述的方法,其中所述合金在1000℃下具有大于55%的根据ASTM E21测得的拉伸断面收缩。
条款31.如条款22所述的方法,其中所述合金在500℃下具有大于25%的根据ASTME21测得的拉伸断面收缩。
条款32.如条款22所述的方法,其中所述合金具有大于1150℃的重结晶温度。
条款33.如条款22所述的方法,其中所述合金具有300℃或小于300℃的韧脆转变温度。
条款34.如条款22所述的方法,其中所述合金包含MC,M2C,MB,M3B2,M2B,或B2M粒子,或者其组合的晶粒钉扎粒子分布;其中在每一粒子中的M可以独立地选自由铌,钒,钛,钨,钽,铪,钌和钼构成的群组。
条款35.如条款22所述的方法,其中铌,钒,钌,硼和碳原子,或它们的组合增强晶界内聚力。
条款36.如条款22所述的方法,其中所述合金的平均晶粒宽度为15至60微米。
条款37.如条款22所述的方法,其中所述合金包含0%至约0.54%的铌。
条款38.如条款37所述的方法,其中所述合金具有0℃或小于0℃的韧脆转变温度(DBTT)。
条款39.一种制品,包含一种合金,所述合金包含,按重量计,0.01%至约1%的钒,0%至约0.04%的碳,0%至约8%的铌,0%至约1%的钛,0%至约0.04%的硼,0%至约1%的钽,0%至约1%的铪和0%至约1%的钌,余量基本上为钼以及偶存元素和杂质。
条款40.如条款39所述的制品,其中所述合金包含,按重量计,约0.01%至约1%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约1%的钛和0%至约0.04%的硼,余量基本上是钼以及偶存元素和杂质。
条款41.如条款39所述的制品,其中所述合金包含,按重量计,约0.05%至约0.55%的钒,约0.01%至约0.02%的碳,0%至约8.0%的铌,0%至约0.5%的钛和0%至约0.04%的硼,余量基本上为钼以及偶存元素和杂质。
条款42.如条款39所述的制品,其中所述合金在1000℃下具有大于300Mpa的根据ASTM E21测得的0.2%残余变形抗拉屈服强度。
条款43.如条款39所述的制品,其中所述合金在500℃下具有大于500Mpa的根据ASTM E21测得的0.2%残余变形抗拉屈服强度。
条款44.如条款39所述的制品,其中所述合金在1000℃下具有大于55%的根据ASTM E21测得的拉伸断面收缩。
条款45.如条款39所述的制品,其中所述合金在500℃下具有大于25%的根据ASTME21测得的拉伸断面收缩。
条款46.如条款39所述的制品,其中所述合金具有大于1150℃的重结晶温度。
条款47.如条款39所述的制品,其中所述合金具有300℃或小于300℃的韧脆转变温度(DBTT)。
条款48.如条款39所述的制品,其中所述合金包含MC,M2C,MB,M3B2,M2B,或B2M粒子,或者其组合的晶粒钉扎粒子分布;其中在每一粒子中的M可以独立地选自由铌,钒,钛,钨,钽,铪,钌和钼构成的群组。
条款49.如条款39所述的制品,其中铌,钒,硼,钌和碳原子,或它们的组合增强晶界内聚力。
条款50.如条款39所述的制品,其中所述合金的平均晶粒宽度为15至60微米。
条款51.如条款39所述的制品,其中所述合金包含0%至约0.54%的铌。
条款52.如条款51所述的制品,其中所述合金具有0℃或小于0℃的韧脆转变温度(DBTT)。
条款53.如条款37或52所述的制品,其中所述制品至少是火箭推进器,火箭发动机喷嘴,或者涡轮发动机中的一种。

Claims (18)

1.一种合金,包含,按重量计,0.01%至1%的钒,0%至0.04%的碳,0.01%至0.55%的铌,0%至1%的钛,0.02%至0.04%的硼,0%至1%的钨, 0%至1%的钽,0%至1%的铪和0%至1%的钌,余量为钼以及偶存元素和杂质, 其中所述合金具有300°C或小于300°C的韧脆转变温度(DBTT)。
2.如权利要求1所述的合金,其特征在于,所述合金包含,按重量计,0.05%至0.55%的钒,0.01%至0.02%的碳,0.01%至0.55%的铌,0%至0.5%的钛和0.024%至0.04%的硼,余量为钼以及偶存元素和杂质。
3.如权利要求1所述的合金,其特征在于,所述合金在1000°C下具有大于300 MPa的根据ASTM E21测得的0.2%残余变形抗拉屈服强度。
4.如权利要求1所述的合金,其特征在于,所述合金在500°C下具有大于500 MPa的根据ASTM E21测得的0.2%残余变形抗拉屈服强度。
5.如权利要求1所述的合金,其特征在于,所述合金在1000°C下具有大于55%的根据ASTM E21测得的拉伸断面收缩。
6.如权利要求1所述的合金,其特征在于,所述合金在500°C下具有大于25%的根据ASTME21测得的拉伸断面收缩。
7.如权利要求1所述的合金,其特征在于,所述合金具有大于1150°C的重结晶温度。
8.如权利要求1所述的合金,其特征在于,所述合金包含MC, M2C, MB, M3B2, M2B, 或B2M粒子,或者其组合的晶粒钉扎粒子分布;其中在每一粒子中的M独立地选自由铌,钒,钛,钨,钽,铪,钌和钼构成的群组。
9.如权利要求1所述的合金,其特征在于,铌,钒,钌,硼和碳原子,或它们的组合增强晶界内聚力。
10.如权利要求1所述的合金,其特征在于,所述合金的平均晶粒宽度为15至60微米。
11.如权利要求1所述的合金,其特征在于,所述合金具有0°C或小于0°C的韧脆转变温度(DBTT)。
12.如权利要求1所述的合金,其特征在于,所述合金包含0.41%的钒,0.01%的碳,0.54%的铌,0.43%的钛和0.02%的硼,余量为钼、偶存元素和杂质。
13.一种制备合金的方法,包括:
通过双交流自耗电极真空熔炼制备成具有规定尺寸的锭块;和
所述锭块被挤压成规定尺寸的形状和热轧,
该合金包含,按重量计,0.01%至1%的钒,0%至0.04%的碳,0.01%至0.55%的铌,0.4%至0.5%的钛,0.02%至0.04%的硼,0%至1%的钨,0%至1%的钽,0%至1%的铪和0%至1%的钌,余量为钼以及偶存元素和杂质。
14.如权利要求13所述的方法,其特征在于,所述锭块是在1350°C下被挤压的。
15.一种制品,包含一种合金,所述合金包含,按重量计,0.01%至1%的钒,0%至0.04%的碳,0.01%至0.55%的铌,0.4%至0.5%的钛,0.02%至0.04%的硼,0%至1%的钨,0%至1%的钽,0%至1%的铪和0%至1%的钌,余量为钼以及偶存元素和杂质,其中所述合金具有300°C或小于300°C的韧脆转变温度(DBTT)。
16.如权利要求15所述的制品,其特征在于,所述制品至少是火箭推进器,火箭发动机喷嘴,或者涡轮发动机中的一种。
17.一种合金,包含,按重量计,0.01%至1%的钒,0%至0.04%的碳,0.01%至0.55%的铌,0%至1%的钛,0.02%至0.04%的硼,0%至1%的钨, 0%至1%的钽,0%至1%的铪和0%至1%的钌,余量为钼以及偶存元素和杂质, 其中所述合金的平均晶粒宽度为15至60微米。
18.一种制品,包含一种合金,所述合金包含,按重量计,0.01%至1%的钒,0%至0.04%的碳,0.01%至0.55%的铌,0.4%至0.5%的钛,0.02%至0.04%的硼,0%至1%的钨,0%至1%的钽,0%至1%的铪和0%至1%的钌,余量为钼以及偶存元素和杂质,其中所述合金的平均晶粒宽度为15至60微米。
CN201580033290.2A 2014-04-23 2015-04-14 韧性高温钼基合金 Expired - Fee Related CN106715738B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461983362P 2014-04-23 2014-04-23
US61/983,362 2014-04-23
PCT/US2015/025687 WO2016003520A2 (en) 2014-04-23 2015-04-14 Ductile high-temperature molybdenum-based alloys

Publications (2)

Publication Number Publication Date
CN106715738A CN106715738A (zh) 2017-05-24
CN106715738B true CN106715738B (zh) 2020-12-29

Family

ID=55020071

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580033290.2A Expired - Fee Related CN106715738B (zh) 2014-04-23 2015-04-14 韧性高温钼基合金

Country Status (4)

Country Link
US (1) US10597757B2 (zh)
EP (1) EP3134558B1 (zh)
CN (1) CN106715738B (zh)
WO (1) WO2016003520A2 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2951628C (en) 2014-06-09 2024-03-19 Scoperta, Inc. Crack resistant hardfacing alloys
EP3234209A4 (en) 2014-12-16 2018-07-18 Scoperta, Inc. Tough and wear resistant ferrous alloys containing multiple hardphases
AU2016317860B2 (en) 2015-09-04 2021-09-30 Scoperta, Inc. Chromium free and low-chromium wear resistant alloys
CA2996175C (en) 2015-09-08 2022-04-05 Scoperta, Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
EP3374536A4 (en) 2015-11-10 2019-03-20 Scoperta, Inc. TWO WIRE ARC FLOORING MATERIALS WITH CONTROLLED OXIDATION
PL3433393T3 (pl) 2016-03-22 2022-01-24 Oerlikon Metco (Us) Inc. W pełni odczytywalna powłoka natryskiwana termicznie
CN107034404B (zh) * 2017-04-18 2019-01-22 中南大学 一种MoHfTiBC系钼合金
AT15903U1 (de) 2017-09-29 2018-08-15 Plansee Se Molybdän-Sinterteil
WO2020086971A1 (en) 2018-10-26 2020-04-30 Oerlikon Metco (Us) Inc. Corrosion and wear resistant nickel based alloys
CN115305397B (zh) * 2022-04-13 2023-12-12 金堆城钼业股份有限公司 一种Mo-V合金、制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678268A (en) * 1951-10-06 1954-05-11 Climax Molybdenum Co Molybdenum-vanadium alloys
US4430296A (en) * 1981-06-25 1984-02-07 Tokyo Shibaura Denki Kabushiki Kaisha Molybdenum-based alloy

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB741361A (en) * 1951-03-30 1955-11-30 Climax Molybdenum Co Improvements in or relating to cast molybdenum base alloys
US2678272A (en) * 1951-10-06 1954-05-11 Climax Molybdenum Co Molybdenum-columbium alloys
US2883284A (en) * 1956-07-30 1959-04-21 Westinghouse Electric Corp Molybdenum base alloys
US3297496A (en) * 1963-06-07 1967-01-10 Winston H Chang Heat treatment of columbium and molybdenum base alloys
GB1358891A (en) * 1970-09-23 1974-07-03 Mallory & Co Inc P R Molybdenum based alloys and articles made therefrom
SU411148A1 (zh) * 1971-10-20 1974-01-15
US4261412A (en) * 1979-05-14 1981-04-14 Special Metals Corporation Fine grain casting method
US5693156A (en) 1993-12-21 1997-12-02 United Technologies Corporation Oxidation resistant molybdenum alloy
JP4255877B2 (ja) * 2004-04-30 2009-04-15 株式会社アライドマテリアル 高強度・高再結晶温度の高融点金属系合金材料とその製造方法
JP5394582B1 (ja) * 2012-06-07 2014-01-22 株式会社アライドマテリアル モリブデン耐熱合金
GB201307535D0 (en) * 2013-04-26 2013-06-12 Rolls Royce Plc Alloy composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2678268A (en) * 1951-10-06 1954-05-11 Climax Molybdenum Co Molybdenum-vanadium alloys
US4430296A (en) * 1981-06-25 1984-02-07 Tokyo Shibaura Denki Kabushiki Kaisha Molybdenum-based alloy

Also Published As

Publication number Publication date
WO2016003520A2 (en) 2016-01-07
WO2016003520A3 (en) 2016-03-03
CN106715738A (zh) 2017-05-24
US20170044646A1 (en) 2017-02-16
US10597757B2 (en) 2020-03-24
EP3134558B1 (en) 2020-07-01
EP3134558A4 (en) 2017-12-27
EP3134558A2 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
CN106715738B (zh) 韧性高温钼基合金
He et al. Effects of hot rolling and titanium content on the microstructure and mechanical properties of high boron Fe–B alloys
US3159908A (en) Dispersion hardened metal product and process
US10000826B2 (en) Alpha-beta titanium alloy having improved elevated temperature properties and superplasticity
Xue et al. Characterization of fracture toughness and toughening mechanisms in Laves phase Cr2Nb based alloys
EP2840160B1 (en) Maraging steel excellent in fatigue characteristics
Yang et al. Microstructure and mechanical properties of Mo-free Ti (C, N)-based cermets with Ni–xCr binders
CN113195128B (zh) 层叠造形用合金粉末、层叠造形物及层叠造形方法
JPH03274238A (ja) 加工性に優れた高強度チタン合金およびその合金材の製造方法ならびにその超塑性加工法
BR112019021708B1 (pt) Chapa de aço, processo para fabricar uma chapa de aço, método para fabricar uma peça estrutural e peça estrutural
Yang et al. Microstructural evolution during extrusion of a Ti/Al/Al35V65 (Ti–6Al–4V) powder compact and the mechanical properties of the extruded rod
Nafisi et al. Effect of vanadium addition on the strength of API X100 linepipe steel
US20190084888A1 (en) Eutectic cermets
US3304176A (en) Nickel base alloy
Wang et al. Strengthening mechanism and effect of Al2O3 particle on high-temperature tensile properties and microstructure evolution of W–Al2O3 alloys
RU2631066C1 (ru) Жаропрочный высокоэнтропийный сплав
EP3239329B1 (en) Structural ultra-thick steel having excellent resistance to brittle crack propagation, and production method therefor
Zhou et al. Dynamic mechanical response and weldability of high strength 7A62 aluminum alloy
US3243291A (en) High-temperature alloy
Rodrigues et al. Microstructural analysis of Co-free maraging steel aged
KR102197317B1 (ko) 융점 1,900℃ 이하 원소로 구성된 고강도 고연성 타이타늄 합금
US3243290A (en) Tantalum base alloy
KR102614799B1 (ko) 고온 특성이 향상된 티타늄-알루미늄계 합금
Pettrasek et al. Alloying Effects on Tungsten-Fiber-Reinforced Copper-Alloy or High-Temperature-Alloy Matrix Composites
Qaban et al. Hot rolled high Al containing steels as a replacement for the control rolled high strength low alloy (HSLA) steels

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201229