CN106706565B - A spiral optical microfluidic sensor - Google Patents
A spiral optical microfluidic sensor Download PDFInfo
- Publication number
- CN106706565B CN106706565B CN201611205223.7A CN201611205223A CN106706565B CN 106706565 B CN106706565 B CN 106706565B CN 201611205223 A CN201611205223 A CN 201611205223A CN 106706565 B CN106706565 B CN 106706565B
- Authority
- CN
- China
- Prior art keywords
- micro
- nano
- quartz capillary
- fiber
- petiolarea
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 47
- 239000010453 quartz Substances 0.000 claims abstract description 85
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 85
- 239000002121 nanofiber Substances 0.000 claims abstract description 48
- 239000013307 optical fiber Substances 0.000 claims abstract description 38
- 238000012544 monitoring process Methods 0.000 claims abstract description 10
- 230000000737 periodic effect Effects 0.000 claims abstract description 9
- 230000002572 peristaltic effect Effects 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 2
- 230000008018 melting Effects 0.000 claims description 2
- BGOFCVIGEYGEOF-UJPOAAIJSA-N helicin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=CC=CC=C1C=O BGOFCVIGEYGEOF-UJPOAAIJSA-N 0.000 claims 2
- 239000004575 stone Substances 0.000 claims 2
- 239000004615 ingredient Substances 0.000 claims 1
- 238000004804 winding Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract description 6
- 239000012530 fluid Substances 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 230000008859 change Effects 0.000 abstract description 3
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 238000000411 transmission spectrum Methods 0.000 abstract description 3
- 239000003814 drug Substances 0.000 abstract description 2
- 230000037361 pathway Effects 0.000 abstract 1
- 230000019491 signal transduction Effects 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 15
- 230000008901 benefit Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 3
- 239000011247 coating layer Substances 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 229920001410 Microfiber Polymers 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/45—Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/41—Refractivity; Phase-affecting properties, e.g. optical path length
- G01N21/45—Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
- G01N2021/458—Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods using interferential sensor, e.g. sensor fibre, possibly on optical waveguide
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Dispersion Chemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种螺旋式光微流传感器,专门用于微流体的传感测量。其构成方式是,将微纳光纤缠绕在环形微流通道周围,构成均匀的螺旋状周期性结构,利用瞬逝场的周期性作用激发出微纳光纤与同向微流波导之间的谐振耦合,在微纳光纤输出端透射光谱中可观察到明显的谐振峰。当微流成分发生改变时,微流波导的有效折射率发生变化,引起谐振波长产生漂移,通过对谐振波长的监测实现对微流成分变化的感测。光纤与石英毛细管分别组成完整的光信号通路和微流通路,可以实现生物、医学、化学等各种参量的高灵敏低浓度快速检测,且稳定性高、成本低、操作简单。
The invention discloses a spiral optical micro-flow sensor, which is specially used for sensing and measuring micro-fluids. Its composition method is to wind the micro-nano fiber around the annular microfluidic channel to form a uniform helical periodic structure, and use the periodic effect of the evanescent field to excite the resonant coupling between the micro-nano fiber and the microfluidic waveguide in the same direction. , obvious resonance peaks can be observed in the transmission spectrum of the output end of the micro-nano fiber. When the microfluidic composition changes, the effective refractive index of the microfluidic waveguide changes, causing the resonant wavelength to drift, and the sensing of the change of the microfluidic composition is realized by monitoring the resonant wavelength. Optical fiber and quartz capillary constitute a complete optical signal pathway and microfluidic pathway, which can realize high-sensitivity and low-concentration rapid detection of various parameters such as biology, medicine, and chemistry, and has high stability, low cost, and simple operation.
Description
技术领域technical field
本发明涉及光学传感器技术领域,具体涉及一种螺旋式光微流传感器。The invention relates to the technical field of optical sensors, in particular to a spiral optical microflow sensor.
背景技术Background technique
光微流技术是将微流技术与光子学通过学科交叉与融合而产生的新型技术,是未来实现集成化、紧凑型的新型光源、可调谐光子器件及无标记型生化传感器的重要途径。光微流传感器的设计思想是,在设计光学传感结构时,考虑如何架构微流的进出通道,将光学结构与微流通道集成以构成光信号与微流相互作用的平台,并实现对微流生化成分变化的测量。光微流传感器结合了微流通道结构尺寸小、样品消耗量低、分析通量高等优点和光学检测手段的灵敏度高、响应速度快、灵活性高、功耗低等这两方面优势,在化学、生物、医学等方面的应用具有很好的发展潜力。Optical microfluidic technology is a new technology produced by interdisciplinary integration of microfluidic technology and photonics. It is an important way to realize integrated and compact new light sources, tunable photonic devices and label-free biochemical sensors in the future. The design idea of the optical microfluidic sensor is to consider how to structure the microfluidic entry and exit channels when designing the optical sensing structure, integrate the optical structure with the microfluidic channel to form a platform for the interaction between the optical signal and the microfluidic, and realize the microfluidic sensor. Measurement of changes in stream biochemical composition. The optical microfluidic sensor combines the advantages of small microfluidic channel structure size, low sample consumption, and high analytical throughput with the advantages of high sensitivity, fast response, high flexibility, and low power consumption of optical detection methods. , biological, medical and other applications have good development potential.
目前,实现光微流传感器的方式很多。利用光纤布拉格光栅对形成的F-P腔结构,在基底上构成与光纤导光方向垂直的微流通道,对流经F-P腔的液体进行实时监测。这种结构原理简单,制作相对容易,但由于受到空间稳定性的制约,其测量精度仅为2×10-3。光子晶体光纤内部多个空气孔为液体提供了天然的微流通道。将液体引入光纤内,通过对带隙漂移的测量,可实现极高灵敏度的折射率感测。多个微流通道流速的不均匀性可能引起测量误差,选择性填充,选取单一空气孔作为微流通道,避免了这一问题,但选择性填充难度较高,不易于操作。利用光纤的长度优势,可充分提升光与待测液体的相互作用强度,而最大不利因素是,光信号的路径与微流通道互相重合,难以兼顾光信号的低损耗与液体用量的低消耗。环形微流通道本身就是一个环形谐振腔,还有微环的三维拓展结构微管与微纳光纤组成的谐振腔,它们采用与微流流动方向垂直的微纳光纤,利用瞬逝场作用进行环形腔的激发。通过对透射谱中谐振峰漂移的观测,实现了微流通道中液体折射率的测量。然而,这种方案灵敏度有待进一步提升,且谐振激发效率取决于微纳光纤与微流通道之间的距离,其空间稳定性对传感用光信号具有较大影响。At present, there are many ways to realize optical microfluidic sensors. The FP cavity structure formed by fiber Bragg grating pairs forms a microfluidic channel perpendicular to the light guiding direction of the fiber on the substrate, and monitors the liquid flowing through the FP cavity in real time. This structure is simple in principle and relatively easy to manufacture, but due to the constraints of space stability, its measurement accuracy is only 2×10 -3 . Multiple air holes inside the photonic crystal fiber provide natural microfluidic channels for the liquid. The liquid is introduced into the optical fiber, and through the measurement of the bandgap shift, the refractive index sensing with extremely high sensitivity can be realized. The non-uniform flow rate of multiple microfluidic channels may cause measurement errors. Selective filling and selecting a single air hole as a microfluidic channel can avoid this problem, but selective filling is difficult and not easy to operate. Taking advantage of the length of the optical fiber can fully increase the interaction intensity between the light and the liquid to be measured, but the biggest disadvantage is that the path of the optical signal overlaps with the microfluidic channel, making it difficult to balance the low loss of the optical signal with the low consumption of liquid. The annular microfluidic channel itself is a ring resonant cavity, and there is also a resonant cavity composed of micropipes and micro-nano optical fibers with a three-dimensional expansion structure of the micro-ring. Cavity excitation. By observing the shift of the resonance peak in the transmission spectrum, the measurement of the refractive index of the liquid in the microfluidic channel is realized. However, the sensitivity of this scheme needs to be further improved, and the resonance excitation efficiency depends on the distance between the micro-nano fiber and the microfluidic channel, and its spatial stability has a great influence on the optical signal for sensing.
以上各种光微流控传感器的实现方法都存在不同的优缺点,为了改善光微流传感器的监测能力,将其更进一步推向实用化,需要在原理和实现机制上进行改进和再设计。The implementation methods of the above optical microfluidic sensors have different advantages and disadvantages. In order to improve the monitoring ability of the optical microfluidic sensor and push it further into practical use, it is necessary to improve and redesign the principle and implementation mechanism.
发明内容Contents of the invention
本发明的目的是为了解决现有技术中的上述缺陷,提供一种螺旋式光微流传感器,利用瞬逝场的周期性作用激发出微纳光纤与同向微流波导之间的谐振耦合,获得超高灵敏度、温度稳定性和结构紧凑性好的传感器。The purpose of the present invention is to solve the above-mentioned defects in the prior art, and provide a spiral optical microfluidic sensor, which uses the periodic action of the evanescent field to excite the resonant coupling between the micro-nano optical fiber and the microfluidic waveguide in the same direction, Obtain a sensor with ultra-high sensitivity, temperature stability and compact structure.
本发明的目的可以通过采取如下技术方案达到:The purpose of the present invention can be achieved by taking the following technical solutions:
一种螺旋式光微流传感器,所述螺旋式光微流传感器包括微纳光纤和微纳石英毛细管,A helical optical microflow sensor, the helical optical microfluidic sensor includes a micro-nano optical fiber and a micro-nano quartz capillary,
其中,所述微纳石英毛细管包括第一石英毛细管端区1、第二石英毛细管端区5、第一微纳石英毛细管锥区2、第二微纳石英毛细管锥区4和微纳石英毛细管均匀区3,所述第一微纳石英毛细管锥区2和所述第二微纳石英毛细管锥区4分别位于所述微纳石英毛细管均匀区3的两端,所述第一石英毛细管端区1位于所述第一微纳石英毛细管锥区2的外端,所述第二石英毛细管端区5位于所述第二微纳石英毛细管锥区4的外端;Wherein, the micro-nano quartz capillary includes a first quartz capillary end zone 1, a second quartz capillary end zone 5, a first micro-nano quartz capillary cone zone 2, a second micro-nano quartz capillary cone zone 4 and a micro-nano quartz capillary uniform Zone 3, the first micro-nano quartz capillary cone zone 2 and the second micro-nano quartz capillary cone zone 4 are respectively located at both ends of the micro-nano quartz capillary uniform zone 3, and the first quartz capillary end zone 1 Located at the outer end of the first micro-nano quartz capillary cone region 2, the second quartz capillary end region 5 is located at the outer end of the second micro-nano quartz capillary cone region 4;
其中,所述微纳光纤包括第一光纤端区6、第二光纤端区10、第一微纳光纤锥区7、第二微纳光纤锥区9和微纳光纤均匀区8,所述第一微纳光纤锥区7和所述第二微纳光纤锥区9分别位于所述微纳光纤均匀区8的两端,所述第一光纤端区6位于所述第一微纳光纤锥区7的外端,所述第二光纤端区10位于所述第二微纳光纤锥区9的外端;Wherein, the micro-nano fiber includes a first fiber end region 6, a second fiber end region 10, a first micro-nano fiber taper region 7, a second micro-nano fiber taper region 9 and a micro-nano fiber uniform region 8, the first A micro-nano fiber taper region 7 and the second micro-nano fiber taper region 9 are located at both ends of the micro-nano fiber homogeneous region 8, and the first fiber end region 6 is located at the first micro-nano fiber taper region 7, the second fiber end region 10 is located at the outer end of the second micro-nano fiber taper region 9;
所述微纳光纤均匀区8均匀缠绕在所述微纳石英毛细管均匀区3上形成螺旋式的周期性结构,所述微纳光纤的其余各区与所述微纳石英毛细管的其余各区处处保持平行的相对位置关系。The uniform area 8 of the micro-nano optical fiber is evenly wound on the uniform area 3 of the micro-nano quartz capillary to form a helical periodic structure, and the remaining areas of the micro-nano optical fiber are kept parallel to the remaining areas of the micro-nano quartz capillary. relative positional relationship.
进一步地,所述第一石英毛细管端区1和所述第二石英毛细管端区5分别用于微流体的导入和导出,经所述第一微纳石英毛细管锥区2、所述第二微纳石英毛细管锥区4和所述微纳石英毛细管均匀区3组成的微流通道形成完整的微流通道系统。Further, the first quartz capillary end zone 1 and the second quartz capillary end zone 5 are respectively used for the introduction and export of microfluids, through the first micro-nano quartz capillary cone zone 2, the second microfluidic The microfluidic channel composed of the nano-quartz capillary cone region 4 and the micro-nano-quartz capillary homogeneous region 3 forms a complete microfluidic channel system.
进一步地,所述第一光纤端区6和所述第二光纤端区10分别用于光信号的输入或者输出,经所述第一微纳光纤锥区7和所述第二微纳光纤锥区9与螺旋状的所述微纳光纤均匀区8组成的光通路形成完整的光信号通路系统。Further, the first fiber end region 6 and the second fiber end region 10 are respectively used for the input or output of optical signals, through the first micro-nano fiber taper region 7 and the second micro-nano fiber taper The optical path composed of the region 9 and the helical micro-nano fiber uniform region 8 forms a complete optical signal path system.
进一步地,当所述第一光纤端区6与外部光源相连用于光信号的输入时,所述第二光纤端区10与光信号检测设备相连,用于输出信号的监测;当所述第二光纤端区10与外部光源相连用于光信号的输入时,所述第一光纤端区6与光信号检测设备相连,用于输出信号的监测。Further, when the first optical fiber end area 6 is connected to an external light source for the input of optical signals, the second optical fiber end area 10 is connected to an optical signal detection device for monitoring output signals; When the second optical fiber end area 10 is connected to an external light source for inputting optical signals, the first optical fiber end area 6 is connected to an optical signal detection device for monitoring output signals.
进一步地,所述光信号检测设备包括光谱仪或者光电检测器。Further, the optical signal detection device includes a spectrometer or a photodetector.
进一步地,当所述第一石英毛细管端区1与进样器或者蠕动泵相连用于样品的进入时,所述第二石英毛细管端区5用于排出毛细管内剩余的样品;当所述第二石英毛细管端区5与进样器或者蠕动泵相连用于样品的进入时,所述第一石英毛细管端区1用于排出毛细管内剩余的样品。Further, when the first quartz capillary end zone 1 is connected with a sample injector or a peristaltic pump for sample entry, the second quartz capillary end zone 5 is used to discharge the remaining sample in the capillary; when the first The second quartz capillary end zone 5 is connected to a sample injector or a peristaltic pump for sample entry, and the first quartz capillary end zone 1 is used to discharge the remaining sample in the capillary.
进一步地,所述微纳石英毛细管与内部的微流体形成一个波导结构,并与螺旋状的所述微纳光纤相靠产生较强的瞬逝场作用,当微流成分发生改变时,微流波导的有效折射率发生变化,引起谐振波长产生漂移,通过对谐振波长的监测实现对微流成分变化的感测。Further, the micro-nano quartz capillary forms a waveguide structure with the internal micro-fluid, and generates a strong evanescent field effect when the micro-nano optical fiber is close to the helical shape. When the composition of the micro-fluid changes, the micro-fluid The effective refractive index of the waveguide changes, causing the resonant wavelength to drift, and the sensing of the change of the microfluidic composition is realized by monitoring the resonant wavelength.
进一步地,所述微纳光纤和所述微纳石英毛细管分别由光纤与石英毛细管去除涂覆层以后熔融拉锥形成。Further, the micro-nano optical fiber and the micro-nano quartz capillary are respectively formed by fusion tapering after removing the coating layer from the optical fiber and the quartz capillary.
本发明相对于现有技术具有如下的优点及效果:Compared with the prior art, the present invention has the following advantages and effects:
本发明公开的一种螺旋式光微流传感器,专用于微流体的传感测量,具有灵敏度高、温度稳定性和空间稳定性好,结构紧凑的优点,可用于各种生物、医学、化学等参量的传感测量,成本低廉、操作方便。A spiral optical microfluidic sensor disclosed by the invention is specially used for sensing and measuring microfluids. It has the advantages of high sensitivity, good temperature stability and space stability, and compact structure, and can be used in various biology, medicine, chemistry, etc. The sensor measurement of the parameter is low in cost and easy to operate.
附图说明Description of drawings
图1是本发明公开的一种螺旋式光微流传感器的结构示意图;Fig. 1 is a structural schematic diagram of a spiral optical microflow sensor disclosed by the present invention;
其中,1---第一石英毛细管端区,2---第一微纳石英毛细管锥区,3---微纳石英毛细管均匀区,4---第二微纳石英毛细管锥区,5---第二石英毛细管端区,6---第一光纤端区,7---第一微纳光纤锥区,8---微纳光纤均匀区,9---第二微纳光纤锥区,10---第二光纤端区。Among them, 1 --- the first quartz capillary end area, 2 --- the first micro-nano quartz capillary cone area, 3 --- micro-nano quartz capillary uniform area, 4 --- the second micro-nano quartz capillary cone area, 5 --- the second quartz capillary end area, 6 --- the first fiber end area, 7 --- the first micro-nano fiber taper area, 8 --- the micro-nano fiber uniform area, 9 --- the second micro-fiber Nano-fiber tapered region, 10 --- second fiber end region.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is a part of embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
实施例Example
图1是本发明公开的一种螺旋式光微流传感器的结构示意图,如图1所示,一种螺旋式光微流传感器,由光纤与石英毛细管分别去除涂覆层以后熔融拉锥,形成具有一定尺寸的微纳光纤和微纳石英毛细管,将微纳光纤缠绕在微纳石英毛细管,形成的周期性结构。Figure 1 is a schematic structural view of a spiral optical microfluidic sensor disclosed in the present invention. As shown in Figure 1, a spiral optical microfluidic sensor is formed by melting the tapered after the coating layer is removed from the optical fiber and the quartz capillary respectively. With a certain size of micro-nano optical fiber and micro-nano quartz capillary, the micro-nano optical fiber is wound around the micro-nano quartz capillary to form a periodic structure.
微纳石英毛细管的结构包括第一石英毛细管端区1、第二石英毛细管端区5、第一微纳石英毛细管锥区2、第二微纳石英毛细管锥区4和微纳石英毛细管均匀区3,The structure of the micro-nano quartz capillary includes a first quartz capillary end zone 1, a second quartz capillary end zone 5, a first micro-nano quartz capillary cone zone 2, a second micro-nano quartz capillary cone zone 4 and a micro-nano quartz capillary uniform zone 3 ,
微纳光纤的结构包括第一光纤端区6、第二光纤端区10、第一微纳光纤锥区7、第二微纳光纤锥区9和微纳光纤均匀区8,微纳光纤均匀区8缠绕在微纳石英毛细管均匀区3形成螺旋式的周期性结构,微纳光纤其余各区(第一光纤端区6、第二光纤端区10、第一微纳光纤锥区7、第二微纳光纤锥区9)与微纳石英毛细管其余各区(第一石英毛细管端区1、第二石英毛细管端区5、第一微纳石英毛细管锥区2、第二微纳石英毛细管锥区4)处处保持平行的相对位置关系,这样便形成了螺旋式光微流传感器。The structure of the micro-nano fiber includes a first fiber end region 6, a second fiber end region 10, a first micro-nano fiber taper region 7, a second micro-nano fiber taper region 9 and a micro-nano fiber homogeneous region 8, a micro-nano fiber homogeneous region 8 is wound on the uniform area 3 of the micro-nano quartz capillary to form a helical periodic structure, and the remaining areas of the micro-nano optical fiber (the first optical fiber end area 6, the second optical fiber end area 10, the first micro-nano optical fiber taper area 7, the second micro-nano optical fiber Nano-fiber tapered region 9) and other regions of the micro-nano quartz capillary (the first quartz capillary end region 1, the second quartz capillary end region 5, the first micro-nano quartz capillary tapered region 2, the second micro-nano quartz capillary tapered region 4) A parallel relative positional relationship is maintained everywhere, thus forming a spiral optical microflow sensor.
微纳石英毛细管与内部的微流体形成一个波导结构,与螺旋状的微纳光纤相靠,结构紧密,产生较强的瞬逝场作用,在谐振波长处,螺旋状的微纳光纤中的光会被耦合到微流通道当中,在透射谱中形成损耗峰,由于螺旋状的微纳光纤的周期性结构,在特定波长处会得到显著增强,当微流成分发生改变时,微流波导的有效折射率发生变化,引起谐振波长产生漂移,通过对谐振波长的监测实现对微流成分变化的感测。The micro-nano quartz capillary and the internal microfluid form a waveguide structure, which is close to the helical micro-nano fiber. The structure is tight and produces a strong evanescent field effect. At the resonant wavelength, the light in the helical micro-nano fiber It will be coupled into the microfluidic channel and form a loss peak in the transmission spectrum. Due to the periodic structure of the helical micro-nano fiber, it will be significantly enhanced at a specific wavelength. When the microfluidic composition changes, the microfluidic waveguide The effective refractive index changes, causing the resonance wavelength to drift, and the sensing of the change of the microfluidic composition is realized by monitoring the resonance wavelength.
其中,第一光纤端区6和第二光纤端区10分别用于光信号的输入或者输出,经第一微纳光纤锥区7和第二微纳光纤锥区9与螺旋状的微纳光纤均匀区8组成的光通路形成完整的光信号通路系统。Wherein, the first fiber end zone 6 and the second fiber end zone 10 are respectively used for the input or output of the optical signal, through the first micro-nano fiber taper 7 and the second micro-nano fiber taper 9 and the helical micro-nano fiber The optical path formed by the uniform area 8 forms a complete optical signal path system.
具体应用中,将第一光纤端区6或第二光纤端区10与外部光源相连用于光信号的输入,另一第二光纤端区10或者第一光纤端区6与光谱仪或者光电检测器等光信号检测设备相连,用于输出信号的监测,形成完整的光信号通路系统。In a specific application, the first optical fiber end region 6 or the second optical fiber end region 10 is connected to an external light source for the input of an optical signal, and the other second optical fiber end region 10 or the first optical fiber end region 6 is connected to a spectrometer or a photodetector It is connected with other optical signal detection equipment for monitoring the output signal to form a complete optical signal channel system.
其中,第一石英毛细管端区1和第二石英毛细管端区5分别用于微流体的导入和导出,经第一微纳石英毛细管锥区2、第二微纳石英毛细管锥区4和微纳石英毛细管均匀区3组成的微流通道形成完整的微流通道系统。Wherein, the first quartz capillary end zone 1 and the second quartz capillary end zone 5 are respectively used for the introduction and export of microfluid, through the first micro-nano quartz capillary cone zone 2, the second micro-nano quartz capillary cone zone 4 and the micro-nano The microfluidic channel composed of the uniform zone 3 of the quartz capillary forms a complete microfluidic channel system.
具体应用中,将第一石英毛细管端区1或第二石英毛细管端区5与进样器或者蠕动泵相连,用于样品的进入,另一第二石英毛细管端区5或者第一石英毛细管端区1用于排出毛细管内剩余的样品,形成独立完整的微流通道系统。In a specific application, the first quartz capillary end zone 1 or the second quartz capillary end zone 5 is connected to a sample injector or a peristaltic pump for sample entry, and the other second quartz capillary end zone 5 or the first quartz capillary end zone Zone 1 is used to discharge the remaining sample in the capillary to form an independent and complete microfluidic channel system.
综上所述,本实施例公开了一种螺旋式光微流传感器,专用于微流体的传感测量,该传感器利用瞬逝场的周期性作用激发出微纳光纤与同向微流波导之间的谐振耦合,获得超高灵敏度、极好的温度稳定性和结构紧凑性,可用于各种生物、医学、化学等参量的传感测量,成本低廉、操作方便。In summary, this embodiment discloses a helical optical microfluidic sensor, which is specially used for sensing and measuring microfluidics. The sensor utilizes the periodic action of the evanescent field to excite The resonant coupling between them can obtain ultra-high sensitivity, excellent temperature stability and compact structure. It can be used for sensing and measuring various biological, medical, chemical and other parameters, with low cost and convenient operation.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiment is a preferred embodiment of the present invention, but the embodiment of the present invention is not limited by the above-mentioned embodiment, and any other changes, modifications, substitutions, combinations, Simplifications should be equivalent replacement methods, and all are included in the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611205223.7A CN106706565B (en) | 2016-12-23 | 2016-12-23 | A spiral optical microfluidic sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611205223.7A CN106706565B (en) | 2016-12-23 | 2016-12-23 | A spiral optical microfluidic sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106706565A CN106706565A (en) | 2017-05-24 |
CN106706565B true CN106706565B (en) | 2019-11-19 |
Family
ID=58895842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611205223.7A Active CN106706565B (en) | 2016-12-23 | 2016-12-23 | A spiral optical microfluidic sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106706565B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108872110B (en) * | 2018-07-04 | 2020-12-11 | 暨南大学 | A kind of high refractive index sensitivity optical fiber microfluidic sensor and preparation method thereof |
CN110160960A (en) * | 2019-06-22 | 2019-08-23 | 南昌航空大学 | Micro-nano fiber biosensor and preparation method thereof based on coupler structure |
CN112378857B (en) * | 2020-11-13 | 2023-08-01 | 暨南大学 | A micro-nano fiber grating photothermal test strip sensor and its detection method |
CN113376095B (en) * | 2021-05-08 | 2022-10-18 | 邯郸学院 | Signal integrated optical micro-flow sensor |
CN113433611B (en) * | 2021-06-29 | 2022-08-16 | 暨南大学 | Spiral-structure type long-period optical fiber grating interferometer and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101545899A (en) * | 2009-04-30 | 2009-09-30 | 华南理工大学 | Optical fibre micro-fluidic biological sensor and preparation method thereof |
CN102141421A (en) * | 2010-12-29 | 2011-08-03 | 上海华魏光纤传感技术有限公司 | Device and method for measuring flow of all-fiber interferometer |
CN102749675A (en) * | 2012-06-27 | 2012-10-24 | 暨南大学 | Structural long-period optical fiber grating |
CN103376135A (en) * | 2012-04-13 | 2013-10-30 | 中国石油化工股份有限公司 | Non-contact optical fiber device and method for measuring flows |
CN205353091U (en) * | 2015-12-31 | 2016-06-29 | 华南师范大学 | Receive biosensor of optic fibre multiple ring microcavity a little |
CN105842637A (en) * | 2016-04-27 | 2016-08-10 | 浙江大学 | Extra-high sensitive magnetic field sensor based on multiple-mode interference optical microcavity |
-
2016
- 2016-12-23 CN CN201611205223.7A patent/CN106706565B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101545899A (en) * | 2009-04-30 | 2009-09-30 | 华南理工大学 | Optical fibre micro-fluidic biological sensor and preparation method thereof |
CN102141421A (en) * | 2010-12-29 | 2011-08-03 | 上海华魏光纤传感技术有限公司 | Device and method for measuring flow of all-fiber interferometer |
CN103376135A (en) * | 2012-04-13 | 2013-10-30 | 中国石油化工股份有限公司 | Non-contact optical fiber device and method for measuring flows |
CN102749675A (en) * | 2012-06-27 | 2012-10-24 | 暨南大学 | Structural long-period optical fiber grating |
CN205353091U (en) * | 2015-12-31 | 2016-06-29 | 华南师范大学 | Receive biosensor of optic fibre multiple ring microcavity a little |
CN105842637A (en) * | 2016-04-27 | 2016-08-10 | 浙江大学 | Extra-high sensitive magnetic field sensor based on multiple-mode interference optical microcavity |
Also Published As
Publication number | Publication date |
---|---|
CN106706565A (en) | 2017-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106706565B (en) | A spiral optical microfluidic sensor | |
Yang et al. | Fiber optofluidic microlasers: structures, characteristics, and applications | |
Cai et al. | Overview of the coupling methods used in whispering gallery mode resonator systems for sensing | |
Zhang et al. | Ultra-sensitive chemical and biological analysis via specialty fibers with built-in microstructured optofluidic channels | |
US7095010B2 (en) | Silicon on insulator resonator sensors and modulators and method of operating the same | |
EP2101167B1 (en) | Optical chemical detector and associated method | |
Li et al. | Integrative optofluidic microcavity with tubular channels and coupled waveguides via two-photon polymerization | |
US7391936B2 (en) | Microfluidic sensors and methods for making the same | |
US8231833B2 (en) | Direct optical interrogation of agents in micro-fluidic channels utilizing whispering gallery resonator approach | |
CN110068556A (en) | Optical fiber micro flow chip for spectral measurement | |
Wang et al. | Silicon-nitride-based integrated optofluidic biochemical sensors using a coupled-resonator optical waveguide | |
CN105675545A (en) | High-sensitivity intensity detection method based on self-interference type micro resonator cavity light sensor | |
Wang et al. | Integrated chemical vapor sensor based on thin wall capillary coupled porous glass microsphere optical resonator | |
CN106770043B (en) | An integrated opto-microfluidic sensor | |
JP4118901B2 (en) | Micro instrument | |
JP4782794B2 (en) | Optical sensor | |
US7952772B2 (en) | Photonic crystal fiber sensor | |
Rifat et al. | SOI waveguide-based biochemical sensors | |
Chao et al. | Two optofluidic devices for the refractive index measurement of small volume of fluids | |
KR101198259B1 (en) | Optical biosensor and method for detecting biological material using holey fiber | |
Zhang et al. | Optofluidic refractive index sensor based on partial reflection | |
CN108801851A (en) | A kind of micro liquid concentration sensor of thin-walled column symmetry microcavity | |
US9200997B2 (en) | Photonic sensing method and device | |
Li et al. | Lab-in-a-fiber biosensors | |
May-Arrioja et al. | Photonic Crystal Fibers for Sensing Applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |