CN106683867A - 3d打印纳米晶各向异性磁体 - Google Patents

3d打印纳米晶各向异性磁体 Download PDF

Info

Publication number
CN106683867A
CN106683867A CN201710137817.7A CN201710137817A CN106683867A CN 106683867 A CN106683867 A CN 106683867A CN 201710137817 A CN201710137817 A CN 201710137817A CN 106683867 A CN106683867 A CN 106683867A
Authority
CN
China
Prior art keywords
magnetic
printing
powder
utilization
anisotropic magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710137817.7A
Other languages
English (en)
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710137817.7A priority Critical patent/CN106683867A/zh
Publication of CN106683867A publication Critical patent/CN106683867A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

本发明公开一种利用3D打印技术制备纳米晶各向异性磁体的方法,熔炼钕铁硼、钐鈷、铝镍钴、錳铋、钐铁等硬磁合金;经过甩带和气流磨后制成不规则形状的磁性粉体;将不规则形状磁性粉体通过等喷雾干燥等工艺得到球形纳米团聚磁性粉体;将球形磁性粉体与粘结剂和加工助剂混合均匀;将混合好的粉末送入热挤出机中,挤出丝;根据产品的尺寸和形状利用计算机软件进行三维建模,并对产品模型进行分层切片处理;将三维模型导入3D打印设备中;将丝送到3D打印机并加热到软化点,通过挤出机及可移动的具有加热功能的喷嘴,被挤出的材料沉积在可以加热的工作台上凝固,挤出的材料逐层累积并相互粘结,并在打印的过程中进行充磁,直到产品打印完成。产品具有良好的性价比和加工性能,降低磁体的生产周期和成本。

Description

3D打印纳米晶各向异性磁体
技术领域
本发明涉及永磁合金,特别是用于3D打印的磁体,具体地说是一种利用3D打印技术制备纳米晶各向异性磁体的方法。
背景技术
3D打印的关键技术之一在于所用材料的形态和性能。打印材料一般为球形粉末,粉末的球化率一般要求大于98%。只有高的球化率,才能保证打印粉末均匀、顺利地输送到打印熔池,从而得到组织致密、低缺陷率的打印产品。目前,国内难以制备高端细颗粒球形金属粉末,这种粉末依赖进口。
利用低温、表面活性剂辅助外加磁场高能球磨技术制备具有几个纳米尺度的单畴纳米磁粉,通过磁场取向后具有高的取向度,为制备高性能各向异性磁粉提供关键技术。采用纳米磁粉做3D打印的原料尚属首创。
可通过喷雾干燥等技术制备球形粉末。将纳米磁粉与溶剂、粘结剂混合,然后进行喷雾、干燥和烧结。利用这种技术可形成球形粉末。
现有的技术制备磁体需要相应的模具,制作模具需要一定时间和成本,产品脱模后还需后续加工,有一定的加工成本。
发明内容
本发明的目的在于提供一种利用3D打印技术制备纳米晶各向异性磁体的方法,以具有良好的性价比和加工性能,降低磁体的生产周期和成本。
为了达成上述目的,本发明的解决方案是:
一种利用3D打印技术制备纳米晶各向异性磁体的方法,包括以下步骤:
步骤(1),将钕铁硼、钐鈷、铝镍钴、錳铋、钐铁分别熔炼成合金;
步骤(2),经过甩带和气流磨后制成不同规则形状的磁性粉体,甩带速度5-40m/s,采用对喷式气流磨,喷嘴的空气压力为0.3-1MPa,分级轮转速为3000-4000rpm;
步骤(3),将上述粉体利用低温、表面活性剂辅助外加磁场高能球磨技术制备2nm-1μm的纳米磁粉;
步骤(4),将不规则形状磁性粉体通过喷雾干燥法得到球形磁性粉体,所得到的球形磁性粉体粒度为1-100μm,球形磁性粉体流动性好,可以用于3D打印;
步骤(5),将纳米磁性粉体或球形纳米团聚磁性粉体与粘结剂和加工助剂混合均匀,粘结剂为环氧树脂、聚酰胺或酚醛树脂,加工助剂包含润滑剂和增塑剂;其中球形磁性粉末为50-100%,粘结剂为0-48%,加工助剂为0-3%,上述百分比为体积百分比;
步骤(6),将混合好的粉末送入热挤出机中,挤出机温度为100-400℃,挤出丝直径为0.5-10mm;
步骤(7),根据产品的尺寸和形状利用计算机软件进行三维建模,并对产品模型进行分层切片处理;分层厚度为0.01-10mm;
步骤(8),将三维模型导入3D打印设备中;
步骤(9),将丝送到3D打印机并加热到软化点,加热温度为30-900℃,通过挤出机及可移动的具有加热功能的喷嘴,被挤出的材料沉积在可以加热的工作台上凝固,加热工作台的加热温度为30-900℃,挤出的材料逐层累积并相互粘结,打印机扫描速度为1mm/s-50mm/s,并在打印的过程中进行充磁,直到产品打印完成。
采用上述方案后,与现有技术相比,本发明的有益效果是3D打印制备磁体,制备磁体过程中不需要模具,缩短了生产周期,提高了生产效率,3D打印磁体一次成型,不需要后续加工。由于采用各向异性纳米磁粉,磁体磁性能更高。
具体实施方式
实施例1
步骤(1),将钕铁硼熔炼成合金;
步骤(2),经过甩带和气流磨后制成不规则形状的磁性粉体,甩带速度15m/s,采用对喷式气流磨,喷嘴的空气压力为0.3MPa,分级轮转速为3000rpm;
步骤(3),将上述粉体利用低温、表面活性剂辅助外加磁场高能球磨技术10nm的纳米磁粉;
步骤(4),将不规则形状磁性粉体通过喷雾干燥法得到球形磁性粉体,所得到的球形磁性粉体粒度为40μm,球形磁性粉体流动性好,可以用于3D打印;
步骤(5),将球形磁性粉体与粘结剂和加工助剂混合均匀,粘结剂为环氧树脂或酚醛树脂,加工助剂包含润滑剂和增塑剂;其中球形磁性粉末为90%,粘结剂为9%,加工助剂为1%,上述百分比为体积百分比;
步骤(6),将混合好的粉末送入挤出机中,挤出机温度为270℃,挤出丝直径为1mm;
步骤(7),根据产品的尺寸和形状利用计算机软件进行三维建模,并对产品模型进行分层切片处理;分层厚度为0.1mm
步骤(8),将三维模型导入3D打印设备中;
步骤(9),将丝送到3D打印机并加热到软化点,加热温度为250℃,通过挤出机及可移动的具有加热功能的喷嘴,被挤出的材料沉积在可以加热的工作台上凝固,加热工作台的加热温度为40℃,挤出的材料逐层累积并相互粘结,打印机扫描速度为20mm/s,并在打印的过程中进行充磁,直到产品打印完成。
实施例2
步骤(1),将錳铋熔炼成合金;
步骤(2),经过甩带和气流磨后制成不规则形状的磁性粉体,甩带速度20m/s,采用对喷式气流磨,喷嘴的空气压力为1MPa,分级轮转速为3000rpm;
步骤(3),将上述粉体利用低温、表面活性剂辅助外加磁场高能球磨技术50nm的纳米磁粉;
步骤(4),将錳铋纳米磁性粉体与粘结剂和加工助剂混合均匀,粘结剂为尼龙,加工助剂包含润滑剂和增塑剂;其中球形磁性粉末为90%,粘结剂为9%,加工助剂为1%,上述百分比为体积百分比;
步骤(5),将混合好的粉末送入挤出机中,挤出机温度为250℃挤出丝直径为1.8mm;
步骤(6),根据产品的尺寸和形状利用计算机软件进行三维建模,并对产品模型进行分层切片处理;分层厚度为0.1mm
步骤(7),将三维模型导入3D打印设备中;
步骤(8),将丝送到3D打印机并加热到软化点,加热温度为250℃,通过挤出机及可移动的具有加热功能的喷嘴,被挤出的材料沉积在可以加热的工作台上凝固,加热工作台的加热温度为40℃,挤出的材料逐层累积并相互粘结,打印机扫描速度为15mm/s,并在打印的过程中进行充磁,直到产品打印完成。
实施例3
步骤(1),将钐鈷熔炼成合金;
步骤(2),经过甩带和气流磨后制成不规则形状的磁性粉体,甩带速度25m/s,采用对喷式气流磨,喷嘴的空气压力为0.6MPa,分级轮转速为3000rpm;
步骤(3),将上述粉体利用低温、表面活性剂辅助外加磁场高能球磨技术20nm的纳米磁粉;
步骤(4),将不规则形状磁性粉体通过原子雾化法得到球形磁性粉体,所得到的球形磁性粉体粒度为45μm,球形磁性粉体流动性好,可以用于3D打印;
步骤(5),将球形磁性粉体与粘结剂和加工助剂混合均匀,粘结剂为尼龙,加工助剂包含润滑剂和增塑剂;其中球形磁性粉末为90%,粘结剂为9%,加工助剂为1%,上述百分比为体积百分比;
步骤(6),将混合好的粉末送入挤出机中,挤出机温度为270℃,挤出丝直径为1.7mm;
步骤(7),根据产品的尺寸和形状利用计算机软件进行三维建模,并对产品模型进行分层切片处理;分层厚度为0.1mm
步骤(8),将三维模型导入3D打印设备中;
步骤(9),将丝送到3D打印机并加热到软化点,加热温度为270℃,通过挤出机及可移动的具有加热功能的喷嘴,被挤出的材料沉积在可以加热的工作台上凝固,加热工作台的加热温度为60℃,挤出的材料逐层累积并相互粘结,打印机扫描速度为25mm/s,并在打印的过程中进行充磁,直到产品打印完成。
实施例4
步骤(1),将钕铁硼熔炼成合金;
步骤(2),经过甩带和气流磨后制成不规则形状的磁性粉体,甩带速度15m/s,采用对喷式气流磨,喷嘴的空气压力为0.9MPa,分级轮转速为3000rpm;
步骤(3),将上述粉体利用低温、表面活性剂辅助外加磁场高能球磨技术100nm的纳米磁粉;
步骤(4),将上述粉体经PVD镀2nm厚的NdCu晶界扩散相合金;
步骤(5),将上述不规则形状磁性粉体通过等离子体气雾化制粉得到球形磁性粉体,所得到的球形磁性粉体粒度为45μm,球形磁性粉体流动性好,可以用于3D打印;
步骤(6),将混合好的粉末送入挤出机中,挤出机温度为830℃,挤出丝直径为1.7mm;
步骤(7),根据产品的尺寸和形状利用计算机软件进行三维建模,并对产品模型进行分层切片处理;分层厚度为0.1mm
步骤(8),将三维模型导入3D打印设备中;
步骤(9),将丝送到3D打印机并加热到软化点,加热温度为830℃,通过挤出机及可移动的具有加热功能的喷嘴,被挤出的材料沉积在可以加热的工作台上凝固,加热工作台的加热温度为800℃,挤出的材料逐层累积并相互粘结,打印机扫描速度为20mm/s,并在打印的过程中进行充磁,直到产品打印完成。

Claims (12)

1.一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于包括以下步骤:
步骤(1),将钕铁硼、钐鈷、铝镍钴、錳铋、钐铁分别熔炼成合金;
步骤(2),经过甩带和气流磨后制成不同规则形状的磁性粉体,甩带速度5-40m/s,采用对喷式气流磨,喷嘴的空气压力为0.3-1MPa,分级轮转速为3000-4000rpm;
步骤(3),将上述粉体利用低温、表面活性剂辅助外加磁场高能球磨技术制备2nm-1μm的纳米磁粉;
步骤(4),将不规则形状磁性粉体通过喷雾干燥法得到球形磁性粉体,所得到的球形磁性粉体粒度为1-100μm,球形磁性粉体流动性好,可以用于3D打印;
步骤(5),将纳米磁性粉体或球形纳米团聚磁性粉体与粘结剂和加工助剂混合均匀,粘结剂为环氧树脂、聚酰胺或酚醛树脂,加工助剂包含润滑剂和增塑剂;其中球形磁性粉末为50-100%,粘结剂为0-48%,加工助剂为0-3%,上述百分比为体积百分比;
步骤(6),将混合好的粉末送入热挤出机中,挤出机温度为100-400℃,挤出丝直径为0.5-10mm;
步骤(7),根据产品的尺寸和形状利用计算机软件进行三维建模,并对产品模型进行分层切片处理;分层厚度为0.01-10mm;
步骤(8),将三维模型导入3D打印设备中;
步骤(9),将丝送到3D打印机并加热到软化点,加热温度为30-900℃,通过挤出机及可移动的具有加热功能的喷嘴,被挤出的材料沉积在可以加热的工作台上凝固,加热工作台的加热温度为30-900℃,挤出的材料逐层累积并相互粘结,打印机扫描速度为1mm/s-50mm/s,并在打印的过程中进行充磁,直到产品打印完成。
2.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(1),所述的磁性材料包括钕铁硼、铈铁硼、掺杂混合稀土的钕铁硼、钐鈷、铝镍钴、錳铋、钐铁等硬磁合金中的一种或两种及两种以上的复合材料。
3.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(2),甩带速度5-40m/s,采用对喷式气流磨,喷嘴的空气压力为0.3-1MPa,分级轮转速为3000-4000rpm。
4.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(3),所得的纳米磁粉是利用高能球磨技术制备,辅以低温、表面活性剂和外加磁场条件,包括其中一种、两种或三种外加条件的组合。所获得的纳米磁粉的粒度范围是2nm-1μm。
5.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(4),球形纳米团聚粉体是通过喷雾干燥法、原子雾化法或离子雾化法得到,所得到的球形磁性粉体粒度为1-100μm。
6.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(5)磁性粉包括纳米磁性粉体或球形纳米团聚磁性粉体。
7.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(5),粘结剂包括环氧树脂、聚酰胺(尼龙或锦纶,如商业用的PA6,PA11,和PA12树脂)、酚醛树脂或低熔点的晶界扩散相合金如NdCu,Nd,Cu,NdDy,NdCuAl等。
8.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(5),加工助剂包含润滑剂和增塑剂。
9.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(5),球形磁性粉末为50-100%,粘结剂为0-48%,加工助剂为0-3%,上述百分比为体积百分比。
10.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(6),挤出机温度为100-400℃,挤出丝直径为0.5-10mm。
11.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(7),分层厚度为0.01-10mm。
12.如权利要求1所述的一种利用3D打印技术制备纳米晶各向异性磁体的方法,其特征在于:步骤(9),喷嘴加热温度为30-900℃,工作台的加热温度为30-900℃。打印机扫描速度为1mm/s-50mm/s。充磁与打印同步进行。
CN201710137817.7A 2017-03-10 2017-03-10 3d打印纳米晶各向异性磁体 Pending CN106683867A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710137817.7A CN106683867A (zh) 2017-03-10 2017-03-10 3d打印纳米晶各向异性磁体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710137817.7A CN106683867A (zh) 2017-03-10 2017-03-10 3d打印纳米晶各向异性磁体

Publications (1)

Publication Number Publication Date
CN106683867A true CN106683867A (zh) 2017-05-17

Family

ID=58828698

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710137817.7A Pending CN106683867A (zh) 2017-03-10 2017-03-10 3d打印纳米晶各向异性磁体

Country Status (1)

Country Link
CN (1) CN106683867A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107464685A (zh) * 2017-09-14 2017-12-12 北京科技大学 一种三维打印成型各向同性粘结磁体的方法
CN108010651A (zh) * 2017-12-13 2018-05-08 江西伟普科技有限公司 一种多磁粉混合粘结磁性材料的制备方法
CN108962526A (zh) * 2018-06-28 2018-12-07 宁波招宝磁业有限公司 水转印制备高性能烧结钕铁硼薄片磁体的方法
CN109148068A (zh) * 2017-06-28 2019-01-04 北京中科三环高技术股份有限公司 一种适合3d打印的磁粉、粘结磁体及其制备方法
CN110600254A (zh) * 2019-09-29 2019-12-20 华中科技大学 一种适用于磁性复合材料的4d打印制造方法
EP3599622A1 (en) 2018-07-27 2020-01-29 Fundació Institut de Ciències Fotòniques A method, a system and a package for producing a magnetic composite
CN112103073A (zh) * 2020-09-23 2020-12-18 赣州富尔特电子股份有限公司 一种利用3d打印技术制备复杂形状粘结磁体的制备方法
CN112557973A (zh) * 2019-09-25 2021-03-26 中国科学院上海硅酸盐研究所 一种粉体材料磁各向异性的测试方法
CN113664207A (zh) * 2020-05-03 2021-11-19 绍兴撒母耳新材料科技有限公司 3d打印纳米晶各向异性磁体
CN113674977A (zh) * 2020-05-03 2021-11-19 绍兴撒母耳新材料科技有限公司 热压纳米晶各向异性磁体
CN114101654A (zh) * 2021-09-16 2022-03-01 华北理工大学 一种高性能SmFe12基永磁粉体及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148068B (zh) * 2017-06-28 2021-06-15 北京中科三环高技术股份有限公司 一种适合3d打印的磁粉、粘结磁体及其制备方法
CN109148068A (zh) * 2017-06-28 2019-01-04 北京中科三环高技术股份有限公司 一种适合3d打印的磁粉、粘结磁体及其制备方法
CN107464685A (zh) * 2017-09-14 2017-12-12 北京科技大学 一种三维打印成型各向同性粘结磁体的方法
CN108010651A (zh) * 2017-12-13 2018-05-08 江西伟普科技有限公司 一种多磁粉混合粘结磁性材料的制备方法
CN108962526A (zh) * 2018-06-28 2018-12-07 宁波招宝磁业有限公司 水转印制备高性能烧结钕铁硼薄片磁体的方法
EP3599622A1 (en) 2018-07-27 2020-01-29 Fundació Institut de Ciències Fotòniques A method, a system and a package for producing a magnetic composite
CN112557973A (zh) * 2019-09-25 2021-03-26 中国科学院上海硅酸盐研究所 一种粉体材料磁各向异性的测试方法
CN110600254A (zh) * 2019-09-29 2019-12-20 华中科技大学 一种适用于磁性复合材料的4d打印制造方法
CN110600254B (zh) * 2019-09-29 2020-10-30 华中科技大学 一种适用于磁性复合材料的4d打印制造方法
CN113664207A (zh) * 2020-05-03 2021-11-19 绍兴撒母耳新材料科技有限公司 3d打印纳米晶各向异性磁体
CN113674977A (zh) * 2020-05-03 2021-11-19 绍兴撒母耳新材料科技有限公司 热压纳米晶各向异性磁体
CN112103073A (zh) * 2020-09-23 2020-12-18 赣州富尔特电子股份有限公司 一种利用3d打印技术制备复杂形状粘结磁体的制备方法
CN114101654A (zh) * 2021-09-16 2022-03-01 华北理工大学 一种高性能SmFe12基永磁粉体及其制备方法

Similar Documents

Publication Publication Date Title
CN106683867A (zh) 3d打印纳米晶各向异性磁体
CN105364065B (zh) 一种用于3d打印的金属粉料及其制备方法以及3d打印方法
KR101806252B1 (ko) 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법
CN103854844B (zh) 一种利用3d打印技术制备复杂形状粘结磁体的方法
US20210205888A1 (en) Feedstock for 3d printing, preparation method and application thereof
CN103846448B (zh) 一种超低氧球形微米铜粉的制备方法
CN105478776A (zh) 一种低温烧结制备高致密度纯钨制品的方法
CN105057664A (zh) 一种3d打印粉料及3d打印方法
CN105499574A (zh) 一种制备孔隙均匀异型多孔钨制品的方法
CN101752074A (zh) 一种纳米铁基软磁块体的制备方法
CN102250480A (zh) 一种塑料基磁性复合材料及其制备方法
CN108746555A (zh) 一种3d打印空间结构增强铜基复合材料的制备方法
WO2018066726A1 (ko) 금속 분말 함유 조성물을 원료로 하는 3차원 프린팅 방법
CN105405636A (zh) 一种利用3d打印技术制备添加铈的钕铁硼磁体的方法
CN104191615A (zh) 一种3d打印用高分子聚合物粉末材料的制备方法
CN107999769A (zh) 一种采用金属注射成型方法制作手机中框的方法
CN109158589B (zh) 细粒度金刚石工具有序排列的生产方法及其金刚石工具
CN116039078A (zh) 一种聚合物复合材料粉末床喷墨烧结3d打印的方法及其制件
CN107868899B (zh) 一种注塑用透气钢及制备方法
CN113664207A (zh) 3d打印纳米晶各向异性磁体
CN103056369A (zh) 粉末冶金制作零件的生产工艺
CN107649684A (zh) 一种3d打印方法
CN106424743A (zh) 一种高强度高模量增材制造材料的制备方法
TW201343945A (zh) 鐵鈷鉭鋯基合金濺鍍靶材及其製作方法
CN110586924A (zh) 一种粉末冶金件的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170517