CN106680216A - 一种二元叠层光学材料反射率和透射率光谱的计算方法 - Google Patents

一种二元叠层光学材料反射率和透射率光谱的计算方法 Download PDF

Info

Publication number
CN106680216A
CN106680216A CN201611110411.1A CN201611110411A CN106680216A CN 106680216 A CN106680216 A CN 106680216A CN 201611110411 A CN201611110411 A CN 201611110411A CN 106680216 A CN106680216 A CN 106680216A
Authority
CN
China
Prior art keywords
theta
cos
interface
reflectivity
media
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611110411.1A
Other languages
English (en)
Other versions
CN106680216B (zh
Inventor
刘华松
季勤
季一勤
刘丹丹
王利栓
姜玉刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Jinhang Institute of Technical Physics
Original Assignee
Tianjin Jinhang Institute of Technical Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Jinhang Institute of Technical Physics filed Critical Tianjin Jinhang Institute of Technical Physics
Priority to CN201611110411.1A priority Critical patent/CN106680216B/zh
Publication of CN106680216A publication Critical patent/CN106680216A/zh
Application granted granted Critical
Publication of CN106680216B publication Critical patent/CN106680216B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N2021/558Measuring reflectivity and transmission

Abstract

本发明属于光谱领域,具体涉及一种二元叠层光学材料光谱特性的计算方法,特别是涉及一种ZnS/ZnSe叠层红外光学材料反射率和透射率光谱的计算方法。本发明通过建立光在叠层材料轴向传输的物理模型,通过光学非相干传输理论,获得光波通过二元叠层材料后的透反射光谱,建立了ZnS和ZnSe的基本物性和物理厚度与透反射光谱特性之间的物理关系,对于二元叠层材料的光谱计算具有普适性,为二元叠层材料的光波能量调制特性提供理论依据。

Description

一种二元叠层光学材料反射率和透射率光谱的计算方法
技术领域
本发明属于光谱领域,具体涉及一种二元叠层光学材料光谱特性的计算方法,特别是涉及一种ZnS/ZnSe叠层红外光学材料反射率和透射率光谱的计算方法。
背景技术
ZnS和ZnSe材料是两种重要的红外光学材料,广泛应用于各类红外光电成像与光电探测系统。根据制备工艺技术的不同,热压ZnS材料和CVD ZnS材料的透明区在1μm~13μm波段,多光谱ZnS的透明区则为0.35μm~13μm;热压ZnSe材料的透明区在1μm~20μm波段,CVD ZnSe材料的透明区则可以拓展到0.5μm~20μm。随着现代红外多谱段成像与光电探测系统的发展,宽谱段共口径是主要发展趋势之一,可以简化系统、缩小体积和减轻重量,更重要的是可以实现全天候工作,因此对红外光学材料提出了宽透明区的发展需求。
CVD ZnSe材料具有良好的宽谱段透过性能,能够满足宽透明区的发展需求,但是其硬度和抗折强度较ZnS材料差,不能满足高速飞行平台带来的雨和灰尘侵蚀的问题。CVDZnS材料的强度优于ZnSe材料,能够克服高达1马赫的飞行速度带来的影响,但是其透光范围较ZnSe差。因此,为了将ZnS的抗雨蚀能力和ZnSe优异的光学性质相结合,人们提出一种ZnS/ZnSe叠层复合材料,并将ZnS和ZnSe如何制成叠层材料成为红外光学材料的重点方向,美国海空战争中心武器部曾经指出,ZnS/ZnSe叠层材料是红外窗口和头罩领域的新尖端材料之一。该叠层材料的特点是利用CVD沉积技术制备出ZnS和ZnSe,其中ZnS的厚度约为1mm,ZnSe的厚度约为5mm。光波在叠层材料的轴向光学性能取决于叠层的界面和两种材料的基本物性,由于两种材料的物理厚度远大于红外光波的波长尺度,红外光波的传输不能产生相干叠加现象,所以需要用传统非相干光传输理论计算叠层材料的反射率和透射率光谱。由于ZnS和ZnSe材料的介电常数相近,因此在ZnS/ZnSe叠层材料的研究上主要集中于制备工艺技术,对于叠层材料的透反射光谱特性理论过程报道较少。但是深入理解光波的传输特性对于调整叠层材料的光学特性具有重要意义,尤其是可以指导工艺技术的改进方向,获得工艺调整的理论依据。
发明内容
(一)要解决的技术问题
本发明提出一种二元叠层光学材料反射率和透射率光谱的计算方法,以解决如何确定二元叠层光学材料透反射光谱特性的问题。
(二)技术方案
本发明提出一种二元叠层光学材料反射率和透射率光谱的计算方法,该计算方法包括如下步骤:
(1)计算二元叠层光学材料中各界面的反射率和透射率光谱:
假设二元叠层光学材料中,前表面为X介质,后表面为Y介质,所述X介质、Y介质和空气的复折射率分别为NA、NB、N0,入射角为θ0,则所述X介质和Y介质内的复折射角如公式(1)所示:
二元叠层光学材料中两种介质叠加共形成三个界面,第1界面的反射率和透射率分别为R1和T1;第2界面的反射率和透射率分别为R2和T2;第3界面的反射率和透射率分别为R3和T3
根据公式(2)、(3)和(4),分别计算第1界面、第2界面和第3界面的反射率,构建各界面的反射率光谱:
其中,R1,s和R1,p分别为第1界面的S偏振反射率和P偏振反射率,R2,s和R2,p分别为第2界面的S偏振反射率和P偏振反射率,R3,s和R3p分别为第3界面的S偏振反射率和P偏振反射率;
根据第1界面的透射率T1=1-R1,第2界面的透射率T2=1-R2,第3界面的透射率T3=1-R3,分别计算所述第1界面、第2界面和第3界面的透射率,构建各界面的透射率光谱;
(2)计算二元叠层光学材料中各介质的内透过率光谱:
介质中复折射角的正弦和余弦,如公式(5)所示:
其中,s′和s″分别为复折射角的正弦的实部和虚部,c′和c″分别为复折射角的余弦的实部和虚部;
介质的等效折射率如公式(6)所示:
其中,n和k分别为介质的折射率和消光系数;
光线真实传播角度与等效折射率的关系,如公式(7)所示:
等效消光系数K与等效折射率的关系,如公式(8)所示:
根据公式(5)~(8),计算介质的等效折射率和等效消光系数K;根据公式(9)计算入射到介质表面的折射光波在介质内部的内透过率u:
其中,d为介质的几何厚度,λ为波长;
根据公式(1)和(5)~(9),分别计算所述X介质和Y介质的内透过率ux和uy,构建各介质的内透过率光谱;
(3)计算等效界面的反射率和透射率光谱:
将第1界面和第2界面等效为界面x,
根据公式(10),计算从空气方向入射的等效反射率Ra,构建从空气方向入射的等效反射率光谱:
根据公式(11),计算从空气方向入射的等效透射率Ta,构建从空气方向入射的等效透射率光谱:
根据公式(12),计算从Y介质方向入射的等效反射率Rx,构建从Y介质方向入射的等效反射率光谱:
根据公式(13),计算从Y介质方向入射的等效透射率Tx,构建从Y介质方向入射的等效透射率光谱:
Tx=T2uxT1+T2uxR1uxR2uxT1+T2uxR1uxR2uxR1uxR2uxT1+…=Ta (13)
(4)计算整个二元叠层光学材料的反射率和透射率光谱:
根据公式(14),计算整个二元叠层光学材料的反射率R,构建整个二元叠层光学材料的反射率光谱:
根据公式(15),计算整个二元叠层光学材料的透射率T,构建整个二元叠层光学材料的透射率光谱:
进一步地,所述X介质为ZnS,所述Y介质为ZnSe。
(三)有益效果
本发明提出一种二元叠层光学材料反射率和透射率光谱数学计算方法,尤其是针对ZnS/ZnSe叠层光学材料的光谱计算。通过建立光在叠层材料轴向传输的物理模型,通过光学非相干传输理论,获得光波通过二元叠层材料后的透反射光谱,建立了ZnS和ZnSe的基本物性和物理厚度与透反射光谱特性之间的物理关系,对于二元叠层材料的光谱计算具有普适性,为二元叠层材料的光波能量调制特性提供理论依据。
附图说明
图1为本发明具体实施方式中二元叠层光学材料光传输示意图;
图2为本发明具体实施方式中光波在第1界面和第2界面之间多次反射传输的示意图;
图3为本发明具体实施方式中界面等效后的光传输示意图;
图4为本发明具体实施方式中ZnS的折射率和消光系数;
图5为本发明具体实施方式中ZnSe的折射率和消光系数;
图6为本发明具体实施方式中三个界面的反射率光谱;
图7为本发明具体实施方式中ZnS和ZnSe的内透过率光谱;
图8为本发明具体实施方式中等效界面前向等效反射率和透射率光谱;
图9为本发明具体实施方式中等效界面后向等效反射率和透射率光谱;
图10为本发明具体实施方式中整个ZnS/ZnSe叠层光学材料的反射率光谱;
图11为本发明具体实施方式中整个ZnS/ZnSe叠层光学材料的透射率光谱。
具体实施方式
为使本发明的目的、内容、和优点更加清楚,下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
本发明的具体实施方式提出一种二元叠层光学材料反射率和透射率光谱的计算方法,该计算方法包括如下步骤:
(1)计算二元叠层光学材料中各界面的反射率和透射率光谱:
假设二元叠层光学材料中,前表面为X介质,后表面为Y介质,X介质、Y介质和空气的复折射率分别为NA、NB、N0,入射角为θ0,则X介质和Y介质内的复折射角满足菲涅耳定律,如公式(1)所示:
二元叠层光学材料中两种介质叠加共形成三个界面,如图1所示。第1界面的反射率和透射率分别为R1和T1;第2界面的反射率和透射率分别为R2和T2;第3界面的反射率和透射率分别为R3和T3
当光束倾斜入射到介质中时,S偏振和P偏振的反射率不同。根据公式(2)、(3)和(4),分别计算第1界面、第2界面和第3界面的反射率,构建各界面的反射率光谱:
其中,R1,s和R1,p分别为第1界面的S偏振反射率和P偏振反射率,R2,s和R2,p分别为第2界面的S偏振反射率和P偏振反射率,R3,s和R3p分别为第3界面的S偏振反射率和P偏振反射率。
根据第1界面的透射率T1=1-R1,第2界面的透射率T2=1-R2,第3界面的透射率T3=1-R3,分别计算第1界面、第2界面和第3界面的透射率光谱,构建各界面的透射率光谱。
(2)计算二元叠层光学材料中各介质的内透过率光谱:
光波在吸收介质中以非均匀波方式传播,等幅面和等相面分离不重合,它们分别有各自的法线方向,只有当正入射时,两个法线方向才是重合的。因此,利用等幅面和等相面的法线方向表征光波的传输,在吸收介质中使用等效折射率(等相位面法线的模)、等效消光系数K(等幅面法线的模)和光线真实传播角度表征光波的传输行为。
介质中复折射角的正弦和余弦为复数,如公式(5)所示:
其中,s′和s″分别为复折射角的正弦的实部和虚部,c′和c″分别为复折射角的余弦的实部和虚部;
介质的等效折射率如公式(6)所示:
其中,n和k分别为介质的折射率和消光系数;
光线真实传播角度与等效折射率的关系满足菲涅耳折射定律,如公式(7)所示:
等效消光系数K与等效折射率的关系,如公式(8)所示:
根据公式(5)~(8),计算介质的等效折射率和等效消光系数K;根据公式(9)计算入射到介质表面的折射光波在介质内部的内透过率u:
其中,d为介质的几何厚度,λ为波长;
根据公式(1)和(5)~(9),分别计算X介质和Y介质的内透过率ux和uy,构建各介质的内透过率光谱;
(3)计算等效界面的反射率和透射率光谱:
光波在第1界面和第2界面之间多次反射传输,如图2所示。将第1界面和第2界面等效为界面x,如图3所示。
根据公式(10),计算从空气方向入射的等效反射率Ra,构建从空气方向入射的等效反射率光谱:
根据公式(11),计算从空气方向入射的等效透射率Ta,构建从空气方向入射的等效透射率光谱:
根据公式(12),计算从Y介质方向入射的等效反射率Rx,构建从Y介质方向入射的等效反射率光谱:
根据公式(13),计算从Y介质方向入射的等效透射率Tx,构建从Y介质方向入射的等效透射率光谱:
Tx=T2uxT1+T2uxR1uxR2uxT1+T2uxR1uxR2uxR1uxR2uxT1+…=Ta (13)
(4)计算整个二元叠层光学材料的反射率和透射率光谱:
完成界面等效后,根据光在界面x和第3界面之间的非相干传输,
根据公式(14),计算整个二元叠层光学材料的反射率R,构建整个二元叠层光学材料的反射率光谱:
根据公式(15),计算整个二元叠层光学材料的透射率T,构建整个二元叠层光学材料的透射率光谱:
实施例
二元叠层光学材料选择ZnS/ZnSe叠层光学材料。ZnS的厚度dX为1mm,ZnSe的厚度dY为5mm,计算波长范围为3μm-14μm,计算步长为0.005μm。入射角为0°。计算ZnS/ZnSe叠层光学材料的反射率和透射率。根据图(4)和图(5)分别确定ZnS和ZnSe的折射率和消光系数。
1、根据公式(1)~(4),计算并构建ZnS/ZnSe叠层光学材料中3个界面的反射率光谱。计算结果如图6所示。根据第1界面的透射率T1=1-R1;第2界面的透射率T2=1-R2;第3界面的透射率T3=1-R3,计算并构建三个界面的透射率光谱。
2、根据公式(1)和(5)~(9),分别计算并构建ZnS和ZnSe的内透过率光谱。计算结果如图7所示。
3、根据公式(10)和(11),分别计算并构建等效界面从空气方向入射的前向等效反射率光谱和等效透射率光谱。计算结果如图8所示。根据公式(12)和(13),分别计算并构建等效界面从ZnSe方向入射的后向等效反射率光谱和等效透射率光谱。计算结果如图9所示。
4、根据公式(14)和(15),分别计算并构建整个ZnS/ZnSe叠层光学材料的反射率和透射率光谱。计算结果分别如图10和11所示。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。

Claims (2)

1.一种二元叠层光学材料反射率和透射率光谱的计算方法,其特征在于,所述计算方法包括如下步骤:
(1)计算二元叠层光学材料中各界面的反射率和透射率光谱:
假设二元叠层光学材料中,前表面为X介质,后表面为Y介质,所述X介质、Y介质和空气的复折射率分别为NA、NB、N0,入射角为θ0,则所述X介质和Y介质内的复折射角如公式(1)所示:
N A s i n θ ~ A = N B s i n θ ~ B = N 0 sinθ 0 - - - ( 1 )
二元叠层光学材料中两种介质叠加共形成三个界面,第1界面的反射率和透射率分别为R1和T1;第2界面的反射率和透射率分别为R2和T2;第3界面的反射率和透射率分别为R3和T3
根据公式(2)、(3)和(4),分别计算第1界面、第2界面和第3界面的反射率,构建各界面的反射率光谱:
R 1 , s = ( N 0 cos θ ~ 0 - N A cos θ ~ A N 0 cos θ ~ 0 + N A cos θ ~ A ) ( N 0 cos θ ~ 0 - N A cos θ ~ A N 0 cos θ ~ 0 + N A cos θ ~ A ) * R 1 , p = ( N 0 cos θ ~ A - N A cos θ ~ 0 N 0 cos θ ~ A + N A cos θ ~ 0 ) ( N 0 cos θ ~ 0 - N A cos θ ~ 0 N 0 cos θ ~ A + N A cos θ ~ 0 ) * R 1 = R 1 , s + R 1 , p 2 - - - ( 2 )
R 2 , s = ( N A cos θ ~ A - N B cos θ ~ B N A cos θ ~ A + N B cos θ ~ B ) ( N A cos θ ~ A - N B cos θ ~ B N A cos θ ~ A + N B cos θ ~ B ) * R 2 , p = ( N A cos θ ~ B - N B cos θ ~ A N A cos θ ~ B + N B cos θ ~ A ) ( N A cos θ ~ B - N B cos θ ~ A N A cos θ ~ B + N B cos θ ~ A ) * R 2 = R 2 , s + R 2 , p 2 - - - ( 3 )
R 3 , s = ( N B cos θ ~ B - N 0 cos θ ~ 0 N B cos θ ~ B + N 0 cos θ ~ 0 ) ( N B cos θ ~ B - N 0 cos θ ~ 0 N B cos θ ~ B + N 0 cos θ ~ 0 ) * R 3 , p = ( N A cos θ ~ B - N B cos θ ~ A N A cos θ ~ B + N B cos θ ~ A ) ( N A cos θ ~ B - N B cos θ ~ A N A cos θ ~ B + N B cos θ ~ A ) * R 3 = R 3 , s + R 3 , p 2 - - - ( 4 )
其中,R1,s和R1,p分别为第1界面的S偏振反射率和P偏振反射率,R2,s和R2,p分别为第2界面的S偏振反射率和P偏振反射率,R3,s和R3p分别为第3界面的S偏振反射率和P偏振反射率;
根据第1界面的透射率T1=1-R1,第2界面的透射率T2=1-R2,第3界面的透射率T3=1-R3,分别计算所述第1界面、第2界面和第3界面的透射率,构建各界面的透射率光谱;
(2)计算二元叠层光学材料中各介质的内透过率光谱:
介质中复折射角的正弦和余弦,如公式(5)所示:
s i n θ ~ = s ′ + js ′ ′ c o s θ ~ = c ′ + jc ′ ′ - - - ( 5 )
其中,s′和s″分别为复折射角的正弦的实部和虚部,c′和c″分别为复折射角的余弦的实部和虚部;
介质的等效折射率如公式(6)所示:
N ~ = ( ns ′ + ks ′ ′ ) 2 + ( nc ′ + kc ′ ′ ) 2 - - - ( 6 )
其中,n和k分别为介质的折射率和消光系数;
光线真实传播角度与等效折射率的关系,如公式(7)所示:
等效消光系数K与等效折射率的关系,如公式(8)所示:
根据公式(5)~(8),计算介质的等效折射率和等效消光系数K;根据公式(9)计算入射到介质表面的折射光波在介质内部的内透过率u:
u = exp ( - 4 π K d λ ) - - - ( 9 )
其中,d为介质的几何厚度,λ为波长;
根据公式(1)和(5)~(9),分别计算所述X介质和Y介质的内透过率ux和uy,构建各介质的内透过率光谱;
(3)计算等效界面的反射率和透射率光谱:
将第1界面和第2界面等效为界面x,
根据公式(10),计算从空气方向入射的等效反射率Ra,构建从空气方向入射的等效反射率光谱:
R a = R 1 + Tu x R 2 u x T 1 + T 1 u x R 2 u x R 1 u x R 2 u x T 1 + T 1 u x R 2 u x ( R 1 u x R 2 u x ) 2 T 1 ... = R 1 + ( 1 - R 1 ) 2 R 2 ( u x ) 2 1 - R 1 R 2 ( u x ) 2 - - - ( 10 )
根据公式(11),计算从空气方向入射的等效透射率Ta,构建从空气方向入射的等效透射率光谱:
T a = T 1 u x T 2 + T 1 u x R 2 u x R 1 u x T 2 + T 1 u x R 2 u x R 1 u x R 2 u x R 1 u x T 2 + ... = ( 1 - R 1 ) ( 1 - R 2 ) u x 1 - R 1 R 2 ( u x ) 2 - - - ( 11 )
根据公式(12),计算从Y介质方向入射的等效反射率Rx,构建从Y介质方向入射的等效反射率光谱:
R x = R 2 + T 2 u x R 1 u x T 2 + T 2 u x R 1 u x R 2 u x R 1 u x T 2 + T 2 u x R 1 u x ( R 2 u x R 1 u x ) 2 T 2 ... = R 2 + ( 1 - R 2 ) 2 R 1 ( u x ) 2 1 - R 1 R 2 ( u x ) 2 - - - ( 12 )
根据公式(13),计算从Y介质方向入射的等效透射率Tx,构建从Y介质方向入射的等效透射率光谱:
Tx=T2uxT1+T2uxR1uxR2uxT1+T2uxR1uxR2uxR1uxR2uxT1+…=Ta (13)
(4)计算整个二元叠层光学材料的反射率和透射率光谱:
根据公式(14),计算整个二元叠层光学材料的反射率R,构建整个二元叠层光学材料的反射率光谱:
R = R a + T a u x R 3 u y T x + T a u y R 3 u y R x u y R 3 u y T x + T a u y R 3 u y ( R x u y R 3 u y ) 2 T x ... = R a + T a T x R 3 ( u y ) 2 1 - R x R 3 ( u y ) 2 - - - ( 14 )
根据公式(15),计算整个二元叠层光学材料的透射率T,构建整个二元叠层光学材料的透射率光谱:
T = T a u y T 3 + T a u y R 3 u y R x u y T 3 + T a u y R 3 u y R x u y R 3 u x R x u y T 3 + ... = T a T 3 u y 1 - R x R 3 ( u y ) 2 - - - ( 15 ) .
2.如权利要求1所述的计算方法,其特征在于,所述X介质为ZnS,所述Y介质为ZnSe。
CN201611110411.1A 2016-12-06 2016-12-06 一种二元叠层光学材料反射率和透射率光谱的计算方法 Active CN106680216B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611110411.1A CN106680216B (zh) 2016-12-06 2016-12-06 一种二元叠层光学材料反射率和透射率光谱的计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611110411.1A CN106680216B (zh) 2016-12-06 2016-12-06 一种二元叠层光学材料反射率和透射率光谱的计算方法

Publications (2)

Publication Number Publication Date
CN106680216A true CN106680216A (zh) 2017-05-17
CN106680216B CN106680216B (zh) 2019-04-19

Family

ID=58867657

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611110411.1A Active CN106680216B (zh) 2016-12-06 2016-12-06 一种二元叠层光学材料反射率和透射率光谱的计算方法

Country Status (1)

Country Link
CN (1) CN106680216B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108089372A (zh) * 2017-12-08 2018-05-29 青岛海信电器股份有限公司 侧入式背光模组及液晶显示装置
CN109212637A (zh) * 2018-11-02 2019-01-15 天津津航技术物理研究所 一种球面光学多层膜元件的光学特性获取方法
CN109374544A (zh) * 2018-11-02 2019-02-22 天津津航技术物理研究所 光学介质薄膜含水缺陷深度的表征方法
CN109580552A (zh) * 2018-12-13 2019-04-05 天津津航技术物理研究所 具有折射率轴向非均匀性的光学材料光谱性能计算方法
CN110763657A (zh) * 2019-11-20 2020-02-07 江苏赛诺格兰医疗科技有限公司 用于反射材料反射率测试系统的光电数字转换系统
CN111063400A (zh) * 2019-12-18 2020-04-24 哈尔滨工业大学 一种太阳光谱全吸收碳基功能材料的设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145794A1 (en) * 2002-09-12 2004-07-29 Eastman Kodak Company Apparatus and method for selectively exposing photosensitive materials using a spatial light modulator
CN103616392A (zh) * 2013-11-21 2014-03-05 同济大学 光学薄膜x射线反射率、荧光强度及光谱数据处理方法
CN104838305A (zh) * 2012-11-05 2015-08-12 株式会社尼康依视路 光学元件、光学元件的制造方法、及重影光的定量方法
JP2016090928A (ja) * 2014-11-10 2016-05-23 住友化学株式会社 光学積層体、液晶パネル及び液晶表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145794A1 (en) * 2002-09-12 2004-07-29 Eastman Kodak Company Apparatus and method for selectively exposing photosensitive materials using a spatial light modulator
CN104838305A (zh) * 2012-11-05 2015-08-12 株式会社尼康依视路 光学元件、光学元件的制造方法、及重影光的定量方法
CN103616392A (zh) * 2013-11-21 2014-03-05 同济大学 光学薄膜x射线反射率、荧光强度及光谱数据处理方法
JP2016090928A (ja) * 2014-11-10 2016-05-23 住友化学株式会社 光学積層体、液晶パネル及び液晶表示装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108089372A (zh) * 2017-12-08 2018-05-29 青岛海信电器股份有限公司 侧入式背光模组及液晶显示装置
CN109212637A (zh) * 2018-11-02 2019-01-15 天津津航技术物理研究所 一种球面光学多层膜元件的光学特性获取方法
CN109374544A (zh) * 2018-11-02 2019-02-22 天津津航技术物理研究所 光学介质薄膜含水缺陷深度的表征方法
CN109374544B (zh) * 2018-11-02 2021-02-12 天津津航技术物理研究所 光学介质薄膜含水缺陷深度的表征方法
CN109580552A (zh) * 2018-12-13 2019-04-05 天津津航技术物理研究所 具有折射率轴向非均匀性的光学材料光谱性能计算方法
CN110763657A (zh) * 2019-11-20 2020-02-07 江苏赛诺格兰医疗科技有限公司 用于反射材料反射率测试系统的光电数字转换系统
CN111063400A (zh) * 2019-12-18 2020-04-24 哈尔滨工业大学 一种太阳光谱全吸收碳基功能材料的设计方法
CN111063400B (zh) * 2019-12-18 2020-12-11 哈尔滨工业大学 一种太阳光谱全吸收碳基功能材料的设计方法

Also Published As

Publication number Publication date
CN106680216B (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
CN106680216A (zh) 一种二元叠层光学材料反射率和透射率光谱的计算方法
CN107515438B (zh) 一种红外宽谱段截止窄带激光分光元件
CN103777274B (zh) 金属光栅偏振分束器及其制备方法
CN103367931B (zh) 红外多波长吸收器
CN103728685A (zh) 梯形金属介质膜宽带脉冲压缩光栅
CN109904578A (zh) 一种高效太赫兹人工表面等离激元定向耦合器及耦合方法
CN106679939A (zh) 一种氟化钇光学薄膜红外光学常数计算方法
CN107817615A (zh) 一种同时实现激光低反射与红外低辐射的亚波长结构材料
CN107300783A (zh) 一种可见光、激光与中红外波段分色元件及设计方法
Hao et al. Design of one-dimensional composite photonic crystal with high infrared reflectivity and low microwave reflectivity
CN106526840B (zh) 一种二元叠层光学材料定向光谱热辐射率的计算方法
EP3593991A1 (en) Decoration member and manufacturing method therefor
CN106644087A (zh) 一种多层光学薄膜光谱热辐射率的计算方法
CN109324361B (zh) 一种超宽波段近完美吸收器及其制造方法
CN106950621A (zh) 一种宽带低损耗太赫兹远场超透镜及其成像方法
CN103984047A (zh) 一种红外超材料吸波体
CN104503008B (zh) 一种提高宽谱光吸收效率的复合结构
CN104765085B (zh) 一种线性频域光栅及其设计方法
Hsue et al. Lateral beam displacements in transmitting layered structures
CN109286053A (zh) 一种结合渐变超表面和亚波长波导的片上宽带太赫兹单向传输器
CN110456428B (zh) 一种提升光学薄膜耐热性的生产工艺
CN215986751U (zh) 一种分光装置及系统
Abed et al. Designing High Reflectivity Omnidirectional Coating of Mirrors for Near Infrared Spectrum (700-2500 nm)
Ding et al. Research on multi-band compatible stealth film based on D/M/D structure in green circumstance
Liu et al. Study on a new type of green infrared stealth film material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant