CN106676238B - 一种轨道交通设备大型金属构件振动时效处理方法 - Google Patents

一种轨道交通设备大型金属构件振动时效处理方法 Download PDF

Info

Publication number
CN106676238B
CN106676238B CN201510744079.3A CN201510744079A CN106676238B CN 106676238 B CN106676238 B CN 106676238B CN 201510744079 A CN201510744079 A CN 201510744079A CN 106676238 B CN106676238 B CN 106676238B
Authority
CN
China
Prior art keywords
vibration
metal component
scale metal
band large
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510744079.3A
Other languages
English (en)
Other versions
CN106676238A (zh
Inventor
王鹏
廖岳汉
刘护林
黄成�
刘国涛
余锋
陈彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuzhou CRRC Times Electric Co Ltd
Original Assignee
Zhuzhou CSR Times Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuzhou CSR Times Electric Co Ltd filed Critical Zhuzhou CSR Times Electric Co Ltd
Priority to CN201510744079.3A priority Critical patent/CN106676238B/zh
Publication of CN106676238A publication Critical patent/CN106676238A/zh
Application granted granted Critical
Publication of CN106676238B publication Critical patent/CN106676238B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本发明公开了一种轨道交通设备大型金属构件振动时效处理方法,该方法包括以下步骤:将大型金属构件安装在振动试验台;确定振动试验控制点和响应点位置;对大型金属构件进行正弦扫描振动试验;确定大型金属构件的共振频率;对大型金属构件进行共振频率点定频正弦振动时效处理;对大型金属构件进行宽带随机振动时效处理;分别完成大型金属构件在垂向、横向和纵向的振动时效处理。本发明能够解决迅速有效地消除大型金属构件残余应力的技术问题。

Description

一种轨道交通设备大型金属构件振动时效处理方法
技术领域
本发明涉及轨道交通设备测试领域,尤其是涉及一种应用于轨道交通设备大型金属构件的振动时效处理方法。
背景技术
随着列车运行速度和轴重的不断增加,轨道交通设备也正朝着系统化、集成化的方向发展,如:牵引变流器等核心列车设备的尺寸与质量变得越来越大,其主结构(大型金属构件)在生产制造过程中因焊接、切削等工序所产生的残余应力对其尺寸精度、负载能力等造成重大的影响,会导致构件处于不稳定状态,从而降低构件的尺寸稳定性和机械物理性能。残余应力的危害很多,其对金属构件的屈服极限、疲劳寿命、变形、金属脆性破坏等造成巨大的影响,会导致构件在制造及使用过程中产生变形和失效,同时加速了金属材料在腐蚀性环境中的腐蚀速度。
为消除金属构件的残余应力,现有技术中通常采用自然时效、热时效和振动时效。热时效就是将工件加热到弹塑行转变温度,并保持一定时间,使工件的残余应力得到松弛,然后极为缓慢地降低温度,使工件在冷却之后处于低应力状态。振动时效(VibratoryStress Relief)处理是在激振器的周期性外力(激振力)的作用下,使被处理的工件产生共振,并通过这种共振方式将一定的振动能量传递到工件的所有部位,使工件内部发生微观的塑性变形—被歪曲的晶格逐渐恢复平衡状态。位错重新滑移并钉扎,从而使工件内部的残余应力得以消除和均化,最终防止工件在加工和使用过程中变形和开裂,保证工件尺寸精度的稳定性。振动时效是采用振动处理的方法代替自然时效与热时效,其工作原理是通过外部激励使构件处于振动状态,经过一定时间的振动处理达到消除残余应力和稳定尺寸的目的。
作为一种消除大型金属构件残余应力的常用方法,振动时效具有能耗低、时间短、效果好、经济效益显著等优点,广泛应用于机械制造业中。但是,对于轨道交通设备大型金属构件来说,由于其结构尺寸大、自身质量大,通过常规的热时效或振动时效处理方法都难以使残余应力的消除效果达到最佳状态,而普通的热时效因高成本和高污染而不适应大批量的工业生产逐渐被淘汰。
现有技术中常用的大型金属构件振动时效处理方法步骤一般为:
(1)构件的支承:支承的选择,恰当地支承工件可使工件平稳和振动自如,再将激振器和传感器利用夹具紧固在工件上。
(2)构件振前扫频:使激振器电机的转速在适当的范围内均匀升速,其作用是寻找构件共振频率及相应的振幅值。
(3)确定共振频率:在上述扫频过程中,工作振幅最大处所对应的频率为理想的共振频率。
(4)共振频率振动:构件在选定的共振频率下振动一定的时间。
以上所述现有的振动时效处理方法具有以下技术缺陷:
(1)需要应用专用的振动时效激励设备,一般采用电动机作为激励装置;
(2)采用开环控制方式所确定的构件共振频率点存在较大误差;
(3)仅采用正弦扫频和共振点正弦定频振动方式对大型构件进行激励,而某些构件中的残余应力无法通过正弦振动进行消除,因而某些时候一般的振动时效处理方法并不能达到最佳的效果。
发明内容
有鉴于此,本发明的目的在于提供一种轨道交通设备大型金属构件振动时效处理方法,能够解决迅速有效地消除大型金属构件残余应力的技术问题。
为了实现上述发明目的,本发明具体提供了一种轨道交通设备大型金属构件振动时效处理方法的技术实现方案,一种轨道交通设备大型金属构件振动时效处理方法,包括以下步骤:
S101:将大型金属构件安装在振动试验台;
S102:确定振动试验控制点和响应点位置;
S103:对所述大型金属构件进行正弦扫描振动试验;
S104:确定所述大型金属构件的共振频率;
S105:对所述大型金属构件进行共振频率点定频正弦振动时效处理;
S106:对所述大型金属构件进行宽带随机振动时效处理;
S107:重复上述步骤S102至步骤S106,以分别完成所述大型金属构件在垂向、横向和纵向的振动时效处理。
本发明还具体提供了另一种轨道交通设备大型金属构件振动时效处理方法的技术实现方案,包括以下步骤:
S101:将大型金属构件安装在振动试验台;
S102:确定振动试验控制点和响应点位置;
S103:对所述大型金属构件进行正弦扫描振动试验;
S104:确定所述大型金属构件的共振频率;
S105:对所述大型金属构件进行宽带随机振动时效处理;
S106:对所述大型金属构件进行共振频率点定频正弦振动时效处理;
S107:重复上述步骤S102至步骤S106,以分别完成所述大型金属构件在垂向、横向和纵向的振动时效处理。
优选的,所述振动试验台能完成正弦扫频振动试验、定频正弦振动时效处理和宽带随机振动时效处理。
优选的,所述步骤S101进一步包括:
将所述大型金属构件通过夹具紧固安装在所述振动试验台上,所述大型金属构件在夹具上的安装方式与所述大型金属构件的实际安装方式一致。所述夹具的一端通过螺栓与所述大型金属构件紧固连接,所述夹具的另一端通过螺栓与所述振动试验台紧固连接。
优选的,所述步骤S102进一步包括:
将振动试验的控制点选在所述振动试验台的台面上,将振动试验的响应点选在所述大型金属构件的最上部,并在所述控制点与所述响应点分别粘接加速度计。
优选的,在所述步骤S104中,确定所述大型金属构件的共振频率是通过在正弦扫频振动试验中,分析所述控制点和所述响应点的加速度频谱确定的。
优选的,在所述步骤S103中,所述正弦扫描振动试验的参数为:
振动频率范围:2~1600Hz;
扫描速率:1~5oct/min;
振动加速度:0.2~1g;
扫描循环次数:1个循环。
优选的,在所述步骤S105或步骤S106中,所述共振频率点定频正弦振动时效处理的参数为:
振动频率:所述大型金属构件的共振频率
振动加速度:1~10g;
试验时间:15min~60min。
优选的,在所述步骤S106或步骤S105中,所述宽带随机振动时效处理的参数为:
振动频率范围:2~150Hz;
振动加速度均方根值:1~5g rms;
试验时间:30min~120min。
优选的,所述大型金属构件按照垂向、横向、纵向的振动方向顺序完成振动时效处理。
通过实施上述本发明提供的轨道交通设备大型金属构件振动时效处理方法的技术方案,具有如下有益效果:
(1)本发明振动时效处理方法简单可靠、可操作性强,能够迅速有效地消除大型金属构件残余应力,残余应力消除效率高;
(2)本发明利用振动试验台来完成大型金属构件的时效处理,因而不需要购置专用的振动时效设备;
(3)本发明采用振动试验台的正弦扫频试验方法,并通过分析控制点与响应点的加速度频谱图,能够迅速精确地确定大型金属构件的共振频率;
(4)本发明在共振频率点定频正弦振动时效处理后,再进行宽带随机振动时效处理,能够充分消除大型金属构件在前项试验未能消除的残余应力,其振动时效处理的效果大大优于一般振动时效处理方法。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的实施例。
图1是本发明轨道交通设备大型金属构件振动时效处理方法一种具体实施方式的程序流程图;
图2是本发明轨道交通设备大型金属构件振动时效处理方法一种具体实施方式中正弦扫频加速度试验的频谱示意图;
图3是本发明轨道交通设备大型金属构件振动时效处理方法一种具体实施方式中宽带随机振动时效处理剖面的示意图;
图4是用于实现本发明方法的轨道交通设备大型金属构件振动时效处理系统结构组成示意图;
图中,1-大型金属构件,2-夹具,3-振动试验台。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如附图1至附图4所示,给出了本发明轨道交通设备大型金属构件振动时效处理方法的具体实施例,下面结合附图和具体实施例对本发明作进一步说明。
实施例1:
如附图1所示,一种轨道交通设备大型金属构件振动时效处理方法的具体实施例,包括以下步骤:
S101:将大型金属构件1安装在振动试验台3;
S102:确定振动试验控制点和响应点位置;
S103:对大型金属构件1进行正弦扫描振动试验;
S104:确定大型金属构件1的共振频率;
S105:对大型金属构件1进行共振频率点定频正弦振动时效处理;
S106:对大型金属构件1进行宽带随机振动时效处理;
S107:重复上述步骤S102至步骤S106,以分别完成大型金属构件1在垂向、横向和纵向的振动时效处理。
振动试验台3能完成正弦扫频振动试验、定频正弦振动时效处理和宽带随机振动时效处理。
步骤S101进一步包括:
将大型金属构件1通过夹具2紧固安装在振动试验台3上,大型金属构件1在夹具2上的安装方式与大型金属构件1的实际安装方式一致,如附图4所示。夹具2的一端通过螺栓与大型金属构件1紧固连接,夹具2的另一端通过螺栓与振动试验台3紧固连接。
步骤S102进一步包括:
将振动试验的控制点选定在振动试验台3的台面上,将振动试验的响应点选定在大型金属构件1的最上部,并在控制点与响应点分别粘接加速度计,此时用于进行大型金属构件1在垂向的振动时效时效处理。当进行大型金属构件1在横向和纵向的振动时效处理时,振动试验的控制点仍然选定在振动试验台的台面上,而振动试验的响应点选定在大型金属构件1上与振动方向垂直的面。
步骤S104进一步包括:通过步骤S103中的正弦扫描振动试验,根据振动试验频谱,可以确定大型金属构件1的共振频率。在步骤S104中,确定大型金属构件1的共振频率是通过在正弦扫频振动试验中,分析控制点和响应点的加速度频谱确定的。如附图2所示,响应点加速度计频谱中共振峰所对应的频率可视为大型金属构件1的共振频率,附图2中的共振频率=50Hz。图中,如B所示为响应点的加速度频谱,如A所示为正弦扫频加速度频谱图的共振峰。
在步骤S103中,通过振动试验台3进行正弦扫描振动试验,正弦扫描振动试验的参数为:
振动频率范围:2~1600Hz;
扫描速率:1~5oct/min;
振动加速度:0.2~1g(g为重力加速度单位);
扫描循环次数:1个循环(1个往返)。
在步骤S105中,通过振动综合试验台3实现定频正弦振动时效处理,共振频率点定频正弦振动时效处理的参数为:
振动频率:大型金属构件1的共振频率,如附图2中为50Hz;
振动加速度:1~10g;
试验时间:15min~60min。
在步骤S106中,通过振动试验台3实现宽带随机振动时效处理,宽带随机振动时效处理的参数为:
宽带随机振动PSD(Power Spectral Density,功率谱密度)谱如附图3所示,在附图3中,振动频率范围为:2~150Hz;
振动加速度均方根值:1~5g rms;
试验时间:30min~120min。
在步骤S107中,按照步骤S105和步骤S106中的试验要求,完成大型金属构件1在垂向、横向和纵向三个振动方向的振动时效处理。
实施例1描述的轨道交通设备大型金属构件振动时效处理方法针对现有振动时效处理方法的不足,充分考虑到轨道交通设备用大型金属构件的特点,利用大型振动试验台(这样不需要购置专用的振动时效设备),通过正弦扫频试验、共振频率点定频正弦时效处理、宽带随机振动时效处理,可迅速消除大型金属构件的残余应力。实施例1描述的上述振动时效处理方法具有简单可靠、可操作性强,残余应力消除效率高等优点。
实施例2:
另一种轨道交通设备大型金属构件振动时效处理方法的具体实施例,包括以下步骤:
S101:将大型金属构件1安装在振动试验台3;
S102:确定振动试验控制点和响应点位置;
S103:对大型金属构件1进行正弦扫描振动试验;
S104:确定大型金属构件1的共振频率;
S105:对大型金属构件1进行宽带随机振动时效处理;
S106:对大型金属构件1进行共振频率点定频正弦振动时效处理;
S107:重复上述步骤S102至步骤S106,以分别完成大型金属构件1在垂向、横向和纵向的振动时效处理。
实施例2在上述实施例1的基础上,将共振频率点定频正弦振动时效处理与宽带随机振动时效处理的步骤互换,也能够达到相应的时效处理效果。
实施例3:
实施例3在上述实施例1和实施例2的基础上,按照垂向→横向→纵向的振动方向顺序完成大型金属构件1的振动时效处理,此顺序为本发明优选的振动方向顺序。当然,也可以改变大型金属构件振动方向的顺序来达到类似的效果,如垂向→纵向→横向等。
通过实施本发明具体实施例描述的轨道交通设备大型金属构件振动时效处理方法的技术方案,能够产生如下技术效果:
(1)本发明具体实施例描述的轨道交通设备大型金属构件振动时效处理方法简单可靠、可操作性强,能够迅速有效地消除大型金属构件残余应力,残余应力消除效率高;
(2)本发明具体实施例描述的轨道交通设备大型金属构件振动时效处理方法利用振动试验台来完成大型金属构件的时效处理,因而不需要购置专用的振动时效设备;
(3)本发明具体实施例描述的轨道交通设备大型金属构件振动时效处理方法采用振动试验台的正弦扫频试验方法,并通过分析控制点与响应点的加速度频谱图,能够迅速精确地确定大型金属构件的共振频率;
(4)本发明具体实施例描述的轨道交通设备大型金属构件振动时效处理方法在共振频率点定频正弦振动时效处理后,再进行宽带随机振动时效处理,能够充分消除大型金属构件在前项试验未能消除的残余应力,其振动时效处理的效果大大优于一般振动时效处理方法。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。虽然本发明已以较佳实施例揭示如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明的精神实质和技术方案的情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同替换、等效变化及修饰,均仍属于本发明技术方案保护的范围。

Claims (8)

1.一种轨道交通设备大型金属构件振动时效处理方法,其特征在于,包括以下步骤:
S101:将大型金属构件安装在振动试验台;
S102:确定振动试验控制点和响应点位置,将振动试验的控制点选定在振动试验台的台面上,将振动试验的响应点选定在所述大型金属构件的最上部,并在所述控制点与响应点分别粘接加速度计,用于进行大型金属构件在垂向的振动时效时效处理;当进行所述大型金属构件在横向和纵向的振动时效处理时,振动试验的控制点选定在振动试验台的台面上,而振动试验的响应点选定在所述大型金属构件上与振动方向垂直的面;
S103:对所述大型金属构件进行正弦扫频振动试验;
S104:通过在正弦扫频振动试验中,分析所述控制点和响应点的加速度频谱确定所述大型金属构件的共振频率;
S105:对所述大型金属构件进行共振频率点定频正弦振动时效处理;
S106:对所述大型金属构件进行宽带随机振动时效处理;
S107:重复上述步骤S102至步骤S106,以分别完成所述大型金属构件在垂向、横向和纵向的振动时效处理。
2.一种轨道交通设备大型金属构件振动时效处理方法,其特征在于,包括以下步骤:
S101:将大型金属构件安装在振动试验台;
S102:确定振动试验控制点和响应点位置,将振动试验的控制点选定在振动试验台的台面上,将振动试验的响应点选定在所述大型金属构件的最上部,并在所述控制点与响应点分别粘接加速度计,用于进行大型金属构件在垂向的振动时效时效处理;当进行所述大型金属构件在横向和纵向的振动时效处理时,振动试验的控制点选定在振动试验台的台面上,而振动试验的响应点选定在所述大型金属构件上与振动方向垂直的面;
S103:对所述大型金属构件进行正弦扫频振动试验;
S104:通过在正弦扫频振动试验中,分析所述控制点和响应点的加速度频谱确定所述大型金属构件的共振频率;
S105:对所述大型金属构件进行宽带随机振动时效处理;
S106:对所述大型金属构件进行共振频率点定频正弦振动时效处理;
S107:重复上述步骤S102至步骤S106,以分别完成所述大型金属构件在垂向、横向和纵向的振动时效处理。
3.根据权利要求1或2所述的轨道交通设备大型金属构件振动时效处理方法,其特征在于:所述振动试验台能完成正弦扫频振动试验、定频正弦振动时效处理和宽带随机振动时效处理。
4.根据权利要求3所述的轨道交通设备大型金属构件振动时效处理方法,其特征在于:所述步骤S101进一步包括:
将所述大型金属构件通过夹具紧固安装在所述振动试验台上,所述大型金属构件在夹具上的安装方式与所述大型金属构件的实际安装方式一致;所述夹具的一端通过螺栓与所述大型金属构件紧固连接,所述夹具的另一端通过螺栓与所述振动试验台紧固连接。
5.根据权利要求1、2或4任一项所述的轨道交通设备大型金属构件振动时效处理方法,其特征在于:在所述步骤S103中,所述正弦扫频振动试验的参数为:
振动频率范围:2~1600Hz;
扫描速率:1~5oct/min;
振动加速度:0.2~1g;
扫描循环次数:1个循环。
6.根据权利要求5所述的轨道交通设备大型金属构件振动时效处理方法,其特征在于,在所述步骤S105或步骤S106中,所述共振频率点定频正弦振动时效处理的参数为:
振动频率:所述大型金属构件的共振频率;
振动加速度:1~10g;
试验时间:15min~60min。
7.根据权利要求6所述的轨道交通设备大型金属构件振动时效处理方法,其特征在于,在所述步骤S106或步骤S105中,所述宽带随机振动时效处理的参数为:
振动频率范围:2~150Hz;
振动加速度均方根值:1~5g rms;
试验时间:30min~120min。
8.根据权利要求1、2、4、6或7任一项所述的轨道交通设备大型金属构件振动时效处理方法,其特征在于:所述大型金属构件按照垂向、横向、纵向的振动方向顺序完成振动时效处理。
CN201510744079.3A 2015-11-05 2015-11-05 一种轨道交通设备大型金属构件振动时效处理方法 Active CN106676238B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510744079.3A CN106676238B (zh) 2015-11-05 2015-11-05 一种轨道交通设备大型金属构件振动时效处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510744079.3A CN106676238B (zh) 2015-11-05 2015-11-05 一种轨道交通设备大型金属构件振动时效处理方法

Publications (2)

Publication Number Publication Date
CN106676238A CN106676238A (zh) 2017-05-17
CN106676238B true CN106676238B (zh) 2018-05-15

Family

ID=58858284

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510744079.3A Active CN106676238B (zh) 2015-11-05 2015-11-05 一种轨道交通设备大型金属构件振动时效处理方法

Country Status (1)

Country Link
CN (1) CN106676238B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109540439B (zh) * 2018-12-20 2020-11-20 贵州永红航空机械有限责任公司 一种预冷器振动控制用振动夹具及试验方法
CN112665810B (zh) * 2020-12-28 2023-05-30 亿咖通(湖北)技术有限公司 芯片振动脱落的确定方法、系统、存储介质及电子设备
CN113252263A (zh) * 2021-04-12 2021-08-13 西南交通大学 扣件高频振动疲劳试验系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089030A (zh) * 1992-12-30 1994-07-06 林易人 振动处理零件谐振频率的检测方法
CN101492766A (zh) * 2009-03-16 2009-07-29 苏州长菱测试技术有限公司 一种运用电动振动试验系统进行的振动时效方法及装置
CN103683716A (zh) * 2013-12-12 2014-03-26 山东华力电机集团股份有限公司 电机铁芯的振动时效处理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1089030A (zh) * 1992-12-30 1994-07-06 林易人 振动处理零件谐振频率的检测方法
CN101492766A (zh) * 2009-03-16 2009-07-29 苏州长菱测试技术有限公司 一种运用电动振动试验系统进行的振动时效方法及装置
CN103683716A (zh) * 2013-12-12 2014-03-26 山东华力电机集团股份有限公司 电机铁芯的振动时效处理装置

Also Published As

Publication number Publication date
CN106676238A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN106676238B (zh) 一种轨道交通设备大型金属构件振动时效处理方法
US8621934B2 (en) Dual-axis resonance testing of wind turbine blades
CN102124315B (zh) 试件加载设备和方法
CN104848875B (zh) 杯形波动陀螺杯形谐振子的非接触驱动检测系统及方法
CN102120214A (zh) 一种三自由度混联振动筛
KR20150119990A (ko) 수평방향 가진을 이용한 풍력터빈 블레이드의 플랩방향 피로시험 방법 및 2축 공진 피로시험 방법
CN106676253B (zh) 一种轨道交通设备大型金属构件综合时效处理方法
CN105825029B (zh) 一种用于优化设计高频振动能量放大装置的方法
RU2501608C2 (ru) Вибрационная мельница
CN105372067A (zh) 曲轴扭转疲劳试验装置
CN106574605A (zh) 风力涡轮机塔架振荡的主动提升
CN102353599A (zh) 压电驱动型高频疲劳试验机
KR101382537B1 (ko) 진동시험용 지그 및 이를 이용한 진동시험 방법
CN108130414B (zh) 钢结构桥梁的桥墩振动时效方法
RU2441714C1 (ru) Способ возбуждения резонансных механических колебаний
RU2013101101A (ru) Способ направленного инерционного вибровозбуждения и дебалансный вибровозбудитель направленного действия для его осуществления
CN201742320U (zh) 频率可自动跟踪的振动装置
CN108097585A (zh) 一种激振器
CN220111515U (zh) 一种位移输出型激振器
Bąk et al. The experimental investigation of the screen operation in the parametric resonance conditions
CN103402676B (zh) 用于产生质块的振荡运动的方法和设备
Badretdinov et al. Mathematical Description and Study of the Vibration Deck of a Grain Sorting Machine.
RU2629919C1 (ru) Способ вибрационных испытаний крупногабаритных деталей турбомашины
RU2410167C1 (ru) Способ возбуждения резонансных механических колебаний и устройство для его осуществления (варианты)
Gao A new single degree-of-freedom resonance device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: The age of 412001 in Hunan Province, Zhuzhou Shifeng District Road No. 169

Patentee after: ZHUZHOU CRRC TIMES ELECTRIC Co.,Ltd.

Address before: The age of 412001 in Hunan Province, Zhuzhou Shifeng District Road No. 169

Patentee before: ZHUZH CSR TIMES ELECTRIC Co.,Ltd.

CP01 Change in the name or title of a patent holder