CN106653689B - 一种双脉冲频率激光分离复合SiC的方法 - Google Patents

一种双脉冲频率激光分离复合SiC的方法 Download PDF

Info

Publication number
CN106653689B
CN106653689B CN201611214695.9A CN201611214695A CN106653689B CN 106653689 B CN106653689 B CN 106653689B CN 201611214695 A CN201611214695 A CN 201611214695A CN 106653689 B CN106653689 B CN 106653689B
Authority
CN
China
Prior art keywords
sic
laser
frequency laser
slot
pulse frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611214695.9A
Other languages
English (en)
Other versions
CN106653689A (zh
Inventor
刘昊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201611214695.9A priority Critical patent/CN106653689B/zh
Publication of CN106653689A publication Critical patent/CN106653689A/zh
Application granted granted Critical
Publication of CN106653689B publication Critical patent/CN106653689B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0005Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing
    • B28D5/0011Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by breaking, e.g. dicing with preliminary treatment, e.g. weakening by scoring

Abstract

本发明公开了一种双脉冲频率激光分离复合SiC的方法,通过激光对复合SiC圆片进行焦点校准,首先使用第一脉冲频率激光扫描SiC外延片正面内部靠近表面处,形成第一个V槽;然后使用第二脉冲频率激光扫描SiC外延片正面内部若干不同深度,形成若干V槽;最后对扫描后的复合SiC圆片进行裂片,形成复合SiC芯片。本发明采用双脉冲频率激光分离复合SiC,降低了激光对划片槽的要求,提高了SiC芯片的良品率;第一脉冲频率激光扫描解决了划片槽有金属、介质或复合图形带来的激光进不去的问题,同时加深了第二脉冲频率激光进入的深度,且第一脉冲频率激光产生的能量小,可以实现表面低损伤处理,不会破坏表面的金属、介质或复合图形层。

Description

一种双脉冲频率激光分离复合SiC的方法
技术领域
本发明涉及一种激光分离复合SiC的方法,尤其涉及一种双脉冲频率激光分离复合SiC的方法。
背景技术
SiC是第三代半导体材料的核心材料之一,与Si、GaAs相比,SiC具有带隙宽、热导率高、电子饱和迁移率大、化学稳定性好等优点,因此被用于制作高温、高频、抗辐射、大功率和高密度的集成电子器件。利用它的宽禁带特点还可以制作蓝光、绿光和紫外光的发光器件和光电探测器件等。SiC还可以形成自然氧化层,这对制作以MOS为基础的器件十分有利。
SiC材料以其宽禁带、高击穿临界电场、高饱和速度、高热导率、小介电常数、高电子迁移率、抗辐射能力强和结实耐磨等特性成为制作高频、大功率、耐高温和抗辐射器件的理想材料。在器件研制方面,碳化硅蓝光LED已经商业化,高温高压二极管已经逐渐走向成熟。在高温半导体器件方面,利用碳化硅材料制作的碳化硅JFET和碳化硅器件可以在无任何冷却散热系统下在高温下正常工作,在航空航天、高温辐射环境、石油勘探等方面发挥了重要作用。
SiC材料十分坚硬,在自然界中硬度仅次于金刚石,是一种非常难切割的材料。用砂轮切割必须选用主轴功率较大的设备,刀具的选择也非常有讲究,在切割过程中需要修刀才能保持刀片金刚石的尖锐性,其切割速度最大只能达到4mm/s,对于小芯片的效率极为低下,并且用砂轮切出的SiC芯片会形成一个V角,并且伴随着背面崩边,这样一方面会在后期封装的过程中存在一定尺寸风险,另一方面也会形成SiC芯片失效。
用激光进行分离大大缩短了切割速率,最高速率能够达到600mm/s,并且划片槽的尺寸相比砂轮缩短到原来的1/2,相同芯片尺寸下圆片上的数量可以提高30%-50%,大大降低成本,并且通过裂片后,就不存在V角,金属边缘非常齐整。然而,SiC外延片表面的金属层、介质层或者复合图形层会带来激光进不去的问题或者会影响激光进入的深度,为了确保激光进入深度而加大激光频率,又会带来另一个问题,大能量的激光脉冲会带来外延片的表面损伤,破坏表面金属、介质或复合图形,影响产品质量。
发明内容
发明目的:针对以上问题,本发明提出一种双脉冲频率激光分离复合SiC的方法。
技术方案:为实现本发明的目的,本发明所采用的技术方案是:一种双脉冲频率激光分离复合SiC的方法,包括以下步骤:
(1)在SiC外延片上完成复合SiC圆片的制备;
(2)测量复合SiC圆片切割道区域的厚度;
(3)把复合SiC圆片贴在划片膜上,划片膜设于切割片架上;
(4)测量复合SiC圆片切割道区域与划片膜的总厚度;
(5)用激光对复合SiC圆片进行焦点校准;
(6)SiC外延片正面依次是第一层介质、第二层介质和SiC外延片;使用第一脉冲频率激光扫描SiC外延片正面内部靠近表面处,形成第一个V槽;
(7)使用第二脉冲频率激光扫描SiC外延片正面内部若干不同深度,形成若干V槽;
(8)SiC外延片背面依次是SiC外延片、第一层金属、第二层金属、第三层金属、第四层金属和膜;使用第二脉冲频率激光扫描第一层金属和膜之间的位置,形成最后一个V槽;
(9)对扫描后的复合SiC圆片进行裂片,形成复合SiC芯片。
步骤(6)中,使用第一脉冲频率激光扫描SiC外延片正面内部1/10处,形成第一个V槽。步骤(7)中,具体包括以下步骤:使用第二脉冲频率激光扫描SiC外延片正面内部1/4处,形成第二个V槽;使用第二脉冲频率激光扫描SiC外延片正面内部1/2处,形成第三个V槽;使用第二脉冲频率激光扫描SiC外延片正面内部3/4处,形成第四个V槽。
第一脉冲频率激光的脉冲频率为20~100KHZ,激光扫描速度为100~400mm/S;第二脉冲频率激光的脉冲频率为50~200KHZ,激光扫描速度为200~300mm/S。
有益效果:本发明采用双脉冲频率激光分离复合SiC,降低了激光对划片槽的要求,提高了SiC芯片的良品率和切割效率,同时也提高了SiC圆片单位面积上的芯片数量;第一脉冲频率激光的扫描在SiC外延片表面和两层介质上切开了一定光路宽度,解决了划片槽有金属、介质或复合图形带来的激光进不去的问题,同时加深了第二脉冲频率激光进入的深度,且第一脉冲频率激光产生的能量小,可以实现表面低损伤处理,不会破坏表面金属、介质或复合图形层;增强第二脉冲频率激光的焦点能量,实现扫面点持续向下灼烧的作用,第二脉冲频率激光能量大,能够切开复合SiC圆片。
附图说明
图1是激光扫描第一个V槽的位置示意图;
图2是激光扫描第二个V槽的位置示意图;
图3是激光扫描第三个V槽的位置示意图;
图4是激光扫描第四个V槽的位置示意图;
图5是激光扫描第五个V槽的位置示意图;
图6是裂片后的复合SiC芯片。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明。
本发明所述的双脉冲频率激光分离复合SiC的方法,包括以下步骤:
S1:在SiC外延片103上完成复合SiC圆片的制备,复合SiC圆片的总厚度为210~410μm。
S2:测量复合SiC圆片切割道区域的厚度。
S3:把复合SiC圆片贴在划片膜上,划片膜设于切割片架上,划片膜为蓝膜或UV膜。
S4:测量复合SiC圆片切割道区域与划片膜的总厚度。
S5:使用激光对圆片进行焦点校准。
S6:使用第一脉冲频率激光扫描SiC外延片103正面的两层介质101、102以及SiC外延片103正面内部靠近表面处,可以是正面内部1/10处,形成第一个V槽,如图1所示,示出了此次激光扫描的位置。
第一脉冲频率激光的脉冲频率为20~100KHZ,激光扫描速度为100~400mm/S,焦距镜采用F10~120,激光功率衰减模组角度为82~105°,第一个V槽在SiC外延片103正面开的宽度为30~80μm,与正面之间的距离为5~20μm。
第一脉冲频率激光的扫描在SiC外延片表面和两层介质上切开了一定光路宽度,解决了划片槽有金属、介质或复合图形带来的激光进不去的问题,同时加深了第二脉冲频率激光进入的深度,且第一脉冲频率激光产生的能量小,可以实现表面低损伤处理,不会破坏表面金属、介质或复合图形层。
S7:使用第二脉冲频率激光扫描SiC外延片正面内部若干不同深度,形成若干V槽;例如可以使用第二脉冲频率激光扫描SiC外延片103正面内部1/4处,形成第二个V槽,如图2所示,示出了此次激光扫描的位置。
第二脉冲频率激光的脉冲频率为50~200KHZ,激光扫描速度为200~300mm/S,焦距镜采用F10~120,激光功率衰减模组角度为82~85°,第二个V槽在SiC外延片103正面的距离为90~100μm。
增强第二脉冲频率激光的焦点能量,实现扫面点持续向下灼烧的作用,第二脉冲频率激光能量大,能够切开复合SiC圆片。
S8:使用第二脉冲频率激光扫描SiC外延片103正面内部1/2处,形成第三个V槽,如图3所示,示出了此次激光扫描的位置。
第二脉冲频率激光的脉冲频率为50~200KHZ,激光扫描速度为200~300mm/S,焦距镜采用F10~120,激光功率衰减模组角度为82~87°,第三个V槽在SiC外延片103正面的距离为180~200μm。
S9:使用第二脉冲频率激光扫描SiC外延片103正面内部3/4处,形成第四个V槽,如图4所示,示出了此次激光扫描的位置。
第二脉冲频率激光的脉冲频率为50~200KHZ,激光扫描速度为200~300mm/S,焦距镜采用F10~120,激光功率衰减模组角度为82~90°,第四个V槽在SiC外延片103正面的距离为275~300μm。
S10:如图5所示,SiC外延片103背面依次溅射有第一层金属104、第二层金属105、第三层金属106和第四层金属107,第四层金属107下面为膜108。使用第二脉冲频率激光扫描第一层金属104和膜108之间的位置,形成第五个V槽,如图5所示,示出了此次激光扫描的位置。
第二脉冲频率激光的脉冲频率为50~200KHZ,激光扫描速度为200~300mm/S,焦距镜采用F10~120,激光功率衰减模组角度为82~95°,第五个V槽在SiC外延片103正面的距离为360~400μm。
两层介质101、102是采用等离子体增强化学气相淀积方法(PECVD)或者感应耦合等离子体增强化学气相淀积方法(ICP-PECVD)形成的二氧化硅或者氮化硅,每个介质层的厚度为0.2~0.9μm;而第一层金属104、第二层金属105、第三层金属106和第四层金属107可以采用溅射方式,也可以采用电子束蒸发方式形成,每个金属层的厚度为6~9μm。
S11:对全部扫描完后的复合SiC圆片进行裂片,形成复合SiC芯片,如图6所示。裂片在划片槽中进行,划片槽的宽度设计为激光扫描后SiC外延片损失部分的宽度的10~30倍。
步骤S6至步骤S10中的激光波长为355~1064nm,脉冲频率为20~200KHZ。
采用双脉冲频率激光分离复合SiC,降低了激光对划片槽的要求,提高了SiC芯片的良品率和切割效率,同时也提高了SiC圆片单位面积上的芯片数量。

Claims (6)

1.一种双脉冲频率激光分离复合SiC的方法,其特征在于:包括以下步骤:
(1)在SiC外延片(103)上完成复合SiC圆片的制备;
(2)测量复合SiC圆片切割道区域的厚度;
(3)把复合SiC圆片贴在划片膜上,划片膜设于切割片架上;
(4)测量复合SiC圆片切割道区域与划片膜的总厚度;
(5)用激光对复合SiC圆片进行焦点校准;
(6)SiC外延片(103)正面依次是第一层介质(101)、第二层介质(102)和SiC外延片(103);使用第一脉冲频率激光扫描SiC外延片(103)正面内部1/10处,形成第一个V槽;
(7)使用第二脉冲频率激光扫描SiC外延片(103)正面内部1/4处,形成第二个V槽;正面内部1/2处,形成第三个V槽;正面内部3/4处,形成第四个V槽;
(8)SiC外延片(103)背面依次是SiC外延片(103)、第一层金属(104)、第二层金属(105)、第三层金属(106)、第四层金属(107)和膜(108);使用第二脉冲频率激光扫描第一层金属(104)和膜(108)之间的位置,形成最后一个V槽;
(9)对扫描后的复合SiC圆片进行裂片,形成复合SiC芯片。
2.根据权利要求1所述的双脉冲频率激光分离复合SiC的方法,其特征在于:第一脉冲频率激光的脉冲频率为20~100KHZ,激光扫描速度为100~400mm/S,焦距镜采用F10~120。
3.根据权利要求1所述的双脉冲频率激光分离复合SiC的方法,其特征在于:第二脉冲频率激光的脉冲频率为50~200KHZ,激光扫描速度为200~300mm/S,焦距镜采用F10~120。
4.根据权利要求1所述的双脉冲频率激光分离复合SiC的方法,其特征在于:第一个V槽的激光功率衰减模组角度为82~105°。
5.根据权利要求1所述的双脉冲频率激光分离复合SiC的方法,其特征在于:第二个V槽的激光功率衰减模组角度为82~85°;第三个V槽的激光功率衰减模组角度为82~87°;第四个V槽的激光功率衰减模组角度为82~90°。
6.根据权利要求1所述的双脉冲频率激光分离复合SiC的方法,其特征在于:最后一个V槽的激光功率衰减模组角度为82~95°。
CN201611214695.9A 2016-12-26 2016-12-26 一种双脉冲频率激光分离复合SiC的方法 Active CN106653689B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611214695.9A CN106653689B (zh) 2016-12-26 2016-12-26 一种双脉冲频率激光分离复合SiC的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611214695.9A CN106653689B (zh) 2016-12-26 2016-12-26 一种双脉冲频率激光分离复合SiC的方法

Publications (2)

Publication Number Publication Date
CN106653689A CN106653689A (zh) 2017-05-10
CN106653689B true CN106653689B (zh) 2019-09-10

Family

ID=58827977

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611214695.9A Active CN106653689B (zh) 2016-12-26 2016-12-26 一种双脉冲频率激光分离复合SiC的方法

Country Status (1)

Country Link
CN (1) CN106653689B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107564805A (zh) * 2017-06-30 2018-01-09 中国电子科技集团公司第五十五研究所 一种超薄碳化硅芯片的制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582943A (zh) * 2011-06-15 2014-02-12 应用材料公司 多步骤和非对称塑形的激光束划线
WO2014048539A1 (de) * 2012-09-28 2014-04-03 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und vorrichtung zum dampfdruck-abtragschneiden eines metallischen werkstücks
CN103889643A (zh) * 2011-10-28 2014-06-25 欧司朗光电半导体有限公司 用于分割半导体器件复合件的方法
CN105336686A (zh) * 2015-09-30 2016-02-17 中国电子科技集团公司第五十五研究所 一种复合结构SiC衬底器件的切割方法
CN105598594A (zh) * 2015-12-18 2016-05-25 中国电子科技集团公司第五十五研究所 一种复合结构SiC芯片的激光分离方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103582943A (zh) * 2011-06-15 2014-02-12 应用材料公司 多步骤和非对称塑形的激光束划线
CN103889643A (zh) * 2011-10-28 2014-06-25 欧司朗光电半导体有限公司 用于分割半导体器件复合件的方法
WO2014048539A1 (de) * 2012-09-28 2014-04-03 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und vorrichtung zum dampfdruck-abtragschneiden eines metallischen werkstücks
CN105336686A (zh) * 2015-09-30 2016-02-17 中国电子科技集团公司第五十五研究所 一种复合结构SiC衬底器件的切割方法
CN105598594A (zh) * 2015-12-18 2016-05-25 中国电子科技集团公司第五十五研究所 一种复合结构SiC芯片的激光分离方法

Also Published As

Publication number Publication date
CN106653689A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
KR102273854B1 (ko) 펨토초-기반의 레이저를 이용한 웨이퍼 다이싱 및 플라즈마 식각
CN103582943B (zh) 多步骤和非对称塑形的激光束划线
KR102435723B1 (ko) 플라즈마 다이싱 동안 다이싱 테이프 열 관리를 위한 냉각 페디스털
KR101697383B1 (ko) 반도체 소자의 제조 방법
JP6255255B2 (ja) 光デバイスの加工方法
CN104599960B (zh) 一种大功率电力电子器件晶圆激光切割方法
US20140213042A1 (en) Substrate dicing by laser ablation & plasma etch damage removal for ultra-thin wafers
JP5589942B2 (ja) 半導体発光チップの製造方法
JP2008066751A (ja) 半導体ウェハを個々分割するための装置および方法
JP6527517B2 (ja) ウエハをダイシングする方法及びそのためのキャリア
US9293304B2 (en) Plasma thermal shield for heat dissipation in plasma chamber
US9117868B1 (en) Bipolar electrostatic chuck for dicing tape thermal management during plasma dicing
JP2001284292A (ja) 半導体ウエハーのチップ分割方法
CN105336686B (zh) 一种复合结构SiC衬底器件的切割方法
CN106653689B (zh) 一种双脉冲频率激光分离复合SiC的方法
Liao et al. High quality full ablation cutting and stealth dicing of silica glass using picosecond laser Bessel beam with burst mode
TWI642509B (zh) 使用時間控制的雷射劃線製程及電漿蝕刻之混合式晶圓切割方法與系統
JP2003151921A (ja) 化合物半導体とその製造方法
US20150158117A1 (en) System and method for obtaining laminae made of a material having known optical transparency characteristics
WO2015094822A1 (en) Actively-cooled shadow ring for heat dissipation in plasma chamber
CN105598594A (zh) 一种复合结构SiC芯片的激光分离方法
US9478455B1 (en) Thermal pyrolytic graphite shadow ring assembly for heat dissipation in plasma chamber
Dohnke et al. Comparison of different novel chip separation methods for 4H-SiC
Hermani et al. Nanosecond laser processing of diamond materials
Shi et al. Investigations of the effects of blade type, dicing tape, blade preparation and process parameters on 55nm node low-k wafer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant