CN106647757B - 基于组合个体差分演化的机器人路径规划方法 - Google Patents

基于组合个体差分演化的机器人路径规划方法 Download PDF

Info

Publication number
CN106647757B
CN106647757B CN201611201644.2A CN201611201644A CN106647757B CN 106647757 B CN106647757 B CN 106647757B CN 201611201644 A CN201611201644 A CN 201611201644A CN 106647757 B CN106647757 B CN 106647757B
Authority
CN
China
Prior art keywords
individual
stb
enabled
counter
gone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611201644.2A
Other languages
English (en)
Other versions
CN106647757A (zh
Inventor
郭肇禄
王洋
王丹
周才英
岳雪芝
余法红
吴志健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201611201644.2A priority Critical patent/CN106647757B/zh
Publication of CN106647757A publication Critical patent/CN106647757A/zh
Application granted granted Critical
Publication of CN106647757B publication Critical patent/CN106647757B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0217Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory in accordance with energy consumption, time reduction or distance reduction criteria

Abstract

本发明公开了一种基于组合个体差分演化的机器人路径规划方法。本发明采用关键结点的方式表示机器人的路径,并利用组合个体差分演化来优化机器人路径的关键结点。在组合个体差分演化算法中,利用最优个体与随机个体的信息生成组合个体,并以组合个体来引导算法的搜索方向。此外,在搜索过程中执行局部搜索以提高解的质量。本发明能够提高机器人路径规划的效率。

Description

基于组合个体差分演化的机器人路径规划方法
技术领域
本发明涉及机器人路径规划领域,尤其是涉及一种基于组合个体差分演化的机器人路径规划方法。
背景技术
机器人在现代工业生产中应用非常广泛。机器人能够在一定程度上代替许多人类劳动力,并且它不像人类那样会因为工作时间长了而感到疲劳。因此,机器人可以大大地提高生产效率,提高产品质量。尤其在生产高度精密产品时,机器人可以克服人为主观因素,提高产品生产的可靠性。机器人的路径规划是指在机器人的工作空间范围内,在满足一定的约束条件下为机器人从出发点到终止点设计出一条高效可行的运动路径,从而使机器人完成指派给其的特定任务。由于机器人路径规划的场景往往比较复杂,以及路径规划的范围通常比较大,因此这是一个很有挑战性的工作。
机器人的路径规划问题本质上是一个带约束条件的复杂优化问题,而传统的优化算法往往无法在工程上可忍受的搜索时间内为机器人规划出高效可行的运动路径。演化算法是一种模拟自然界演化规律而建立起来的智能仿生算法,它在解决许多优化问题时能够比传统确定性算法表现出更优越的性能。鉴于演化算法在求解复杂优化问题时的优点,人们将演化算法引入到机器人路径规划问题的求解中。例如,姜英杰利用遗传算法优化变电站巡检机器人的路径规划 (姜英杰,吕学勤,段利伟等.栅格遗传算法的变电站巡检机器人路径规划[J].科技与创新,2015,(6):12-14);田欣等利用先验知识来指导可行路径的搜索,并设计了自适应的遗传参数机制,以此提高路径规划的效率(田欣,刘广瑞,周文博等.基于改进自适应遗传算法的机器人路径规划研究[J].机床与液压,2016, 44(17):24-28,62);陈刚和沈林成针对复杂环境的独有因素,在传统遗传算法的基础上设计了特定的搜索算子及新的适应值函数来优化机器人的运动路径(陈刚,沈林成.复杂环境下路径规划问题的遗传路径规划方法[J].机器人,2001,23(1):40-44,50)。
从现有的研究成果中可知,演化算法已经广泛应用于解决机器人路径规划问题。但是对传统演化算法在求解机器人路径规划问题时容易出现收敛速度慢,路径规划效率不高的缺点。
发明内容
本发明针对传统演化算法在求解机器人路径规划问题时容易出现收敛速度慢,路径规划效率不高的缺点,提出一种基于组合个体差分演化的机器人路径规划方法。本发明能够提高机器人路径规划的效率。
本发明的技术方案:一种基于组合个体差分演化的机器人路径规划方法,包括以下步骤:
步骤1,对机器人路径规划区域的环境进行建模,得到路径规划区域的地图,然后对地图进行栅格化;
步骤2,用户初始化参数,所述初始化参数包括路径的关键节点数量D,种群大小Popsize,最大评价次数MAX_FEs,杂交率Cr和缩放因子F;
步骤3,当前演化代数t=0,当前评价次数FEs=0;
步骤4,输入机器人路径规划的起始点坐标,然后输入机器人路径规划的终止点坐标;
步骤5,随机产生初始种群其中:下标i=1,2,...,Popsize,并且为种群Pt中的第i个个体,存储了D个关键节点的横坐标和纵坐标;
步骤6,计算种群Pt中每个个体的适应值;然后令当前评价次数 FEs=FEs+Popsize;
步骤7,保存种群Pt中的最优个体Bestt
步骤8,令计数器ki=1;
步骤9,如果计数器ki大于种群大小Popsize,则转到步骤15,否则转到步骤10;
步骤10,执行基于组合基础个体的操作算子产生一个试验个体其步骤如下:
步骤10.1,令计数器mj=1;
步骤10.2,在[1,2×D]之间随机产生一个正整数jRand;
步骤10.3,在[1,Popsize]之间随机产生两个不相等的正整数RI1和RI2;
步骤10.4,如果个体的适应值比个体的适应值更优,则令RI1=RI2,否则保持RI1不变;
步骤10.5,在[0,1]之间产生了一个服从均匀分布的随机实数W,然后令组合基础个体
步骤10.6,在[1,Popsize]之间随机产生两个互不相等的正整数RI3和RI4;
步骤10.7,如果计数器mj小于或等于2×D,则转到步骤10.8,否则转到步骤11;
步骤10.8,在[0,1]之间产生一个随机实数r1,如果r1小于杂交率Cr或者计数器mj等于jRand,则转到步骤10.9,否则转到步骤10.12;
步骤10.9,
步骤10.10,获取所对应的关键节点的坐标TPU,如果坐标TPU所在地图中的位置标记有障碍物,则随机产生的值直到所对应的关键节点的坐标在地图中的位置没有标记障碍物;
步骤10.11,转到步骤10.13;
步骤10.12,
步骤10.13,令计数器mj=mj+1,然后转到步骤10.7;
步骤11,对试验个体执行局部搜索,具体步骤如下:
步骤11.1,对试验个体进行解码得到D个关键节点的坐标:TP1,TP2,...,TPD
步骤11.2,令TP0为机器人路径规划的起始点坐标,并令TPD+1为机器人路径规划的终止点坐标;
步骤11.3,令计数器STB=0;
步骤11.4,令计数器BN=0,并令计数器tpi=0;
步骤11.5,在TPtpi与TPtpi+1之间进行插值得到一条直线;如果TPtpi与TPtpi+1之间插值得到的直线上存在着一个点的坐标在地图中标记有障碍物,则令 BN=BN+1,并令STB=tpi,否则保持BN和STB不变;
步骤11.6,令计数器tpi=tpi+1;
步骤11.7,如果tpi大于D,则转到步骤11.8,否则转到步骤11.5;
步骤11.8,如果BN大于0并且BN小于3则转到步骤11.9,否则转到步骤 12;
步骤11.9,如果STB等于0,则令STB=STB+1,否则保持STB不变;
步骤11.10,令最大局部搜索次数Max_Rand=300;
步骤11.11,令计数器kj=1;
步骤11.12,如果kj大于Max_Rand,则转到步骤12,否则转到步骤11.13;
步骤11.13,随机产生试验个体中第STB个关键节点的坐标;
步骤11.14,令计数器kj=kj+1,并令TPSTB为试验个体中第STB关键节点的坐标;
步骤11.15,如果TPSTB与TPSTB+1之间插值得到的直线上存在着一个点的坐标在地图中标记有障碍物,则转到步骤11.12,否则转到步骤11.16;
步骤11.16,如果TPSTB-1与TPSTB之间插值得到的直线上存在着一个点的坐标在地图中标记有障碍物,则转到步骤11.12,否则转到步骤12;
步骤12,计算试验个体的适应值,并令当前评价次数FEs=FEs+1;
步骤13,按以下公式在个体与试验个体之间选择更优者进入下一代种群:
步骤14,令计数器ki=ki+1,然后转到步骤9;
步骤15,保存种群Pt中的最优个体Bestt,并令当前演化代数t=t+1;
步骤16,重复步骤8至步骤15直至当前评价次数FEs达到MAX_FEs后结束,将执行过程中得到的最优个体Bestt解码为D个关键节点的坐标,即可得到机器人的规划路径。
本发明采用关键结点的方式表示机器人的路径,并利用组合个体差分演化来优化机器人路径的关键结点。在组合个体差分演化算法中,利用最优个体与随机个体的信息生成组合个体,并以组合个体来引导算法的搜索方向。此外,在搜索过程中执行局部搜索以提高解的质量。本发明能够提高机器人路径规划的效率。
附图说明
图1为本发明的流程图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:
步骤1,对机器人路径规划区域的环境进行建模,得到路径规划区域的地图,然后对地图进行栅格化;
步骤2,用户初始化参数,所述初始化参数包括路径的关键节点数量D=6,种群大小Popsize=30,最大评价次数MAX_FEs=35000,杂交率Cr=0.1和缩放因子F=0.5;
步骤3,当前演化代数t=0,当前评价次数FEs=0;
步骤4,输入机器人路径规划的起始点坐标,然后输入机器人路径规划的终止点坐标;
步骤5,随机产生初始种群其中:下标i=1,2,...,Popsize,并且为种群Pt中的第i个个体,存储了6 个关键节点的横坐标和纵坐标;
步骤6,计算种群Pt中每个个体的适应值;然后令当前评价次数 FEs=FEs+Popsize;
步骤7,保存种群Pt中的最优个体Bestt
步骤8,令计数器ki=1;
步骤9,如果计数器ki大于种群大小Popsize,则转到步骤15,否则转到步骤10;
步骤10,执行基于组合基础个体的操作算子产生一个试验个体,其步骤如下:
步骤10.1,令计数器mj=1;
步骤10.2,在[1,2×D]之间随机产生一个正整数jRand;
步骤10.3,在[1,Popsize]之间随机产生两个不相等的正整数RI1和RI2;
步骤10.4,如果个体的适应值比个体的适应值更优,则令RI1=RI2,否则保持RI1不变;
步骤10.5,在[0,1]之间产生了一个服从均匀分布的随机实数W,然后令组合基础个体
步骤10.6,在[1,Popsize]之间随机产生两个互不相等的正整数RI3和RI4;
步骤10.7,如果计数器mj小于或等于2×D,则转到步骤10.8,否则转到步骤11;
步骤10.8,在[0,1]之间产生一个随机实数r1,如果r1小于杂交率Cr或者计数器mj等于jRand,则转到步骤10.9,否则转到步骤10.12;
步骤10.9,
步骤10.10,获取所对应的关键节点的坐标TPU,如果坐标TPU所在地图中的位置标记有障碍物,则随机产生的值直到所对应的关键节点的坐标在地图中的位置没有标记障碍物;
步骤10.11,转到步骤10.13;
步骤10.12,
步骤10.13,令计数器mj=mj+1,然后转到步骤10.7;
步骤11,对试验个体执行局部搜索,具体步骤如下:
步骤11.1,对试验个体进行解码得到6个关键节点的坐标:TP1,TP2,...,TPD
步骤11.2,令TP0为机器人路径规划的起始点坐标,并令TPD+1为机器人路径规划的终止点坐标;
步骤11.3,令计数器STB=0;
步骤11.4,令计数器BN=0,并令计数器tpi=0;
步骤11.5,在TPtpi与TPtpi+1之间进行插值得到一条直线;如果TPtpi与TPtpi+1之间插值得到的直线上存在着一个点的坐标在地图中标记有障碍物,则令 BN=BN+1,并令STB=tpi,否则保持BN和STB不变;
步骤11.6,令计数器tpi=tpi+1;
步骤11.7,如果tpi大于D,则转到步骤11.8,否则转到步骤11.5;
步骤11.8,如果BN大于0并且BN小于3则转到步骤11.9,否则转到步骤12;
步骤11.9,如果STB等于0,则令STB=STB+1,否则保持STB不变;
步骤11.10,令最大局部搜索次数Max_Rand=300;
步骤11.11,令计数器kj=1;
步骤11.12,如果kj大于Max_Rand,则转到步骤12,否则转到步骤11.13;
步骤11.13,随机产生试验个体中第STB个关键节点的坐标;
步骤11.14,令计数器kj=kj+1,并令TPSTB为试验个体中第STB关键节点的坐标;
步骤11.15,如果TPSTB与TPSTB+1之间插值得到的直线上存在着一个点的坐标在地图中标记有障碍物,则转到步骤11.12,否则转到步骤11.16;
步骤11.16,如果TPSTB-1与TPSTB之间插值得到的直线上存在着一个点的坐标在地图中标记有障碍物,则转到步骤11.12,否则转到步骤12;
步骤12,计算试验个体的适应值,并令当前评价次数FEs=FEs+1;
步骤13,按以下公式在个体与试验个体之间选择更优者进入下一代种群:
步骤14,令计数器ki=ki+1,然后转到步骤9;
步骤15,保存种群Pt中的最优个体Bestt,并令当前演化代数t=t+1;
步骤16,重复步骤8至步骤15直至当前评价次数FEs达到MAX_FEs后结束,将执行过程中得到的最优个体Bestt解码为6个关键节点的坐标,即可得到机器人的规划路径。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (1)

1.基于组合个体差分演化的机器人路径规划方法,其特征在于,包括以下步骤:
步骤1,对机器人路径规划区域的环境进行建模,得到路径规划区域的地图,然后对地图进行栅格化;
步骤2,用户初始化参数,所述初始化参数包括路径的关键节点数量D,种群大小Popsize,最大评价次数MAX_FEs,杂交率Cr和缩放因子F;
步骤3,当前演化代数t=0,当前评价次数FEs=0;
步骤4,输入机器人路径规划的起始点坐标,然后输入机器人路径规划的终止点坐标;
步骤5,随机产生初始种群其中:下标i=1,2,...,Popsize,并且为种群Pt中的第i个个体,存储了D个关键节点的横坐标和纵坐标;
步骤6,计算种群Pt中每个个体的适应值;然后令当前评价次数FEs=FEs+Popsize;
步骤7,保存种群Pt中的最优个体Bestt
步骤8,令计数器ki=1;
步骤9,如果计数器ki大于种群大小Popsize,则转到步骤15,否则转到步骤10;
步骤10,执行基于组合基础个体的操作算子产生一个试验个体其步骤如下:
步骤10.1,令计数器mj=1;
步骤10.2,在[1,2×D]之间随机产生一个正整数jRand;
步骤10.3,在[1,Popsize]之间随机产生两个不相等的正整数RI1和RI2;
步骤10.4,如果个体的适应值比个体的适应值更优,则令RI1=RI2,否则保持RI1不变;
步骤10.5,在[0,1]之间产生了一个服从均匀分布的随机实数W,然后令组合基础个体
步骤10.6,在[1,Popsize]之间随机产生两个互不相等的正整数RI3和RI4;
步骤10.7,如果计数器mj小于或等于2×D,则转到步骤10.8,否则转到步骤11;
步骤10.8,在[0,1]之间产生一个随机实数r1,如果r1小于杂交率Cr或者计数器mj等于jRand,则转到步骤10.9,否则转到步骤10.12;
步骤10.9,
步骤10.10,获取所对应的关键节点的坐标TPU,如果坐标TPU所在地图中的位置标记有障碍物,则随机产生的值直到所对应的关键节点的坐标在地图中的位置没有标记障碍物;
步骤10.11,转到步骤10.13;
步骤10.12,
步骤10.13,令计数器mj=mj+1,然后转到步骤10.7;
步骤11,对试验个体执行局部搜索,具体步骤如下:
步骤11.1,对试验个体进行解码得到D个关键节点的坐标:TP1,TP2,...,TPD
步骤11.2,令TP0为机器人路径规划的起始点坐标,并令TPD+1为机器人路径规划的终止点坐标;
步骤11.3,令计数器STB=0;
步骤11.4,令计数器BN=0,并令计数器tpi=0;
步骤11.5,在TPtpi与TPtpi+1之间进行插值得到一条直线;如果TPtpi与TPtpi+1之间插值得到的直线上存在着一个点的坐标在地图中标记有障碍物,则令BN=BN+1,并令STB=tpi,否则保持BN和STB不变;
步骤11.6,令计数器tpi=tpi+1;
步骤11.7,如果tpi大于D,则转到步骤11.8,否则转到步骤11.5;
步骤11.8,如果BN大于0并且BN小于3则转到步骤11.9,否则转到步骤12;
步骤11.9,如果STB等于0,则令STB=STB+1,否则保持STB不变;
步骤11.10,令最大局部搜索次数Max_Rand=300;
步骤11.11,令计数器kj=1;
步骤11.12,如果kj大于Max_Rand,则转到步骤12,否则转到步骤11.13;
步骤11.13,随机产生试验个体中第STB个关键节点的坐标;
步骤11.14,令计数器kj=kj+1,并令TPSTB为试验个体中第STB关键节点的坐标;
步骤11.15,如果TPSTB与TPSTB+1之间插值得到的直线上存在着一个点的坐标在地图中标记有障碍物,则转到步骤11.12,否则转到步骤11.16;
步骤11.16,如果TPSTB-1与TPSTB之间插值得到的直线上存在着一个点的坐标在地图中标记有障碍物,则转到步骤11.12,否则转到步骤12;
步骤12,计算试验个体的适应值,并令当前评价次数FEs=FEs+1;
步骤13,按以下公式在个体与试验个体之间选择更优者进入下一代种群:
步骤14,令计数器ki=ki+1,然后转到步骤9;
步骤15,保存种群Pt中的最优个体Bestt,并令当前演化代数t=t+1;
步骤16,重复步骤8至步骤15直至当前评价次数FEs达到MAX_FEs后结束,将执行过程中得到的最优个体Bestt解码为D个关键节点的坐标,即可得到机器人的规划路径。
CN201611201644.2A 2016-12-23 2016-12-23 基于组合个体差分演化的机器人路径规划方法 Active CN106647757B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611201644.2A CN106647757B (zh) 2016-12-23 2016-12-23 基于组合个体差分演化的机器人路径规划方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611201644.2A CN106647757B (zh) 2016-12-23 2016-12-23 基于组合个体差分演化的机器人路径规划方法

Publications (2)

Publication Number Publication Date
CN106647757A CN106647757A (zh) 2017-05-10
CN106647757B true CN106647757B (zh) 2019-06-18

Family

ID=58827094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611201644.2A Active CN106647757B (zh) 2016-12-23 2016-12-23 基于组合个体差分演化的机器人路径规划方法

Country Status (1)

Country Link
CN (1) CN106647757B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7346401B2 (ja) * 2017-11-10 2023-09-19 エヌビディア コーポレーション 安全で信頼できる自動運転車両のためのシステム及び方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3678500A (en) * 2000-04-13 2001-10-30 Zhimin Lin Semi-optimal path finding in a wholly unknown environment
KR20100067485A (ko) * 2008-12-11 2010-06-21 재단법인대구경북과학기술원 장애물 밀집도 기반 경로 계획 방법 및 장치
CN102081752A (zh) * 2011-01-27 2011-06-01 西北工业大学 基于自适应变异遗传算法的动态飞行路径规划方法
CN102169347A (zh) * 2011-03-08 2011-08-31 浙江工业大学 基于协作协进化和多种群遗传算法的多机器人路径规划系统
CN202480099U (zh) * 2012-03-27 2012-10-10 苏州经贸职业技术学院 一种基于遗传算法的可自动搜寻行走路径的机器人
CN103278164A (zh) * 2013-06-13 2013-09-04 北京大学深圳研究生院 一种复杂动态场景下机器人仿生路径规划方法及仿真平台
CN103605368A (zh) * 2013-12-04 2014-02-26 苏州大学张家港工业技术研究院 一种动态未知环境中路径规划方法及装置
CN103684352A (zh) * 2013-12-18 2014-03-26 中国电子科技集团公司第五十四研究所 基于差分演化的粒子滤波方法
CN105387875A (zh) * 2015-12-24 2016-03-09 安徽工程大学 基于蚁群算法的移动机器人路径规划方法的一种改进
CN105988468A (zh) * 2015-01-28 2016-10-05 中国人民公安大学 一种基于改进遗传算法的移动机器人路径规划方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3678500A (en) * 2000-04-13 2001-10-30 Zhimin Lin Semi-optimal path finding in a wholly unknown environment
KR20100067485A (ko) * 2008-12-11 2010-06-21 재단법인대구경북과학기술원 장애물 밀집도 기반 경로 계획 방법 및 장치
CN102081752A (zh) * 2011-01-27 2011-06-01 西北工业大学 基于自适应变异遗传算法的动态飞行路径规划方法
CN102169347A (zh) * 2011-03-08 2011-08-31 浙江工业大学 基于协作协进化和多种群遗传算法的多机器人路径规划系统
CN202480099U (zh) * 2012-03-27 2012-10-10 苏州经贸职业技术学院 一种基于遗传算法的可自动搜寻行走路径的机器人
CN103278164A (zh) * 2013-06-13 2013-09-04 北京大学深圳研究生院 一种复杂动态场景下机器人仿生路径规划方法及仿真平台
CN103605368A (zh) * 2013-12-04 2014-02-26 苏州大学张家港工业技术研究院 一种动态未知环境中路径规划方法及装置
CN103684352A (zh) * 2013-12-18 2014-03-26 中国电子科技集团公司第五十四研究所 基于差分演化的粒子滤波方法
CN105988468A (zh) * 2015-01-28 2016-10-05 中国人民公安大学 一种基于改进遗传算法的移动机器人路径规划方法
CN105387875A (zh) * 2015-12-24 2016-03-09 安徽工程大学 基于蚁群算法的移动机器人路径规划方法的一种改进

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
一种基于精英云变异的差分演化算法;郭肇禄 等;《武汉大学学报(理学版)》;20130430;第117-122页 *
基于差分进化的Unscented FastSLAM2.0算法;吴迎国 等;《井冈山大学学报(自然科学版)》;20161130;第48-54页 *
差分进化算法中参数自适应选择策略研究;汪慎文 等;《计算机科学》;20151130;第256-259页 *

Also Published As

Publication number Publication date
CN106647757A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106712076B (zh) 一种海上风电场集群规模下的输电系统优化方法
CN103365293B (zh) 一种基于动态区域划分的机器人安全路径规划方法
CN105929848A (zh) 一种三维环境中的多无人机系统的航迹规划方法
CN108036790A (zh) 一种障碍环境下基于蚁蜂算法的机器人路径规划方法及系统
CN104299053A (zh) 基于遗传算法配用电通信网最优路径选择的方法
CN107992038A (zh) 一种机器人路径规划方法
CN103968841A (zh) 一种基于改进萤火虫算法的auv三维航路规划方法
CN105955190B (zh) 一种基于布谷鸟搜索算法的孔群加工路径规划方法
CN108413963A (zh) 基于自学习蚁群算法的条形机器人路径规划方法
CN106647757B (zh) 基于组合个体差分演化的机器人路径规划方法
CN106845725A (zh) 一种工程参数寻优方法及系统
Zhu et al. A* algorithm of global path planning based on the grid map and V-graph environmental model for the mobile robot
Xiao-Ting et al. Flight path planning based on an improved genetic algorithm
Li et al. An improved differential evolution based artificial fish swarm algorithm and its application to AGV path planning problems
CN103116805B (zh) 一种更新遗传种群的分段替换方法
CN107180277A (zh) 应用精英反向和声搜索的无人机巡检路径规划方法
CN103426127A (zh) 一种基于伪杂交禁忌混合遗传算法的城市电网规划方法
CN104867164A (zh) 一种基于遗传算法的矢量量化码书设计方法
CN109768893A (zh) 一种高效的大数据网络数据通信实现方法
CN105242669A (zh) 基于加权平均距离视觉鱼群算法的移动机器人路径规划方法
CN105678623A (zh) 一种解决柔性车间作业调度的元启发式搜索方法
CN104552887B (zh) 基于自适应粒子群算法的塑料片材机能耗优化方法
CN103679270A (zh) 一种启发式自适应免疫克隆方法
Wang Short-term wind power forecasting by genetic algorithm of wavelet neural network
CN105913143A (zh) 一种基于差分进化算法的高校排课方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant