CN106647409B - 一种定位控制工业机器人作业的方法及系统 - Google Patents

一种定位控制工业机器人作业的方法及系统 Download PDF

Info

Publication number
CN106647409B
CN106647409B CN201611255692.XA CN201611255692A CN106647409B CN 106647409 B CN106647409 B CN 106647409B CN 201611255692 A CN201611255692 A CN 201611255692A CN 106647409 B CN106647409 B CN 106647409B
Authority
CN
China
Prior art keywords
industrial robot
location information
remote control
control commands
parsing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611255692.XA
Other languages
English (en)
Other versions
CN106647409A (zh
Inventor
陈宇
曹永军
周雪峰
程韬波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong Institute of Intelligent Manufacturing
South China Robotics Innovation Research Institute
Original Assignee
Guangdong Institute of Intelligent Manufacturing
South China Robotics Innovation Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong Institute of Intelligent Manufacturing, South China Robotics Innovation Research Institute filed Critical Guangdong Institute of Intelligent Manufacturing
Priority to CN201611255692.XA priority Critical patent/CN106647409B/zh
Publication of CN106647409A publication Critical patent/CN106647409A/zh
Application granted granted Critical
Publication of CN106647409B publication Critical patent/CN106647409B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position

Abstract

本发明公开了一种定位控制工业机器人作业的方法及系统,其方法包括:基于DIIVA技术接收远程控制指令,所述远程控制指令包括工业机器人位置信息;解析所述远程控制指令中的工业机器人位置信息;基于GNSS模块定位解析所述工业机器人所在的位置信息;判断所述GNSS模块定位解析的位置信息与远程控制指令所在的工业机器人位置信息是否相匹配;如果所述GNSS模块定位解析的位置信息与远程控制指令所在的工业机器人位置信息相匹配,解析远程控制指令中的操作作业指令,基于所述操作作业指令使工业机器人完成相应的作业。通过本发明实施例,采用位置定位手段,避免了工业机器人的误操作过程,导致了整个工业生产的精准度。

Description

一种定位控制工业机器人作业的方法及系统
技术领域
本发明涉及智能制造技术领域,具体涉及一种定位控制工业机器人作业的方法及系统。
背景技术
随着机器人技术的不断发展,越来越多的机器人开始替代人类执行各种任务。机器人是自动控制机器(Robot)的俗称,自动控制机器包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动执行任务的人造机器装置,用以取代或协助人类工作。理想中的高仿真机器人是高级整合控制论、机械电子、计算机与人工智能、材料学和仿生学的产物,目前科学界正在向此方向研究开发,但是机器人远程控制还不完善,大数据的应用还没有普及,机器人的数据采集还处于离线状态,机器人深度学习也来自于本机数据的储存。
工业机器人是面向工业领域的多关节机械手或多自由度的机器装置,它能自动执行工作,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。
随着机器人技术的不断发展,越来越多的机器人开始替代人类执行各种任务。一般情况下,机器人与操纵者之间相隔很远或者操纵者需要实现远程操作来完成,但现有的机器人与控制端的大数据容量传输,某些大数据内容传输到工业机器人端比较缓慢,且现有的工业机器人在远程操作作业时,如何实现远程机器人实际地址与受控机器人相一致的情况,避免操作指令误发,导致工业生产过程中的事故。
发明内容
本发明提供了一种定位控制工业机器人作业的方法,通过DIIVA技术实现对远程控制指令的接收,并基于定位信息与相关的机器人控制指令之间的匹配,从而精准控制工业机器人作业。
本发明提供了一种定位控制工业机器人作业的方法,包括:
基于DIIVA技术接收远程控制指令,所述远程控制指令包括工业机器人位置信息;
解析所述远程控制指令中的工业机器人位置信息;
基于GNSS模块定位解析所述工业机器人所在的位置信息;
判断所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息是否相匹配;
如果所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息不匹配,则停止解析远程控制指令中的操作作业指令;
如果所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息相匹配,解析远程控制指令中的操作作业指令,基于所述操作作业指令使工业机器人完成相应的作业。
所述基于GNSS模块定位解析所述工业机器人所在的位置信息包括:
在解析出远程控制指令中的工业机器人位置信息之后,基于GNSS模块获取GNSS信号;
基于GNSS信号解析所述工业机器人所在的位置信息。
所述GNSS信号包括:北斗卫星信号、GPS信号。
所述基于DIIVA技术接收远程控制指令包括:
采用IP流媒体的方式基于DiiVA技术接收远程控制指令。
所述采用IP流媒体的方式基于DiiVA技术接收远程控制指令包括:
采用符合DiiVA传输模式的MPEG传输流编码,在MPEG-4标准中采用精细的可扩展性编码FGSH或渐进式精细的可扩展性编码PFGSH技术,H.264技术与网络传输协议相结合;
采用实时传输协议或者传输控制协议对数据进行实时传输差错控制。
相应的,本发明还提供了一种定位控制工业机器人作业的系统,包括:
接收模块,用于基于DIIVA技术接收远程控制指令,所述远程控制指令包括工业机器人位置信息;
解析模块,用于解析所述远程控制指令中的工业机器人位置信息;
GNSS模块,用于定位解析所述工业机器人所在的位置信息;
匹配模块,用于判断所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息是否相匹配;
处理模块,用于在所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息不匹配时,停止解析远程控制指令中的操作作业指令;以及在所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息相匹配时,解析远程控制指令中的操作作业指令,基于所述操作作业指令使工业机器人完成相应的作业。
所述GNSS模块包括:
获取单元,用于在解析出远程控制指令中的工业机器人位置信息之后,基于GNSS模块获取GNSS信号;
解析单元,用于基于GNSS信号解析所述工业机器人所在的位置信息。
所述GNSS信号包括:北斗卫星信号、GPS信号。
所述接收模块采用IP流媒体的方式基于DiiVA技术接收远程控制指令。
所述接收模块采用符合DiiVA传输模式的MPEG传输流编码,在MPEG-4标准中采用精细的可扩展性编码FGSH或渐进式精细的可扩展性编码PFGSH技术,H.264技术与网络传输协议相结合;采用实时传输协议或者传输控制协议对数据进行实时传输差错控制。
在本发明中,基于DiiVA技术可以将控制端数据快速传输到工业机器人端,保证数据传输的安全性,方便远端控制的操控性。另外采用位置定位手段,通过卫星定位模块在收到远程控制指令的时候,解析远程控制指令中的位置信息,以及通过卫星定位模块获取该工业机器人所在的位置信息,从而基于相应的匹配算法实现信息核对,在完成整个信息核对之后,才实现了精准的位置控制,避免了工业机器人的误操作过程,导致了整个工业生产的精准度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明实施例中的定位控制工业机器人作业的方法流程图;
图2是本发明实施例中的定位控制工业机器人作业的系统结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
具体的,图1示出了本发明实施例中的定位控制工业机器人作业的方法流程图,包括:
S101、基于DIIVA技术接收远程控制指令;
该远程控制指令包括工业机器人位置信息和相关的操作作业指令,而针对良好的远程控制,通过DIIVA技术可以实现快速的控制目的。
DiiVA一种数字高清互动传输接口技术,支持视频带宽达13.5Gbps,支持混合通道频宽合计超过2Gbps,可做双向数据和音频传输,同时还支持HDCP2.0(高带宽数字内容保护技术)与DTCP-IP(通过互联网协议的数字传输内容保护)。传输的数据类型可以同时串流,包括现有与未来应用的未压缩高分辨率视音格式、USB(通用串行总线)、以太网络、装置控制指令等。DiiVA规格包括传送层和网络层,让视频、音频和数据封包,可以在DiiVA家庭网络中,安全地改变从任一信号源传送到任一显示器的路径。此外,DiiVA规格将提供移动便携设备的网络连接与充电功能。
具体实施过程中,控制端基于DiiVA技术将相关远程控制指令发送到工业机器人,一般可采用IP流媒体的方式基于DiiVA技术发送远程控制指令到工业机器人。在整个DIIVA技术传输远程控制指令过程中,采用符合DiiVA传输模式的MPEG传输流编码,在MPEG-4标准中采用精细的可扩展性编码FGSH或渐进式精细的可扩展性编码PFGSH技术,H.264技术与网络传输协议相结合;采用实时传输协议或者传输控制协议对数据进行实时传输差错控制。
S102、解析所述远程控制指令中的工业机器人位置信息;
S103、基于GNSS模块定位解析所述工业机器人所在的位置信息;
需要说明的是,本发明实施例过程中远程控制指令中一般都设置有工业机器人位置信息,其作为GNSS模块获取定位信息的一个触发条件,在解析出在解析出远程控制指令中的工业机器人位置信息之后,基于GNSS模块获取GNSS信号;基于GNSS信号解析所述工业机器人所在的位置信息。GNSS信号包括:北斗卫星信号、GPS信号。
GNSS的全称是全球导航卫星系统(Global Navigation Satellite System),它是泛指所有的卫星导航系统,包括全球的、区域的和增强的,如美国的GPS、俄罗斯的Glonass、欧洲的Galileo、中国的北斗卫星导航系统,以及相关的增强系统,如美国的WAAS(广域增强系统)、欧洲的EGNOS(欧洲静地导航重叠系统)和日本的MSAS(多功能运输卫星增强系统)等,还涵盖在建和以后要建设的其他卫星导航系统。国际GNSS系统是个多系统、多层面、多模式的复杂组合系统。
S104、判断所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息是否相匹配,如果匹配成功,则进入S105,否则进入S106;
S105、解析远程控制指令中的操作作业指令,基于所述操作作业指令使工业机器人完成相应的作业;
需要说明的是,在完成整个匹配过程之后,即可实现对工业机器人控制的授权,将远程控制指令中的操作作业指令解析出来之后,工业机器人即可实现受控,完成相应的自动化控制。
S106、停止解析远程控制指令中的操作作业指令。
需要说明的是,在识别出整个匹配过程不成功之后,即对工业机器人授权的失败,不能即系解析操作作业指令,不能使工业机器人完成相应的受控过程。
由此可见,在整个控制过程中,对远程控制指令中写入工业机器人的位置信息,并基于工业机器人上的GNSS模块获取定位信息,从而解析该工业机器人的位置信息,通过这两个信息间的匹配过程,可以精准实现工业机器人的操作作业,避免误操作发生。
相应的,图2还示出了本发明实施例中的定位控制工业机器人作业的系统结构示意图,包括:
接收模块,用于基于DIIVA技术接收远程控制指令,所述远程控制指令包括工业机器人位置信息;
解析模块,用于解析所述远程控制指令中的工业机器人位置信息;
GNSS模块,用于定位解析所述工业机器人所在的位置信息;
匹配模块,用于判断所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息是否相匹配;
处理模块,用于在所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息不匹配时,停止解析远程控制指令中的操作作业指令;以及在所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息相匹配时,解析远程控制指令中的操作作业指令,基于所述操作作业指令使工业机器人完成相应的作业。
具体的,图3示出了本发明实施例中的GNSS模块结构示意图,该GNSS模块包括:
获取单元,用于在解析出远程控制指令中的工业机器人位置信息之后,基于GNSS模块获取GNSS信号;
解析单元,用于基于GNSS信号解析所述工业机器人所在的位置信息。
具体实施过程中,该GNSS信号包括:北斗卫星信号、GPS信号。
具体实施过程中,该接收模块采用IP流媒体的方式基于DiiVA技术接收远程控制指令。该接收模块采用符合DiiVA传输模式的MPEG传输流编码,在MPEG-4标准中采用精细的可扩展性编码FGSH或渐进式精细的可扩展性编码PFGSH技术,H.264技术与网络传输协议相结合;采用实时传输协议或者传输控制协议对数据进行实时传输差错控制。综上,基于DiiVA技术可以将控制端数据快速传输到工业机器人端,保证数据传输的安全性,方便远端控制的操控性。另外采用位置定位手段,通过卫星定位模块在收到远程控制指令的时候,解析远程控制指令中的位置信息,以及通过卫星定位模块获取该工业机器人所在的位置信息,从而基于相应的匹配算法实现信息核对,在完成整个信息核对之后,才实现了精准的位置控制,避免了工业机器人的误操作过程,导致了整个工业生产的精准度。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random AccessMemory)、磁盘或光盘等。
以上对本发明实施例所提供的定位控制工业机器人作业的方法及系统进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种定位控制工业机器人作业的方法,其特征在于,包括:
基于DIIVA技术接收远程控制指令,所述远程控制指令包括工业机器人位置信息;
解析所述远程控制指令中的工业机器人位置信息;
基于GNSS模块定位解析所述工业机器人所在的位置信息;
判断所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息是否相匹配;
如果所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息不匹配,则停止解析远程控制指令中的操作作业指令;
如果所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息相匹配,解析远程控制指令中的操作作业指令,基于所述操作作业指令使工业机器人完成相应的作业。
2.如权利要求1所述的定位控制工业机器人作业的方法,其特征在于,所述基于GNSS模块定位解析所述工业机器人所在的位置信息包括:
在解析出远程控制指令中的工业机器人位置信息之后,基于GNSS模块获取GNSS信号;
基于GNSS信号解析所述工业机器人所在的位置信息。
3.如权利要求2所述的定位控制工业机器人作业的方法,其特征在于,所述GNSS信号包括:北斗卫星信号、GPS信号。
4.如权利要求1至3任一项所述的定位控制工业机器人作业的方法,其特征在于,所述基于DIIVA技术接收远程控制指令包括:
采用IP流媒体的方式基于DiiVA技术接收远程控制指令。
5.如权利要求4所述的定位控制工业机器人作业的方法,其特征在于,所述采用IP流媒体的方式基于DiiVA技术接收远程控制指令包括:
采用符合DiiVA传输模式的MPEG传输流编码,在MPEG-4标准中采用精细的可扩展性编码FGSH或渐进式精细的可扩展性编码PFGSH技术,H.264技术与网络传输协议相结合;
采用实时传输协议或者传输控制协议对数据进行实时传输差错控制。
6.一种定位控制工业机器人作业的系统,其特征在于,包括:
接收模块,用于基于DIIVA技术接收远程控制指令,所述远程控制指令包括工业机器人位置信息;
解析模块,用于解析所述远程控制指令中的工业机器人位置信息;
GNSS模块,用于定位解析所述工业机器人所在的位置信息;
匹配模块,用于判断所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息是否相匹配;
处理模块,用于在所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息不匹配时,停止解析远程控制指令中的操作作业指令;以及在所述GNSS模块定位解析的位置信息与远程控制指令中的工业机器人位置信息相匹配时,解析远程控制指令中的操作作业指令,基于所述操作作业指令使工业机器人完成相应的作业。
7.如权利要求6所述的定位控制工业机器人作业的系统,其特征在于,所述GNSS模块包括:
获取单元,用于在解析出远程控制指令中的工业机器人位置信息之后,基于GNSS模块获取GNSS信号;
解析单元,用于基于GNSS信号解析所述工业机器人所在的位置信息。
8.如权利要求7所述的定位控制工业机器人作业的系统,其特征在于,所述GNSS信号包括:北斗卫星信号、GPS信号。
9.如权利要求6至8任一项所述的定位控制工业机器人作业的系统,其特征在于,所述接收模块采用IP流媒体的方式基于DiiVA技术接收远程控制指令。
10.如权利要求9所述的定位控制工业机器人作业的系统,其特征在于,所述接收模块采用符合DiiVA传输模式的MPEG传输流编码,在MPEG-4标准中采用精细的可扩展性编码FGSH或渐进式精细的可扩展性编码PFGSH技术,H.264技术与网络传输协议相结合;采用实时传输协议或者传输控制协议对数据进行实时传输差错控制。
CN201611255692.XA 2016-12-30 2016-12-30 一种定位控制工业机器人作业的方法及系统 Active CN106647409B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611255692.XA CN106647409B (zh) 2016-12-30 2016-12-30 一种定位控制工业机器人作业的方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611255692.XA CN106647409B (zh) 2016-12-30 2016-12-30 一种定位控制工业机器人作业的方法及系统

Publications (2)

Publication Number Publication Date
CN106647409A CN106647409A (zh) 2017-05-10
CN106647409B true CN106647409B (zh) 2018-12-21

Family

ID=58837615

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611255692.XA Active CN106647409B (zh) 2016-12-30 2016-12-30 一种定位控制工业机器人作业的方法及系统

Country Status (1)

Country Link
CN (1) CN106647409B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6949767B2 (ja) * 2018-03-22 2021-10-13 日立建機株式会社 作業員管理システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078632A (zh) * 2006-05-26 2007-11-28 富士通株式会社 移动机器人及其控制方法和程序
CN202872979U (zh) * 2012-10-26 2013-04-10 Tcl集团股份有限公司 一种基于DiiVA网络的视频监控系统
CN103092203A (zh) * 2013-01-15 2013-05-08 深圳市紫光杰思谷科技有限公司 主从机器人之间相对运动的控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008046899A (ja) * 2006-08-17 2008-02-28 Mitsubishi Electric Corp 数値制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078632A (zh) * 2006-05-26 2007-11-28 富士通株式会社 移动机器人及其控制方法和程序
CN202872979U (zh) * 2012-10-26 2013-04-10 Tcl集团股份有限公司 一种基于DiiVA网络的视频监控系统
CN103092203A (zh) * 2013-01-15 2013-05-08 深圳市紫光杰思谷科技有限公司 主从机器人之间相对运动的控制方法

Also Published As

Publication number Publication date
CN106647409A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
US10930160B2 (en) System and method for communicating high fidelity aircraft trajectory-related information through standard aircraft trajectory conventions
DE112018004395T5 (de) Virtueller zugriff auf ein zugriffsbeschränktes objekt
US8868234B2 (en) Communication system and method
Finzi et al. Model-based executive control through reactive planning for autonomous rovers
CN110587601B (zh) 一种应用于智能巡检机器人的控制系统
CN106647409B (zh) 一种定位控制工业机器人作业的方法及系统
Lunghi et al. An advanced, adaptive and multimodal graphical user interface for human-robot teleoperation in radioactive scenarios
Truong et al. Remote monitoring and control of industrial process via wireless network and Android platform
CN107968692A (zh) 一种无人机的通信方法、通信装置及无人机
KR20190082645A (ko) 실시간 학습과 호출을 위한 인공지능 시스템 및 그 처리 방법
Lopes et al. Application of supervisory control theory to swarms of e-puck and kilobot robots
Joyeux et al. Modular software for an autonomous space rover
Ferrati et al. The Walk-Man robot software architecture
CN106444458B (zh) 一种远程控制工业机器人的方法及系统
WO2013179982A1 (ja) 情報処理システム、情報処理方法、情報処理装置、携帯端末およびその制御方法と制御プログラム
CN103491453B (zh) 一种云播出系统及方法
Chamberlain et al. A distributed robotic vision service
JP2011129115A (ja) 異機種ロボットの協業のためのコンポーネント連動装置およびそれに伴う方法
KR20110070680A (ko) 이기종 로봇의 협업을 위한 컴포넌트 연동 장치 및 그에 따른 방법
Wang et al. Teleoperation system of the internet-based omnidirectional mobile robot with a mounted manipulator
US8572291B2 (en) Electronic board and system comprising a plurality of such boards
US20170257437A1 (en) Networked Gate Machines Gaging the Condition of Unmanned Platforms
Ferenc et al. Distributed robot control system implemented on the client and server PCs based on the CORBA protocol
Vozar et al. Augmented reality user interface for mobile robots with manipulator arms: Development, testing, and qualitative analysis
Barnawi et al. A GUI interfaces for a multiple unmanned autonomous robotic system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant