CN106637052B - 一种提高低碳硬质合金碳势的方法 - Google Patents

一种提高低碳硬质合金碳势的方法 Download PDF

Info

Publication number
CN106637052B
CN106637052B CN201611159775.9A CN201611159775A CN106637052B CN 106637052 B CN106637052 B CN 106637052B CN 201611159775 A CN201611159775 A CN 201611159775A CN 106637052 B CN106637052 B CN 106637052B
Authority
CN
China
Prior art keywords
low
hard alloy
carbon
pressure
180min
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611159775.9A
Other languages
English (en)
Other versions
CN106637052A (zh
Inventor
刘华平
鲍立强
谭文生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qianjiang Cutting-Edge Carbide Tools Co Ltd
Original Assignee
Qianjiang Cutting-Edge Carbide Tools Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qianjiang Cutting-Edge Carbide Tools Co Ltd filed Critical Qianjiang Cutting-Edge Carbide Tools Co Ltd
Priority to CN201611159775.9A priority Critical patent/CN106637052B/zh
Publication of CN106637052A publication Critical patent/CN106637052A/zh
Application granted granted Critical
Publication of CN106637052B publication Critical patent/CN106637052B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising

Abstract

一种提高低碳硬质合金碳势的方法,其特征在于:对低碳硬质合金进行气体渗碳处理,该气体渗碳处理包括以下步骤:第一步,将低碳硬质合金于烧结炉中,从室温升温至1340‑1400℃,然后保温30‑180min,在该保温时间段内向烧结炉内以脉冲方式通入H2与CH4的混合气体,先高压后低压,高压为200‑800mbar,低压为10‑50mbar;并且,所述脉冲周期为5‑10min,高压阶段和低压阶段的时间比为2:1至4:1;第二步,冷却至1270‑1330℃,然后保温30‑180min,在该保温时间段内向烧结炉内通入压力为1000‑2000mbar的惰性气体;第三步,冷却到室温,产品出炉。

Description

一种提高低碳硬质合金碳势的方法
技术领域
本发明涉及提高硬质合金制品碳势(磁饱和)的方法,用于地质勘探、凿岩、掘煤、矿山开采用硬质合金柱齿等产品磁饱和的提高。
背景技术
低钴WC-Co硬质合金在使用中强调韧性,其磁饱和应控制在135 emu/g-160emu/g以上。由于低钴WC-Co硬质合金WC-γ两相区较窄(8%Co以下),存在碳平衡较难控制的问题,容易出现石墨相、缺碳相(η相)缺陷,尤其是η相,合金的磁饱和一般低于125 emu/g,这将严重降低材料的力学性能。目前消除η相的方法是将树脂粉用有机溶剂浸湿,并与存在缺碳相的硬质合金产品表面充分涂敷,通过二次烧结使硬质合金产品组织恢复正常。该方法对于消除出现η相的硬质合金产品比较有效,但对于未出现η相的低碳硬质合金产品基本无效果(磁饱和为125-135emu/g)。此外,该方法需要将每颗硬质合金产品都涂上树脂,费工费时,并且产品表面易存在小凹坑。
发明内容
本发明的目的是提供一种提高低碳硬质合金碳势的方法,对出现η相和未出现η相的碳硬质合金产品均能提高其碳势。
为达到上述目的,本发明采用的技术方案是:一种提高低碳硬质合金碳势的方法,对低碳硬质合金进行气体渗碳处理,该气体渗碳处理包括以下步骤:
第一步,将低碳硬质合金装入石墨舟置入烧结炉中,从室温升温至1340-1400℃,然后保温30-180min,在该30-180min保温时间段内向烧结炉内以脉冲方式通入H2与CH4的混合气体,所述脉冲方式是指通入的H2与CH4的混合气体是以高压、低压这两种压力交替切换,先高压后低压,所述高压为200-800mbar,所述低压为10-50mbar,高压阶段和低压阶段所采用的H2与CH4的混合气体的气体碳势相同;并且,所述脉冲周期为5-10min,高压阶段和低压阶段的时间比为2:1至4:1;
第二步,冷却至1270-1330℃,然后保温30-180min,在该30-180min保温时间段内向烧结炉内通入压力为1000-2000mbar的惰性气体;
第三步,冷却到室温,产品出炉。
上述方案中,所述低碳硬质合金是WC-Co硬质合金或WC-TiC-Co硬质合金。所述WC-Co硬质合金是指硬化相为碳化钨,粘结金属为钴的硬质合金;所述WC-TiC-Co硬质合金是指硬化相为碳化钨与碳化钛,粘结金属为钴的硬质合金。再进一步,适用的WC-Co硬质合金或WC-TiC-Co硬质合金中的Co的重量百分比含量为2%-30%。
上述方案中,所述烧结炉为真空气氛一体炉。
本发明原理是:本发明核心是针对低碳硬质合金进行气体渗碳返烧处理,先升温至1340-1400℃并保温,此时合金处于WC+液相钴两相区,碳原子通过液相钴由表面向中间、心部扩散,由于具体是采用脉冲方式通入H2与CH4的混合气体,在一个脉冲周期内,先在高压力的H2与CH4的混合气体作用下进行渗碳,然后在低压力的H2与CH4的混合气体作用下进行碳扩散,并且高压力解决了后续脉冲周期内合金中碳势升高而导致渗碳困难的问题,从而使整个脉冲周期实现了边渗碳边扩散,使得合金内部碳浓度分布均匀;然后,冷却至1270-1330℃并保温,此时合金处于WC+液相钴+固相钴三相区,在高压的惰性气体的驱动力下,碳原子通过液相钴由表面向中间、心部继续扩散,使产品内部区域碳势更加均匀化,从而提高硬质合金磁饱和,同时避免出现石墨相,最后就冷却至室温出炉。
与现有涂覆树脂后二次烧结的方法相比,本发明省时、省工,同时能保证缺碳、低碳硬质合金的磁饱和达到正常标准,避免产品报废。
附图说明
图1为本发明实施例处理前产品的金相图;
图2为本发明实施例处理后产品的金相图。
具体实施方式
下面结合附图及实施例对本发明作进一步描述:
实施例:
一种提高低碳硬质合金碳势的方法,对低碳硬质合金进行气体渗碳处理,该气体渗碳处理包括以下步骤:
第一步,将低碳硬质合金装入石墨舟置入烧结炉中,从室温升温至1340-1400℃,然后保温30-180min,在该30-180min保温时间段内向烧结炉内以脉冲方式通入H2与CH4的混合气体,所述脉冲方式是指通入的H2与CH4的混合气体是以高压、低压这两种压力交替切换,先高压后低压,所述高压为200-800mbar,所述低压为10-50mbar,高压阶段和低压阶段所采用的H2与CH4的混合气体的气体碳势相同;并且,所述脉冲周期为5-10min,高压阶段和低压阶段的时间比为2:1至4:1;
第二步,冷却至1270-1330℃,然后保温30-180min,在该30-180min保温时间段内向烧结炉内通入压力为1000-2000mbar的惰性气体;
第三步,冷却到室温,产品出炉。
下面以JZ06牌号硬质合金产品为例:
处理前产品的磁饱和为123 emu/g,存在η相,见图1。对该JZ06硬质合金产品进行气体渗碳处理,在第一步中具体是升温到1370℃并保温120min, 此阶段脉冲方式通入H2和CH4的混合气体,所述高压压力选择600mbar,所述低压压力选择为30mbar,一个脉冲周期为8min,高压阶段维持时间为6min,低压阶段维持时间为2min。在第二步中,冷却至1310℃保温70 min,通入惰性气体为Ar,压力为1600mbar。处理后的JZ06合金磁饱和为136 emu/g,金相见图2。
下面以JZ08牌号硬质合金产品为例:
处理前产品的磁饱和为130 emu/g,但不存在η相。对该JZ08硬质合金产品进行气体渗碳处理,在第一步中具体是升温到1350℃并保温60min, 此阶段脉冲方式通入H2和CH4的混合气体,所述高压压力选择300mbar,所述低压压力选择为20mbar,一个脉冲周期为6min,高压阶段维持时间为4min,低压阶段维持时间为2min。在第二步中,冷却至1290℃保温40 min,通入惰性气体为Ar,压力为1300mbar。处理后的JZ08合金磁饱和为139 emu/g,金相组织正常。
以上为举例,在第二步中通入的气体除Ar外,也可采用其他惰性气体。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种提高低碳硬质合金碳势的方法,其特征在于:对低碳硬质合金进行气体渗碳处理,该气体渗碳处理包括以下步骤:
第一步,将低碳硬质合金装入石墨舟置入烧结炉中,从室温升温至1340-1400℃,然后保温30-180min,在该30-180min保温时间段内向烧结炉内以脉冲方式通入H2与CH4的混合气体,所述脉冲方式是指通入的H2与CH4的混合气体是以高压、低压这两种压力交替切换,先高压后低压,所述高压为200-800mbar,所述低压为10-50mbar,高压阶段和低压阶段所采用的H2与CH4的混合气体的气体碳势相同;并且,所述脉冲方式的周期为5-10min,高压阶段和低压阶段的时间比为2:1至4:1;
第二步,冷却至1270-1330℃,然后保温30-180min,在该30-180min保温时间段内向烧结炉内通入压力为1000-2000mbar的惰性气体;
第三步,冷却到室温,产品出炉。
2.根据权利要求1所述提高低碳硬质合金碳势的方法,其特征在于:所述低碳硬质合金是WC-Co硬质合金或WC-TiC-Co硬质合金。
3.根据权利要求2所述提高低碳硬质合金碳势的方法,其特征在于:所述WC-Co硬质合金或WC-TiC-Co硬质合金中的Co的重量百分比含量为2%-30%。
4.根据权利要求1所述提高低碳硬质合金碳势的方法,其特征在于:所述烧结炉为真空气氛一体炉。
CN201611159775.9A 2016-12-15 2016-12-15 一种提高低碳硬质合金碳势的方法 Active CN106637052B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611159775.9A CN106637052B (zh) 2016-12-15 2016-12-15 一种提高低碳硬质合金碳势的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611159775.9A CN106637052B (zh) 2016-12-15 2016-12-15 一种提高低碳硬质合金碳势的方法

Publications (2)

Publication Number Publication Date
CN106637052A CN106637052A (zh) 2017-05-10
CN106637052B true CN106637052B (zh) 2019-01-29

Family

ID=58823358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611159775.9A Active CN106637052B (zh) 2016-12-15 2016-12-15 一种提高低碳硬质合金碳势的方法

Country Status (1)

Country Link
CN (1) CN106637052B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107937861A (zh) * 2018-01-10 2018-04-20 自贡硬质合金有限责任公司 一种硬质合金补碳方法
CN112725723A (zh) * 2020-12-08 2021-04-30 崇义章源钨业股份有限公司 表面硬度强化的硬质合金及其制备方法和应用
CN113523278B (zh) * 2021-05-20 2022-11-18 九江金鹭硬质合金有限公司 一种低应力硬质合金模具材料烧结方法
CN115287423A (zh) * 2022-08-05 2022-11-04 浙江恒成硬质合金有限公司 一种梯度硬质合金的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1600892A (zh) * 2004-10-13 2005-03-30 中国重型汽车集团有限公司 重型汽车齿轮气体渗碳方法
US7118635B1 (en) * 1998-11-13 2006-10-10 H. C. Starck Gmbh & Co. Kg Method for producing tungsten carbides by gas-phase carburization
CN102063110A (zh) * 2010-12-03 2011-05-18 上海交通大学 低压渗碳渗层碳浓度分布控制系统及其控制方法
CN105252239A (zh) * 2015-10-16 2016-01-20 东华大学 一种梯度硬质合金刀具制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002212642A (ja) * 2001-01-10 2002-07-31 Ntn Corp 転動部品のガス浸炭焼入れ方法およびそれにより得られる転動部品

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7118635B1 (en) * 1998-11-13 2006-10-10 H. C. Starck Gmbh & Co. Kg Method for producing tungsten carbides by gas-phase carburization
CN1600892A (zh) * 2004-10-13 2005-03-30 中国重型汽车集团有限公司 重型汽车齿轮气体渗碳方法
CN102063110A (zh) * 2010-12-03 2011-05-18 上海交通大学 低压渗碳渗层碳浓度分布控制系统及其控制方法
CN105252239A (zh) * 2015-10-16 2016-01-20 东华大学 一种梯度硬质合金刀具制备方法

Also Published As

Publication number Publication date
CN106637052A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106637052B (zh) 一种提高低碳硬质合金碳势的方法
US9260775B2 (en) Low alloy steel carburization and surface microalloying process
Bell et al. Environmental and technical aspects of plasma nitrocarburising
Christiansen et al. Low-temperature gaseous surface hardening of stainless steel: The current status
Sarma et al. Kinetics of growth of superhard boride layers during solid state diffusion of boron into titanium
Bejar et al. Abrasive wear resistance of boronized carbon and low-alloy steels
Kulka et al. An alternative method of gas boriding applied to the formation of borocarburized layer
Li et al. Improvement of corrosion resistance of nitrided low alloy steel by plasma post-oxidation
JP2010121217A (ja) 低温の肌焼き工程
Kulka et al. Two-stage gas boriding of Nisil in N2–H2–BCl3 atmosphere
CN105483604B (zh) 一种提高奥氏体不锈钢低温气体渗碳速度的催渗方法
US20120018052A1 (en) Novel Stainless Steel Carburization Process
Biró Trends of nitriding processes
Madanipour et al. Investigation of the formation of Al, Fe, N intermetallic phases during Al pack cementation followed by plasma nitriding on plain carbon steel
McCafferty Effect of ion implantation on the corrosion behavior of iron, stainless steels, and aluminum—a review
CN106868466A (zh) 一种提升真空渗碳效率的稀土注入处理方法
Glühmann et al. Functionally graded WC–Ti (C, N)–(Ta, Nb) C–Co hardmetals: metallurgy and performance
Bareiβ et al. Diamond coating of steel at high temperatures in hot filament chemical vapour deposition (HFCVD) employing chromium interlayers
Mirjani et al. Plasma and gaseous nitrocarburizing of C60W steel for tribological applications
Meng et al. Effect of surface etching on the oxidation behavior of plasma chromizing-treated AISI440B stainless steel
Zheng et al. Microstructure and performance of functionally graded Ti (C, N)-based cermets prepared by double-glow plasma carburization
Nusskern et al. Powder metallurgical components: Improvement of surface integrity by deep rolling and case hardening
Triwiyanto et al. Low temperature thermochemical treatments of austenitic stainless steel without impairing its corrosion resistance
Lebrun Plasma-assisted processes for surface hardening of stainless steel
Ralston et al. Achieving a chromium rich surface upon steels via FBR-CVD chromising treatments

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant