CN106636846A - 一种变磁性相变临界场降低的MnCoSi基合金 - Google Patents

一种变磁性相变临界场降低的MnCoSi基合金 Download PDF

Info

Publication number
CN106636846A
CN106636846A CN201611159706.8A CN201611159706A CN106636846A CN 106636846 A CN106636846 A CN 106636846A CN 201611159706 A CN201611159706 A CN 201611159706A CN 106636846 A CN106636846 A CN 106636846A
Authority
CN
China
Prior art keywords
alloy
mncosi
critical field
room temperature
phase change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611159706.8A
Other languages
English (en)
Inventor
张晓静
王佳辰
徐追梦
徐锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201611159706.8A priority Critical patent/CN106636846A/zh
Publication of CN106636846A publication Critical patent/CN106636846A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明公开了一种变磁性相变临界场降低的MnCoSi基合金,其成分为Mn1‑xCo1+xSi,其中0.01≤ x ≤0.015。本发明利用Co原子掺杂Mn原子,所得到的Mn1‑xCo1+xSi合金与正分的MnCoSi合金相比,变磁性相变即磁场诱发的螺旋反铁磁到高磁态转变临界场显著降低,其中优选的Mn0.985Co1.015Si合金,能使室温相变临界场降低至0.8 T,室温附近的磁致伸缩效应可逆且无磁滞。

Description

一种变磁性相变临界场降低的MnCoSi基合金
技术领域
本发明涉及一种相变临界场降低的MnCoSi基合金,属于合金制备领域。
背景技术
MnCoSi合金是一种新型无重稀土的巨磁致伸缩材料。其磁致伸缩效应大于现有的Terfenol-D多晶,且可逆无磁滞,具有较大的应用价值。然而MnCoSi合金的室温磁致相变临界场较高,约2.5 T。这大大阻碍了其可能的应用。因此,如何通过有效的方法降低MnCoSi合金的室温相变临界场是其应用的基本前提。
发明内容
本发明的目的是提供一种能有效降低相变临界场的MnCoSi基合金。
实现本发明目的的技术解决方案是:一种MnCoSi基合金,以原子百分比计,所述的合金表达式为Mn1-xCo1+xSi ,其中0.01≤ x ≤0.015。
其中,优选的MnCoSi基合金表达式为Mn0.985Co1.015Si。
与现有技术相比,本发明的优点是:
[1]Co原子掺杂部分的Mn原子,Co原子除了占据原先4c位(Wyckoff position)外,过量的Co原子将占据Mn位。
[2]等温磁化曲线反映出来的变磁性临界场随着Co原子含量的增加而显著降低,其中优选的Mn0.985Co1.015Si合金可以有效将合金的室温相变临界场降低至0.8 T(相变临界场指50 %饱和磁化强度对应的外场大小)。
[3]合金室温磁化曲线无磁滞且室温磁致伸缩效应可逆无磁滞。
附图说明
图1是Mn1-xCo1+xSi合金( 0≤ x ≤ 0.03 )的室温合金XRD衍射数据。
图2是240-320 K范围内正分MnCoSi合金的等温磁化曲线
图3是240-320 K范围内Mn0.99Co1.01Si合金的等温磁化曲线。
图4是240-320 K范围内Mn0.985Co1.015Si合金的等温磁化曲线。
图5是240-320 K范围内Mn0.98Co1.02Si合金的等温磁化曲线。
图6是Mn1-xCo1+xSi(x = 0,0.01,0.015)合金不同温度下的变磁性临界场曲线。
图7是优选合金Mn0.985Co1.015Si在270-300 K间平行和垂直自然取向方向的磁致伸缩量。
具体实施方式
本发明所述的合金的制备方法为高纯氩气氛围保护下电弧熔炼,退火方式为850℃退火60小时,随后经过72小时冷至室温。
实施例1
利用X射线衍射仪(X-ray Diffraction:XRD)测了合金的物相结构。图1是Mn1-xCo1+xSi合金( 0≤ x ≤ 0.03 )的室温合金XRD衍射数据,当x = 0, 0.01, 0.015时,合金为单一的正交TiNiSi型结构,这表明x ≤ 0.015时,Co原子的掺杂不会引起合金结构失稳。而当Co掺杂量达到x=0.02及以上时,可以看出Mn0.98Co1.02Si和Mn0.97Co1.03Si合金在2θ = 43.5°左右还存在少量Mn5Si3杂相。因此,为保证合金结构的稳定,Mn1-xCo1+xSi合金范围确定为0.01≤ x ≤ 0.015。
实施例2
利用超导量子干涉仪(Superconducting Quantum Interference Device:SQUID)测量了Mn1-xCo1+xSi(x = 0,0.01,0.015,0.02)合金的等温磁化曲线。
图2是正分MnCoSi合金的等温磁化曲线,合金在240-320 K的温度范围内均表现出变磁性特征,其中室温300 K时的变磁性临界场为2.5 T(相变临界场指50 %饱和磁化强度对应的外场大小)。
图3是Mn0.99Co1.01Si合金的等温磁化曲线,合金在240-320 K的温度范围内均表现出变磁性特征,其中室温300 K时的变磁性临界场为0.9 T。
图4是Mn0.985Co1.015Si合金的等温磁化曲线,合金在240-320 K的温度范围内均表现出变磁性特征,其中室温300 K时的变磁性临界场为0.8 T。
图5是Mn0.98Co1.02Si合金的等温磁化曲线,合金在240-280 K的温度范围内均表现出变磁性特征,在280-320 K的温度范围内为合金表现出铁磁性行为,变磁性转变消失。
图6是Mn1-xCo1+xSi(x = 0,0.01,0.015)合金不同温度下的变磁性临界场曲线图。合金的变磁性临界场随着温度的增加而降低,且当Co掺杂量增加时,相变临界场显著降低,且伴随着合金三相点的降低(三相点是指温度点,该温度以下合金磁化曲线有磁滞,为一级相变;该温度以下合金磁化曲线无磁滞,为二级相变)。其中优选的Mn0.985Co1.015Si合金变磁性临界场大幅度降低,三相点为260 K,室温300 K时磁化曲线无磁滞。
实施例3
利用综合物性测量系统(Physical Property Measurement System:PPMS)
和应变片技术对优选Mn0.985Co1.015Si合金进行了磁致伸缩测量。
图7是优选合金270-300 K间平行和垂直自然取向方向的磁致伸缩量,在平行取向方向合金表现为正的磁致伸缩效应,300 K时最大磁致伸缩量为1125 ppm;在垂直取向方向表现为负的磁致伸缩效应,300 K时最大磁致伸缩量为-530 ppm。由于优选合金三相点为260 K,所以室温磁致伸缩效应可逆无磁滞。

Claims (5)

1.一种MnCoSi基合金,其特征在于,所述的合金表达式为Mn1-xCo1+xSi ,其中0.01≤ x≤0.015。
2.如权利要求1所述的合金,其特征在于,合金表达式为Mn0.985Co1.015Si。
3.权利要求2所述的合金,其特征在于,使合金的室温相变临界场降低至0.8 T。
4.权利要求1或2所述的合金,其特征在于,合金室温磁化曲线无磁滞且室温磁致伸缩效应可逆无磁滞。
5.如权利要求1或2所述的合金的制备方法。
CN201611159706.8A 2016-12-15 2016-12-15 一种变磁性相变临界场降低的MnCoSi基合金 Pending CN106636846A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611159706.8A CN106636846A (zh) 2016-12-15 2016-12-15 一种变磁性相变临界场降低的MnCoSi基合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611159706.8A CN106636846A (zh) 2016-12-15 2016-12-15 一种变磁性相变临界场降低的MnCoSi基合金

Publications (1)

Publication Number Publication Date
CN106636846A true CN106636846A (zh) 2017-05-10

Family

ID=58822696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611159706.8A Pending CN106636846A (zh) 2016-12-15 2016-12-15 一种变磁性相变临界场降低的MnCoSi基合金

Country Status (1)

Country Link
CN (1) CN106636846A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343931A (zh) * 2019-08-27 2019-10-18 洛阳理工学院 一种室温磁致伸缩材料及其制备方法
CN112575237A (zh) * 2020-12-09 2021-03-30 南京航空航天大学 一种Co-Ni-Mn-Si-Tb巨磁致伸缩材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246104A (ja) * 1995-03-08 1996-09-24 Hitachi Metals Ltd トルクセンサ回転軸用高強度非磁性材料
CN1570187A (zh) * 2004-04-27 2005-01-26 有研稀土新材料股份有限公司 制备稀土磁致伸缩材料的方法和稀土磁致伸缩材料
US20140334041A1 (en) * 2013-05-09 2014-11-13 Kabushiki Kaisha Toshiba Magnetoresistive element, magnetic head, magnetic recording and reproducing apparatus, and method of manufacturing magnetoresistive element
CN104498775A (zh) * 2014-12-01 2015-04-08 南京大学 一种具有室温巨磁致伸缩效应的合金材料CoMnSi及其制备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246104A (ja) * 1995-03-08 1996-09-24 Hitachi Metals Ltd トルクセンサ回転軸用高強度非磁性材料
CN1570187A (zh) * 2004-04-27 2005-01-26 有研稀土新材料股份有限公司 制备稀土磁致伸缩材料的方法和稀土磁致伸缩材料
US20140334041A1 (en) * 2013-05-09 2014-11-13 Kabushiki Kaisha Toshiba Magnetoresistive element, magnetic head, magnetic recording and reproducing apparatus, and method of manufacturing magnetoresistive element
CN104498775A (zh) * 2014-12-01 2015-04-08 南京大学 一种具有室温巨磁致伸缩效应的合金材料CoMnSi及其制备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
马胜灿: "合金磁相变的调控及其磁热性质", 《中国博士学位论文全文数据库(电子期刊)基础科学辑》 *
龚元元: "磁相变合金的磁致伸缩和磁热效应", 《中国博士学位论文全文数据库(电子期刊)基础科学辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343931A (zh) * 2019-08-27 2019-10-18 洛阳理工学院 一种室温磁致伸缩材料及其制备方法
CN110343931B (zh) * 2019-08-27 2021-03-16 洛阳理工学院 一种室温磁致伸缩材料及其制备方法
CN112575237A (zh) * 2020-12-09 2021-03-30 南京航空航天大学 一种Co-Ni-Mn-Si-Tb巨磁致伸缩材料及其制备方法

Similar Documents

Publication Publication Date Title
Kaloni et al. Prediction of a quantum anomalous Hall state in Co-decorated silicene
Anantharamaiah et al. Magnetic and magnetostrictive properties of aluminium substituted cobalt ferrite synthesized by citrate-gel method
Liu et al. Magnetic transitions and magnetostrictive properties of Tb x Dy 1− x (Fe 0.8 Co 0.2) 2 (0.20⩽ x⩽ 0.40)
Anantharamaiah et al. High magnetostriction parameters of sintered and magnetic field annealed Ga-substituted CoFe2O4
Hammad et al. Optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by the sol-gel method
CN106636846A (zh) 一种变磁性相变临界场降低的MnCoSi基合金
Mudryk et al. Structural disorder and magnetism in rare-earth (R) R117Co54+ xSn112±y
Pani et al. New tetragonal derivatives of cubic NaZn13-type structure: RNi6Si6 compounds, crystal structure and magnetic ordering (R= Y, La, Ce, Sm, Gd–Yb)
Ren et al. Structure and magnetic properties of Fe2CoGe synthesized by ball-milling
Li et al. Electronic structure and magnetism of binary Fe-based half-Heusler alloys Fe2Z (Z= In, Sn, Sb and As)
Zhao et al. (Ba1− x Na x) F (Zn1− x Mnx) Sb: A novel fluoride-antimonide magnetic semiconductor with decoupled charge and spin doping
Ćwik et al. Magnetic properties and transformation of crystal structure in the ErFe2-ErAl2 system
Liu et al. Structural, magnetic and magnetostrictive properties of Co-doped Tb1-xHoxFe2 (0≤ x≤ 1.0) alloys
Zhang et al. Colossal electroresistance and magnetoresistance effect in polycrystalline perovskite cobaltites Nd1− xSrxCoO3 (x= 0.1, 0.2, 0.3)
Saravanan et al. Doping level of Mn in high temperature grown Zn1− x MnxO studied through electronic charge distribution, magnetization, and local structure
Zou et al. Crystal structure and magnetic properties of GdSi1. 78, Gd (Si0. 684Ge0. 316) 1.78, GdGe1. 57, and GdSn2 compounds
He et al. Crystal-structure and magnetic properties of the new ternary compound Pr117Co57Sn112
Nelson et al. Structural, magnetic, and electron transport properties of Mn3− xPtxSn (x= 0, 0.5, 1) nanomaterials
Morozkin et al. The magnetic ordering in the Ho6FeTe2 compound
Manfrinetti et al. Crystal structure and the magnetic properties of CeTiGe3
Dospial et al. Influence of heat treatment on structure and reversal magnetization processes of Sm12. 5Co66. 5Fe8Cu13 alloy
Lejeune et al. Synthesis and processing effects on magnetic properties in the Fe5SiB2 system
Xia et al. Effects of excessive Zn2+ ions on intrinsic magnetic and structural properties of Ni0. 2Zn0. 6Cu0. 2Fe2O4 powder prepared by chemical coprecipitation method
Yang et al. Structural, magnetic properties and magnetostriction studies of Sm1− xNdxFe1. 55 alloys
Bhame et al. Magnetoelastic properties of terbium substituted cobalt ferrite

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510