CN106622358A - 一种复合载体加氢脱硫催化剂 - Google Patents

一种复合载体加氢脱硫催化剂 Download PDF

Info

Publication number
CN106622358A
CN106622358A CN201610879647.5A CN201610879647A CN106622358A CN 106622358 A CN106622358 A CN 106622358A CN 201610879647 A CN201610879647 A CN 201610879647A CN 106622358 A CN106622358 A CN 106622358A
Authority
CN
China
Prior art keywords
catalyst
gasoline
sba
msu
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610879647.5A
Other languages
English (en)
Inventor
过冬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610879647.5A priority Critical patent/CN106622358A/zh
Publication of CN106622358A publication Critical patent/CN106622358A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/12Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/70Catalyst aspects

Abstract

本发明公开了一种加氢脱硫催化剂,所述催化剂包括载体和活性组分,所述载体为MSU‑G、SBA‑15和HMS的复合物或混合物;所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物,所述活性组分的总含量为载体重量的1%‑15%,所述的催化剂还含有催化助剂,所述催化助剂为Cr2O3、ZrO2、CeO2、V2O5和NbOPO4的混合物。该催化剂可以将FCC汽油中的总硫含量降低到5ppm以下,以满足汽油国五标准。同时,该催化剂的采用还使得FCC汽油的辛烷值不明显降低。

Description

一种复合载体加氢脱硫催化剂
技术领域
本发明涉及催化剂技术领域,具体涉及一种加氢脱硫催化剂,更优选涉及一种FCC汽油加氢脱硫并减少辛烷值降低幅度的复合载体催化剂。
背景技术
进入二十一世纪,燃料油的需求和使用大幅度增长,而其中的含硫化合物所带来的环境污染问题,更引起人们的关注。燃料油中的硫化物经发动机燃烧产生的硫氧化物(SOx)排放到空气中,产生酸雨和硫酸烟雾型污染等,造成大气污染。
硫是自然界存在于汽油中的一种有害物质,成品汽油中80%以上的硫来自催化裂化(FCC)汽油,随着原油的不断变重,FCC汽油中的硫含量还会不断增加。国外汽油一般来自FCC(34%)、催化重整(33%),以及烷基化、异构化和醚化(约共33%)等工艺;而国产汽油80%是来自FCC汽油。由于汽油中85%~95%的硫来自FCC汽油,使得我国汽油中的含硫量比国外汽油多很多。很多专家进行了硫对汽车尾气排放影响的研究,结果表明:如果将汽油中的硫含量从450μg·g-1降低到50μg·g-1,汽车尾气中的NOx平均减少9%,CO平均减少19%,HC平均减少18%,有毒物平均减少16%。因而,有效的燃油加氢脱硫技术,对社会、经济、环境的发展都有重要的作用。
目前加氢脱硫(HDS)技术是公认的最有效、最经济的脱硫方法,尤其是选择性加氢脱硫技术,即在脱除汽油大量含硫化合物的同时尽量抑制烯烃的饱和以减少辛烷值损失。这类技术具有操作条件缓和,汽油收率高,氢耗低和辛烷值损失小等特点。加氢脱硫技术的关键是加氢脱硫催化剂的选择,负载型的钴钼催化剂是一类重要的汽油加氢脱硫催化剂,通常是把钴钼负载在多孔载体上(如氧化铝、氧化硅、活性炭或其复合载体),广泛应用于加氢脱硫过程中,以获得高质量汽油产品。
加氢脱硫(HDS)技术是50年代发展起来的,90年代该技术迎来改进和发展的第二个高峰期,它的工艺成熟,一直以来,成为脱除馏分油中硫、氮、氧,提高油品实用性能和清洁度的最为有效的手段。催化剂的活性和选择性是影响加氢精制效率和深度的关键因素,高性能催化剂所带来的经济和环境效益是非常显著的,因此吸引了众多企业和研究者投入到新型高效催化剂开发中,开发出许多性能优良、各具特色的催化剂产品。加氢工艺迅速发展的根本原因是催化剂的发展,但常规技术脱硫的同时会造成烯烃饱和以及产品辛烷值(RON)下降,因此能脱硫并且辛烷值损失少的选择性加氢新技术成为近年来HDS方法改进的主要方向。
Akzo Nobel公司开发的RESOLVE技术开发了催化裂化降低汽油硫含量的RESOLVE添加剂产品系列,使用高氢转移活性组分和ADM-20,可使裂化汽油硫含量降低20%,RESOLVE-700汽油降低硫添加剂目前正在工业评价中。
Exxon研究工程公司与Akzo Nobel公司共同开发了选择性脱除FCC汽油中含硫化合物的Scanfining技术,并于1998年将该技术推向工业化。它采用传统的加氢处理流程,通过精心选择催化剂(RT-225),使辛烷值损失和氢耗达到最少。
法国IFP开发的Prime-G技术,该技术由法国研究设计院(IFP)开发,采用双催化剂体系。其工艺条件缓和,烯烃加氢活性低,不发生烯烃饱和及裂化反应,液体收率达100%,脱硫率大于95%,辛烷值损失少,氢耗量低。将FCC重汽油加氢脱硫,调和得到的成品汽油可以实现硫含量100~150μg·g-1的目标;将FCC轻质汽油分别加氢脱硫,可实现硫含量30μg·g-1的目标。
针对国内FCC汽油含硫的特点,抚顺石油化工研究院(FRIPP)开发了FCC汽油选择性加氢技术(OCT-M)和全馏分汽油选择性加氢技术(FRS),装置能够生产硫质量分数不大于150μg·g-1的国标Ⅲ汽油。OCT-M技术在中国石化石家庄炼油厂连续运转17个月后,采用FRIPP推荐的两种优化方案,FCC汽油加氢后,硫质量分数达到国标Ⅲ和Ⅳ标准。
2016年5月5日,发改委、财政部、环保部等七部门发布关于印发《加快成品油质量升级工作方案》通知,方案明确扩大车用汽、柴油国五标准执行范围。从原定京津冀、长三角、珠三角区域重点城市扩大到整个东部地区11个省市(北京、天津、河北、辽宁、上海、江苏、浙江、福建、山东、广东和海南)。2015年10月31日前,东部地区保供企业具备生产国五标准车用汽油(含乙醇汽油调和组分油)、车用柴油的能力。2016年1月1日起,东部地区全面供应符合国五标准的车用汽油(含E10乙醇汽油)、车用柴油(含B5生物柴油)。
目前,降低FCC汽油硫含量的主要方法是催化加氢脱硫。但是加氢处理方法存在如下不足:(1)设备投资大;(2)加氢脱噻吩硫的反应条件苛刻,操作费用高;(3)烯烃在加氢脱硫条件下易发生饱和,不仅消耗大量氢气,而且导致汽油辛烷值降低。FCC汽油脱硫率要求越高,操作条件就越苛刻,汽油辛烷值的损失也越大。
因此如何提供一种加氢脱硫催化剂,能有效将汽油中的硫含量控制在10ppm以下,以满足国五标准,同时汽油辛烷值损失较小或者不损失,是本领域面临的一个难题。
发明内容
本发明的目的在于提出一种加氢脱硫催化剂,该催化剂可以将FCC汽油中的总硫含量降低到5ppm以下,以满足更加严苛的汽油含硫量标准。同时,该催化剂的采用还使得FCC汽油的辛烷值不明显降低。
为达此目的,本发明采用以下技术方案:
一种加氢脱硫的催化剂,所述催化剂包括载体和活性组分。
所述载体为MSU-G、SBA-15和HMS的复合物或混合物。
所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物。
所述的催化剂还含有催化助剂,所述催化助剂为Cr2O3、ZrO2、CeO2、V2O5和NbOPO4的混合物。
本发明的目的之一就在于,提供一种3种不同介孔分子筛的复合以表现出协同效应和特殊催化性能,所述协同效应表现在脱硫精制方面,而特殊的催化性能则是表现在对催化剂的使用寿命及催化活性的提高上。
在催化剂领域,根据国际纯粹与应用化学协会(IUPAC)的定义,孔径小于2nm的称为微孔;孔径大于50nm的称为大孔;孔径在2到50nm之间的称为介孔(或称中孔)。介孔材料是一种孔径介于微孔与大孔之间的具有巨大比表面积和三维孔道结构的新型材料,它具有其它多孔材料所不具有的优异特性:具有高度有序的孔道结构;孔径单一分布,且孔径尺寸可在较宽范围变化;介孔形状多样,孔壁组成和性质可调控;通过优化合成条件可以得到高热稳定性和水热稳定性。
但在目前的应用中,所述介孔材料在用于催化领域时,都是单独使用,比如MCM系列,如MCM-22、MCM-36、MCM-41、MCM-48、MCM-49、MCM56,比如MSU系列,如MSU-1、MSU-2、MSU-4、MSU-X、MSU-G、MSU-S、MSU-J等,以及SBA系列,如SBA-1、SBA-2、SBA-3、SBA-6、SBA-7、SBA-8、SBA-11、SBA-15、SBA-16等,以及其他的介孔系列等。
少数研究文献研究了两种载体的复合,比如Y/SBA-15、Y/SAPO-5等,多数是以介孔-微孔复合分子筛和微孔-微孔复合分子筛为主。采用3种不同介孔分子筛的复合以表现出协同效应和特殊催化性能的研究,目前尚未见报导。
本发明的催化剂载体是MSU-G、SBA-15和HMS的复合物或混合物。所述复合物或混合物中,MSU-G、SBA-15和HMS的重量比为1:(0.8-1.2):(0.4-0.7),优选为1:(1-1.15):(0.5-0.7)。
本发明采用的MSU-G、SBA-15和HMS介孔分子筛均是催化领域已有的分子筛,其已经在催化领域获得广泛研究和应用。
MSU-G是一种具有泡囊结构状粒子形态和层状骨架结构的介孔分子筛,其具有高度的骨架交联和相对较厚的骨架壁而具有超强的热稳定性和水热稳定性,其骨架孔与垂直于层和平行于层的孔相互交联,扩散路程因其囊泡壳厚而很短。MSU-G分子筛的囊泡状粒子形态方便试剂进入层状骨架的催化中心,其催化活性很高。
SBA-15属于介孔分子筛的一种,具有二维六方通孔结构,具有P3mm空间群。在XRD衍射图谱中,主峰在约1°附近,为(10)晶面峰。次强峰依次为(11)峰以及(20)峰。其他峰较弱,不易观察到。此外,SBA-15骨架上的二氧化硅一般为无定形态,在广角XRD衍射中观察不到明显衍射峰。SBA-15具有较大的孔径(最大可达30nm),较厚的孔壁(壁厚可达6.4nm),因而具有较好的水热稳定性。
六方介孔硅HMS具有长程有序而短程相对无序的六方介孔孔道,其孔壁比HCM41S型介孔材料更厚,因而水热稳定性更好,同时短程相对无序的组织结构及孔径调变范围更大,使HMS材料具有更高的分子传输效率和吸附性能,适宜于作为大分子催化反应的活性中心。
本发明从各个介孔材料中,进行复合配对,经过广泛的筛选,筛选出MSU-G、SBA-15和HMS的复合或混合。发明人发现,在众多的复合物/混合物中,只有MSU-G、SBA-15和HMS三者的复合或混合,才能实现加氢精制效果的协同提升,并能够使得催化活性长期不降低,使用寿命能够大大增加。换言之,只有本发明的MSU-G、SBA-15和HMS三者的特定复合或混合,才同时解决了协同和使用寿命两个技术问题。其他配合,要么不具备协同作用,要么使用寿命较短。
所述复合物,可以采用MSU-G、SBA-15和HMS三者的简单混合,也可以采用两两复合后的混合,比如MSU-G/SBA-15复合物、MSU-G/HMS和SBA-15/HMS复合物的混合。所述复合可以采用已知的静电匹配法、离子交换法、两步晶化法等进行制备。这些介孔分子筛和其复合物的制备方法是催化剂领域的已知方法,本发明不再就其进行赘述。
本发明的目的之二在于提供催化剂活性组分的配合,所述配合能够形成协同作用,提高催化效果。本发明中,特别限定活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例,发明人发现,不同的混合比例达到的效果完全不同。发明人发现,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例(摩尔比)为1:(0.4-0.6):(0.28-0.45):(0.8-1.2),只有控制氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比在该范围内,才能够实现FCC汽油中含硫量控制在10ppm以下且汽油辛烷值没有明显下降。也就是说,本发明的四种活性组分只有在摩尔比为1:(0.4-0.6):(0.28-0.45):(0.8-1.2)时,才具备协同效应。除开该摩尔比范围之外,或者省略或者替换任意一种组分,都不能实现协同效应。
优选的,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比为1:(0.45-0.5):(0.35-0.45):(0.8-1.0),进一步优选为1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最优选1:0.48:0.42:0.95。
所述活性组分的总含量为载体重量的1%-15%,优选3-12%,进一步优选5-10%。例如,所述含量可以为2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%等。
本发明的目的之一还在于提供所述催化剂的助催化剂。本发明所述的催化剂还含有催化助剂,所述催化助剂为Cr2O3、ZrO2、CeO2、V2O5和NbOPO4(磷酸铌)的混合物。
尽管在加氢精制特别是加氢脱硫领域,已经有成熟的催化助剂,比如P、F和B等,其用于调节载体的性质,减弱金属与载体间强的相互作用,改善催化剂的表面结构,提高金属的可还原性,促使活性组分还原为低价态,以提高催化剂的催化性能。但上述P、F和B催化助剂在应用与本发明的载体与活性组分时,针对高硫组分,其促进催化脱硫/精制的作用了了。
本发明经过在众多常用助催化剂组分,以及部分活性组分中进行遴选、复配等,最终发现采用Cr2O3、ZrO2、CeO2、V2O5和NbOPO4(磷酸铌)的混合物对本发明的催化剂促进作用明显,能显著提高其水热稳定性,并提高其防结焦失活能力,从而提高其使用寿命。
所述Cr2O3、ZrO2、CeO2、V2O5和NbOPO4之间没有固定的比例,也就是说,Cr2O3、ZrO2、CeO2、V2O5和NbOPO4每一种各自的含量达到有效量即可。优选的,本发明采用的Cr2O3、ZrO2、CeO2、V2O5和NbOPO4各自的含量均为(分别为)载体质量的1-7%,优选2-4%。
尽管本发明所述的催化助剂之间没有特定的比例要求,但每一种助剂必须能够达到有效量的要求,即能够起到催化助剂作用的含量,例如载体质量的1-7%。本发明在遴选过程中发现,省略或者替换所述助剂中的一种或几种,均达不到本发明的技术效果(提高水热稳定性,减少结焦提高使用寿命),也就是说,本发明的催化助剂之间存在特定的配合关系。
事实上,本发明曾经尝试将催化助剂中的磷酸铌NbOPO4替换为五氧化二妮Nb2O5,发现尽管助剂中也引入了Nb,但其技术效果明显低于磷酸铌NbOPO4,其不仅水热稳定性稍差,其催化剂床层结焦相对快速,从而导致催化剂孔道堵塞,催化剂床层压降上升相对较快。本发明也曾尝试引入其他磷酸盐,但这种尝试尽管引入了磷酸根离子,但同样存在水热稳定性相对稍差,其催化剂床层结焦相对快速,从而导致催化剂孔道堵塞,催化剂床层压降上升相对较快。
尽管本发明引入催化助剂有如此之多的优势,但本发明必须说明的是,引入催化助剂仅仅是优选方案之一,即使不引入该催化助剂,也不影响本发明主要发明目的的实施。不引入本发明的催化助剂特别是磷酸铌,其相较于引入催化助剂的方案,其缺陷仅仅是相对的。即该缺陷是相对于引入催化助剂之后的缺陷,其相对于本发明之外的其他现有技术,本发明所提及的所有优势或者新特性仍然存在。该催化助剂不是解决本发明主要技术问题所不可或缺的技术手段,其只是对本发明技术方案的进一步优化,解决新的技术问题。
所述催化剂的制备方法可以采取常规的制备方法以及其他替代方法,本领域技术人员可以根据其掌握的现有技术自由选择,本发明不再赘述。
本发明的催化剂,可以用于汽油的加氢脱硫,特别适合FCC汽油的加氢脱硫。
本发明通过选取特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体,以及选取特定比例的氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC作为活性成分,所述的催化剂还含有催化助剂,所述催化助剂为Cr2O3、ZrO2、CeO2、V2O5和NbOPO4的混合物,使得该催化剂产生协同效应,对FCC汽油的加氢脱硫能控制在总硫含量低于5ppm,同时辛烷值降低幅度控制在0.5-2%之内,并使得其使用寿命获得极大提高。
具体实施方式
本发明通过下述实施例对本发明的催化剂进行说明。
实施例1
通过浸渍法制备得到催化剂,载体为MSU-G、SBA-15和HMS的混合物,混合比例是1:1.1:0.5。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.4:0.3:0.8。
将所述催化剂装填入固定床反应器,所述反应器的反应管由内径50mm的不锈钢制成,催化剂床层温度用UGU808型温控表测量,原材料轻质油由北京卫星制造厂制造的双柱塞微量泵连续输送,氢气由高压气瓶供给并用北京七星华创D07-11A/ZM气体质量流量计控制流速,催化剂装填量为2kg。反应后的产物经水浴室温冷却后进行气液分离。
所用原料为全馏分FCC汽油,其含有烯烃25.3m%,芳烃40.2m%,烷烃28.8m%,研究法辛烷值为94.2,总硫含量660μg/g。
控制反应条件为:温度370℃,氢气压力3.0MPa,氢油体积比600,体积空速3h-1
测试最终的产品,其研究法辛烷值仍达到94.1,而总硫含量降低到2ppm。
实施例2
通过浸渍法制备得到催化剂,载体为MSU-G/SBA-15复合物、MSU-G/HMS和SBA-15/HMS复合物的混合,其中MSU-G、SBA-15和HMS的比例与实施例1相同。所述活性组分氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的总含量为载体质量的10%,其摩尔比为1:0.6:0.45):1.2。
其余条件与实施例1相同。
测试最终的产品,其研究法辛烷值仍达到94,而总硫含量降低到3ppm。
对比例1
将实施例1的载体替换为MSU-G,其余条件不变。
测试最终的产品,其研究法辛烷值为82,总硫含量为33ppm。
对比例2
将实施例1的载体替换为SBA-15,其余条件不变。
测试最终的产品,其研究法辛烷值为81,总硫含量为46ppm。
对比例3
将实施例1的载体替换为HMS,其余条件不变。
测试最终的产品,其研究法辛烷值为84,总硫含量为42ppm。
对比例4
将实施例1中的载体替换为MSU-G/SBA-15复合物,其余条件不变。
测试最终的产品,其研究法辛烷值为87,总硫含量为29ppm。
对比例5
将实施例1中的载体替换为SBA-15/HMS复合物,其余条件不变。
测试最终的产品,其研究法辛烷值为85,总硫含量为24ppm。
对比例6
将实施例1中的载体替换为MSU-G/HMS复合物,其余条件不变。
测试最终的产品,其研究法辛烷值为82,总硫含量为31ppm。
实施例1与对比例1-6表明,本发明采用特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体,当替换为单一载体或两两复合载体时,均达不到本发明的技术效果,因此本发明的特定比例的MSU-G、SBA-15和HMS复合物/混合物作为载体与催化剂其他组分之间具备协同效应,产生了预料不到的技术效果。
对比例7
省略实施例1中的MO2N,其余条件不变。
测试最终的产品,其研究法辛烷值为87,总硫含量为21ppm。
对比例8
省略实施例1中的WC,其余条件不变。
测试最终的产品,其研究法辛烷值为82,总硫含量为26ppm。
上述实施例及对比例7-8说明,本发明的催化剂几种活性组分之间存在特定的联系,省略或替换其中一种或几种,都不能达到本申请的特定效果,证明其产生了协同效应。
实施例3
催化剂中含有催化助剂Cr2O3、ZrO2、CeO2、V2O5和NbOPO4,其含量分别为1%、1.5%、2%、1%和3%,其余与实施例1相同。
测试最终的产品,其使用3个月后,催化剂床层压降无任何变化,相较于同样使用时间实施例1的催化剂床层压降减少14.1%。
对比例9
相较于实施例3,将其中的NbOPO4省略,其余条件相同。
测试最终的产品,其使用3个月后,催化剂床层压降升高,相较于同样使用时间实施例1的催化剂床层压降只减少2.3%。
对比例10
相较于实施例3,将其中的CeO2省略,其余条件相同。
测试最终的产品,其使用3个月后,催化剂床层压降升高,相较于同样使用时间实施例1的催化剂床层压降只减少2.9%。
实施例3与对比例9-10表明,本发明的催化助剂之间存在协同关系,当省略或替换其中一个或几个组分时,都不能达到本发明加入催化助剂时的减少结焦从而阻止催化剂床层压降升高的技术效果。即,其验证了本发明的催化助剂能够提高所述催化剂的使用寿命,而其他催化助剂效果不如该特定催化助剂。
申请人声明,本发明通过上述实施例来说明本发明的催化剂,但本发明并不局限于上述催化剂,即不意味着本发明必须依赖上述详细催化剂才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (6)

1.一种加氢脱硫催化剂,所述催化剂包括载体和活性组分,其特征在于,
所述载体为MSU-G、SBA-15和HMS的复合物或混合物;
所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物,所述活性组分的总含量为载体重量的1%-15%;
所述的催化剂还含有催化助剂,所述催化助剂为Cr2O3、ZrO2、CeO2、V2O5和NbOPO4的混合物。
2.如权利要求1所述的加氢脱硫催化剂,其特征在于,MSU-G、SBA-15和HMS的重量比为1:(0.8-1.2):(0.4-0.7),优选为1:(1-1.15):(0.5-0.7)。
3.如权利要求1所述的加氢脱硫催化剂,其特征在于,所述活性组分的总含量为载体重量的3-12%,优选5-10%。
4.如权利要求1所述的加氢脱硫催化剂,其特征在于,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比为1:(0.45-0.5):(0.35-0.45):(0.8-1.0),进一步优选为1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最优选1:0.48:0.42:0.95。
5.如权利要求1所述的加氢脱硫催化剂,其特征在于,所述加氢脱硫催化剂用于FCC汽油的加氢脱硫。
6.如权利要求1所述的加氢脱硫催化剂,其特征在于,Cr2O3、ZrO2、CeO2、V2O5和NbOPO4各自的含量分别为载体质量的1-7%,优选2-4%。
CN201610879647.5A 2016-09-30 2016-09-30 一种复合载体加氢脱硫催化剂 Pending CN106622358A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610879647.5A CN106622358A (zh) 2016-09-30 2016-09-30 一种复合载体加氢脱硫催化剂

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610879647.5A CN106622358A (zh) 2016-09-30 2016-09-30 一种复合载体加氢脱硫催化剂

Publications (1)

Publication Number Publication Date
CN106622358A true CN106622358A (zh) 2017-05-10

Family

ID=58854767

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610879647.5A Pending CN106622358A (zh) 2016-09-30 2016-09-30 一种复合载体加氢脱硫催化剂

Country Status (1)

Country Link
CN (1) CN106622358A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413605B2 (en) 2019-08-28 2022-08-16 King Fahd University Of Petroleum And Minerals Molybdenum based catalyst supported on titania-modified zeolite

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448471A (zh) * 2002-03-28 2003-10-15 北京海顺德钛催化剂有限公司 一种汽油加氢催化剂及制法和它在脱硫降烯烃中的应用
CN1895777A (zh) * 2005-07-14 2007-01-17 北京化工大学 一种组装碳化物的介孔分子筛催化剂及其制备方法
CN101844088A (zh) * 2010-04-14 2010-09-29 中国科学院大连化学物理研究所 一种汽油选择性脱硫催化剂
CN102618325A (zh) * 2011-01-31 2012-08-01 北京安耐吉能源工程技术有限公司 一种汽油加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448471A (zh) * 2002-03-28 2003-10-15 北京海顺德钛催化剂有限公司 一种汽油加氢催化剂及制法和它在脱硫降烯烃中的应用
CN1895777A (zh) * 2005-07-14 2007-01-17 北京化工大学 一种组装碳化物的介孔分子筛催化剂及其制备方法
CN101844088A (zh) * 2010-04-14 2010-09-29 中国科学院大连化学物理研究所 一种汽油选择性脱硫催化剂
CN102618325A (zh) * 2011-01-31 2012-08-01 北京安耐吉能源工程技术有限公司 一种汽油加工方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
F•维拉尼: "《稀土技术及其应用》", 31 July 1986 *
R.NAVA ET AL.: "Comparison of the morphology and reactivity in HDS of CoMo-HMS,CoMo-P-HMS and CoMo-SBA-15 catalysts", 《MICROPOROUS AND MESOPOROUS MATERIALS》 *
中国石油化工集团公司人事部: "《加氢裂化装置操作工》", 30 September 2008 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413605B2 (en) 2019-08-28 2022-08-16 King Fahd University Of Petroleum And Minerals Molybdenum based catalyst supported on titania-modified zeolite

Similar Documents

Publication Publication Date Title
CN106622358A (zh) 一种复合载体加氢脱硫催化剂
CN106433758A (zh) 一种fcc汽油加氢脱硫工艺
CN106345511A (zh) 一种复合载体加氢脱硫催化剂
CN106140247A (zh) 一种加氢精制催化剂
CN106190266A (zh) 一种fcc汽油加氢脱硫工艺
CN106311312A (zh) 一种复合载体加氢脱硫催化剂
CN106268912A (zh) 一种加氢精制催化剂
CN106423248A (zh) 一种加氢精制催化剂
CN106378174A (zh) 一种加氢精制催化剂
CN106221760A (zh) 一种fcc汽油加氢脱硫工艺
CN106268913A (zh) 一种加氢脱硫催化剂
CN106311322A (zh) 一种加氢脱硫催化剂
CN106318455A (zh) 一种加氢脱硫催化剂
CN106378178A (zh) 一种加氢精制催化剂
CN106423261A (zh) 一种加氢精制催化剂
CN106311323A (zh) 一种加氢脱硫催化剂
CN106311314A (zh) 一种加氢脱硫催化剂
CN106378175A (zh) 一种加氢脱硫催化剂
CN106336895A (zh) 一种加氢精制催化剂
CN106318450A (zh) 一种加氢精制催化剂
CN106268916A (zh) 一种加氢脱硫催化剂
CN106190265A (zh) 一种fcc汽油加氢脱硫工艺
CN106190250A (zh) 一种fcc汽油加氢脱硫工艺
CN106378177A (zh) 一种加氢脱硫催化剂
CN106190261A (zh) 一种fcc汽油加氢脱硫工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170510