CN106608666B - 硫化铋复合活性炭材料于脱氮中的应用 - Google Patents

硫化铋复合活性炭材料于脱氮中的应用 Download PDF

Info

Publication number
CN106608666B
CN106608666B CN201611242664.4A CN201611242664A CN106608666B CN 106608666 B CN106608666 B CN 106608666B CN 201611242664 A CN201611242664 A CN 201611242664A CN 106608666 B CN106608666 B CN 106608666B
Authority
CN
China
Prior art keywords
ammonia nitrogen
carbon materials
sulfide composite
reactive carbon
composite reactive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611242664.4A
Other languages
English (en)
Other versions
CN106608666A (zh
Inventor
刘守清
吴佳民
刘文晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN201611242664.4A priority Critical patent/CN106608666B/zh
Publication of CN106608666A publication Critical patent/CN106608666A/zh
Application granted granted Critical
Publication of CN106608666B publication Critical patent/CN106608666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种硫化铋复合活性炭材料于的脱氮中的应用,包括:在近红外光条件下,以硫化铋复合活性炭材料作为光催化剂,将氨氮降解为N2和H2O。本发明的硫化铋复合活性炭材料催化降解氨氮的方法,其对氨氮具有分子识别和红外光催化降解功能,可在近红外光下将氨氮的降解为N2和H2O,所述催化剂重复催化降解氨氮5~10次后,仍可使氨氮的降解率>90%。

Description

硫化铋复合活性炭材料于脱氮中的应用
技术领域
本发明涉及一种硫化铋复合活性炭材料及其利用近红外光于催化降解氨氮中的应用。
背景技术
利用太阳能解决环境能源问题,起源于1972年Fujishima利用TiO2光电极电解水制氢,随后Carey在1976年报道了利用TiO2光催化氧化消除多氯二酚的毒性,从此,利用太阳能降解环境污染物的研究迅速成为人们研究的热点。但是,TiO2只能利用占太阳能4%左右的紫外光,对TiO2进行掺杂及开发Fe2O3、WO3、Bi2WO6等新型催化剂,虽然部分解决了对可见光的利用问题,但是占太阳能近50%的红外光尚需开发利用。
发明内容
本发明的主要目的在于提供一种硫化铋复合活性炭材料于脱氮中的应用,以克服现有技术中的不足。
为实现前述发明目的,本发明采用的技术方案包括:
本发明实施例提供一种硫化铋复合活性炭材料于近红外光光照条件下光催化降解氨氮中的用途。
进一步的,所述硫化铋复合活性炭材料包括活性炭和1wt%~10wt%硫化铋颗粒,所述硫化铋分布于所述活性炭表面。
进一步的,所述硫化铋复合活性炭材料的比表面积为10-80m2/g。
进一步的,所述硫化铋复合活性炭材料的粒径为1.0-20nm,相邻硫化铋层间距为0.54-0.84nm。
在一些实施方案中,所述氨氮包括NH3和/或NH4 +,但不限于此。
在一些实施方案中,所述近红外光的波长范围为780-2500nm。
本发明实施例还提供一种氨氮的净化方法,其包括:将硫化铋复合活性炭材料加入含有氨氮的液相体系,并以近红外光光照所述液相体系,使所述氨氮被光催化降解为N2和H2O。
在些实施方案中,所述硫化铋复合活性炭材料与氨氮的质量比为100mg:5-50mg。
进一步的,将含有氨氮的液相待测样品与硫化铋复合活性炭材料混合置入避光反应器中,并在所述避光反应器的光照窗口处设置仅可使近红外光通过的滤光片,之后以光源照射所述避光反应器,使其中的氨氮被光催化降解为N2和H2O。
与现有技术相比,本发明的优点包括:本发明的硫化铋复合活性炭材料催化降解氨氮的方法,利用近红外光光将氨氮降解为N2和H2O,无需添加多余的氧化剂,从而降低了成本,且所述催化剂重复催化降解氨氮5-10次后,所述氨氮的降解率仍>90%。
附图说明
图1是本发明实施例1中制得的硫化铋复合活性炭材料(AC-Bi2S3)氨氮降解率随时间的变化曲线图;
图2是本发明实施例1中制得的硫化铋复合活性炭材料(AC-Bi2S3)重复7次后氨氮降解率的曲线图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
本发明实施例提供一种硫化铋复合活性炭材料于近红外光光照条件下光催化降解氨氮中的用途。
进一步的,所述硫化铋复合活性炭材料包括活性炭和1wt%~10wt%硫化铋颗粒,所述硫化铋分布于所述活性炭表面。
进一步的,所述硫化铋复合活性炭材料的比表面积为10-80m2/g。
进一步的,所述硫化铋复合活性炭材料的粒径为1.0-20nm,相邻硫化铋层间距为0.54-0.84nm。
在一些实施方案中,所述氨氮包括NH3和/或NH4 +,但不限于此。
在一些实施方案中,所述近红外光的波长范围为780-2500nm。
本发明实施例还提供一种氨氮的净化方法,其包括:将硫化铋复合活性炭材料加入含有氨氮的液相体系,并以近红外光光照所述液相体系,使所述氨氮被光催化降解为N2和H2O。
在些实施方案中,所述硫化铋复合活性炭材料与氨氮的质量比为100mg:5-50mg。
进一步的,将含有氨氮的液相待测样品与硫化铋复合活性炭材料混合置入避光反应器中,并在所述避光反应器的光照窗口处设置仅可使近红外光通过的滤光片,之后以光源照射所述避光反应器,使其中的氨氮被光催化降解为N2和H2O。
在一较为优选的实施方案中,一种氨氮的净化方法具体包括:
(1)提供光反应器及滤光片,以保证只有近红外光辐射进入光反应器;
(2)向步骤(1)中的光反应器中加入待测样品及硫化铋复合活性炭材料,盖上滤光片,再置于光源下光照,测得不同时间段所述待测样品在可见光波段的吸光值;
(3)根据公式:氨氮降解率=(1-Ci/C0)×100%=(1-Ai/A0)×100%计算出氨氮的降解率。
进一步的,测得所述待测样品在554nm处的吸光值。
进一步的,所述硫化铋复合活性炭材料重复催化降解氨氮5-10次后,氨氮的降解率仍>90%。
以下结合附图和实施例对本发明的技术作进一步的解释说明。
实施例1
(1)AC-Bi2S3的制备:称取0.6g硝酸铋溶于20mL去离子水中,之后称取0.2g硫脲溶于20mL去离子水中并与硝酸铋溶液混合均匀,之后采用1mol/L的NaOH溶液调节混合液的pH值为10.0,再加入0.01g活性炭,将混合溶液转移至高压反应釜中,在150℃条件下反应8h,冷却至室温,过滤洗涤后制得所述AC-Bi2S3
(2)光催化实验:用锡箔纸将一个100ml烧杯的杯壁包住,以避免紫外光和可见光进入反应体系,用λ>780nm截止型滤光片覆盖在烧杯口上,以保证只有近红外光辐射进入光反应器,将300W紫外-可见光灯置于反应器上方。烧杯中加入一定浓度的氨氮溶液,用NaHCO3-Na2CO3(0.1mol/L)缓冲溶液调节pH值,向烧杯中加入一定量的催化剂,置于光源下,磁力搅拌器搅拌,每隔一小时测定剩余氨氮溶液的吸光度。取1ml氨氮溶液,加1.5ml纳氏试剂,1ml酒石酸钾钠溶液稀释至50ml,用T1901紫外可见分光光度计测定388nm处的吸光度,以此计算氨氮的降解率。
氨氮降解率=(1-Ci/C0)×100%=(1-Ai/A0)×100%
式中,C0为氨氮的初始浓度,A0为初始溶液的吸光度,Ci为剩余氨氮的浓度,Ai为剩余氨氮的吸光度。
参见图1,光催化降解8h后,氨氮的降解率为90%。
(4)催化剂稳定性:通过多次循环实验来评价杂化催化剂的稳定性。AC-Bi2S3催化剂在近红外光辐射下连续7次催化降解氨氮的降解率。每一次实验持续8h,在每一次降解结束后,通过离心分离、去离子水洗涤得到催化剂,然后再继续循环使用该催化剂。参见图2所示,在AC-Bi2S3催化剂光催化降解氨氮7次循环降解后,氨氮去除率仍在90%以上。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (4)

1.硫化铋复合活性炭材料于近红外光光照条件下光催化降解氨氮中的用途,其特征在于,所述硫化铋复合活性炭材料的制备方法如下:称取0.6g硝酸铋溶于20mL去离子水中,之后称取0.2g硫脲溶于20mL去离子水中并与硝酸铋溶液混合均匀,之后采用1mol/L的NaOH溶液调节混合液的pH值为10.0,再加入0.01g活性炭,将混合液转移至高压反应釜中,在150℃条件下反应8h,冷却至室温,过滤洗涤后制得所述硫化铋复合活性炭材料;所述氨氮包括NH3和/或NH4 +,所述近红外光的波长范围为780-2500nm。
2.一种氨氮净化方法,其特征在于包括:将硫化铋复合活性炭材料加入含有氨氮的液相体系,并以近红外光光照所述液相体系,使所述氨氮被光催化降解为N2和H2O;
所述硫化铋复合活性炭材料的制备方法如下:称取0.6g硝酸铋溶于20mL去离子水中,之后称取0.2g硫脲溶于20mL去离子水中并与硝酸铋溶液混合均匀,之后采用1mol/L的NaOH溶液调节混合液的pH值为10.0,再加入0.01g活性炭,将混合液转移至高压反应釜中,在150℃条件下反应8h,冷却至室温,过滤洗涤后制得所述硫化铋复合活性炭材料;所述氨氮包括NH3和/或NH4 +,所述近红外光的波长范围为780-2500nm。
3.如权利要求2所述的氨氮净化方法,其特征在于:所述硫化铋复合活性炭材料与氨氮的质量比为100mg:5-50mg。
4.如权利要求2所述的氨氮净化方法,其特征在于包括:将含有氨氮的液相待测样品与硫化铋复合活性炭材料混合置入避光反应器中,并在所述避光反应器的光照窗口处设置仅可使近红外光通过的滤光片,之后以光源照射所述避光反应器,使其中的氨氮被光催化降解为N2和H2O。
CN201611242664.4A 2016-12-29 2016-12-29 硫化铋复合活性炭材料于脱氮中的应用 Active CN106608666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611242664.4A CN106608666B (zh) 2016-12-29 2016-12-29 硫化铋复合活性炭材料于脱氮中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611242664.4A CN106608666B (zh) 2016-12-29 2016-12-29 硫化铋复合活性炭材料于脱氮中的应用

Publications (2)

Publication Number Publication Date
CN106608666A CN106608666A (zh) 2017-05-03
CN106608666B true CN106608666B (zh) 2019-08-30

Family

ID=58636403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611242664.4A Active CN106608666B (zh) 2016-12-29 2016-12-29 硫化铋复合活性炭材料于脱氮中的应用

Country Status (1)

Country Link
CN (1) CN106608666B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107321365A (zh) * 2017-07-10 2017-11-07 苏州科技大学 全光谱响应的多孔氧化硅负载复合光触媒材料及其制法
CN108355673A (zh) * 2018-01-22 2018-08-03 西北师范大学 一种黄土颗粒负载硫化铋复合光催化剂的制备方法
CN113105812B (zh) * 2021-04-13 2022-03-18 江苏旌翔建材科技有限公司 一种负离子环保涂料及其制备方法
CN113663642A (zh) * 2021-08-31 2021-11-19 西南科技大学 一种茄子生物质炭负载Bi2S3吸附剂的制备及吸附应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456521A (zh) * 2013-09-27 2013-12-18 西南大学 氢氧化钴/硫化铋复合纳米线超级电容电极材料的制备方法
CN104226335A (zh) * 2014-09-19 2014-12-24 武汉工程大学 一种多级结构硫化铋及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140342254A1 (en) * 2013-05-17 2014-11-20 Sunpower Technologies Llc Photo-catalytic Systems for Production of Hydrogen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103456521A (zh) * 2013-09-27 2013-12-18 西南大学 氢氧化钴/硫化铋复合纳米线超级电容电极材料的制备方法
CN104226335A (zh) * 2014-09-19 2014-12-24 武汉工程大学 一种多级结构硫化铋及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Bi2S3纳米材料的制备及性能研究";张小敏;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20131115(第11期);第76页

Also Published As

Publication number Publication date
CN106608666A (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
CN106608666B (zh) 硫化铋复合活性炭材料于脱氮中的应用
Khan et al. Synthesis of eosin modified TiO2 film with co-exposed {001} and {101} facets for photocatalytic degradation of para-aminobenzoic acid and solar H2 production
Muñoz-Batista et al. Braiding kinetics and spectroscopy in photo-catalysis: the spectro-kinetic approach
Lim et al. How g-C3N4 works and is different from TiO2 as an environmental photocatalyst: mechanistic view
Buchalska et al. On oxygen activation at rutile-and anatase-TiO2
Demyanenko et al. Singlet oxygen 1O2 in photocatalysis on TiO2. Where does it come from?
Yi et al. Photocatalytic decomposition of H2O2 on different TiO2 surfaces along with the concurrent generation of HO2 radicals monitored using cavity ring down spectroscopy
Thompson et al. Surface science studies of the photoactivation of TiO2 new photochemical processes
Wang et al. Visible light photocatalytic activities of plasmonic Ag/AgBr particles synthesized by a double jet method
CN106582619B (zh) 氧化锰复合活性炭材料于脱氮中的应用
Ali et al. Role of the radiations in water splitting for hydrogen generation
Macnaughtan et al. Binuclear ZrOCo metal-to-metal charge-transfer unit in mesoporous silica for light-driven CO2 reduction to CO and formate
Zhou et al. Ag@ AgHPW as a plasmonic catalyst for visible-light photocatalytic degradation of environmentally harmful organic pollutants
CN106186272B (zh) 活性炭-铁酸锌复合材料、其制备方法及光催化脱氮用途
CN106268819B (zh) 活性炭-铁酸钴复合材料、其制备方法及光催化脱氮用途
CN106186271A (zh) 活性炭‑铁酸铜复合材料、其制备方法及光催化脱氮用途
CN103464186A (zh) 磷酸铅/磷酸银复合光催化剂及其制备方法
McCleskey et al. Approaching zero discharge in uranium reprocessing: photochemical reduction of uranyl
Orona-Návar et al. Gd3+ doped BiVO4 and visible light-emitting diodes (LED) for photocatalytic decomposition of bisphenol A, bisphenol S and bisphenol AF in water
CN106732661B (zh) 硫化铋-富勒烯杂化材料于光催化脱氮中的应用
CN106587252B (zh) 氧化锰-富勒烯杂化材料于近红外光脱氮中的应用
Haque et al. Heterogeneous photocatalyzed degradation of barbituric acid and matrinidazole under visible light induced Ni, Mn, Mo and La-doped TiO2
Naffeti et al. Highly efficient photodegradation of methylene blue by a composite photocatalyst of bismuth nanoparticles on silicon nanowires
CN106732662B (zh) 硫化铋协同氮杂石墨烯于近红外光脱氮中的应用
Mittal et al. Superior photocatalytic and electrochemical activity of the MoSe2 modified ZIF-67 for the reduction and detection of Cr (VI)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant