CN106605452A - 粒子治疗系统、设备和射束输送方法 - Google Patents

粒子治疗系统、设备和射束输送方法 Download PDF

Info

Publication number
CN106605452A
CN106605452A CN201580045015.2A CN201580045015A CN106605452A CN 106605452 A CN106605452 A CN 106605452A CN 201580045015 A CN201580045015 A CN 201580045015A CN 106605452 A CN106605452 A CN 106605452A
Authority
CN
China
Prior art keywords
beam tube
tube
particles
vacuum tank
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201580045015.2A
Other languages
English (en)
Other versions
CN106605452B (zh
Inventor
J·H·蒂默
J·舒尔特海斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Varian Medical Systems Particle Therapy GmbH and Co KG
Varian Medical Systems Inc
Original Assignee
Varian Medical Systems Particle Therapy GmbH and Co KG
Varian Medical Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varian Medical Systems Particle Therapy GmbH and Co KG, Varian Medical Systems Inc filed Critical Varian Medical Systems Particle Therapy GmbH and Co KG
Priority to CN202010188052.1A priority Critical patent/CN111346303B/zh
Publication of CN106605452A publication Critical patent/CN106605452A/zh
Application granted granted Critical
Publication of CN106605452B publication Critical patent/CN106605452B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • A61N5/1081Rotating beam systems with a specific mechanical construction, e.g. gantries
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/01Devices for producing movement of radiation source during therapy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/043Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam focusing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • H05H2007/046Magnet systems, e.g. undulators, wigglers; Energisation thereof for beam deflection

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种射束输送组件,将粒子射束从粒子源传送到辐射喷嘴,该辐射喷嘴围绕喷嘴的水平输入处的旋转轴线转动。支撑件可以在垂直于旋转轴线的平面中水平地移动。射束输送组件可以改变粒子射束的路径长度,以便跟随照射喷嘴的旋转轴线相对于支撑件的垂直位置。控制器可以协调粒子射束的路径长度改变、照射喷嘴围绕旋转轴线的转动、和/或支撑件的水平运动,以在垂直于旋转轴线的平面中从各种角度照射被支撑的对象,同时将照射喷嘴维持在与被支撑的对象相距的恒定距离处。

Description

粒子治疗系统、设备和射束输送方法
相关申请的交叉引用
本申请要求于2014年8月22日提交的美国临时申请号62/040,657的权益,其全部内容通过引用并入本文。
技术领域
本公开一般涉及递送用于照射对象的粒子射束,诸如为患者提供粒子治疗,并且更特别地,涉及用于输送粒子射束以用于随后照射的系统、方法和设备。
背景技术
高能粒子射束可以用于向患者递送治疗,例如,作为对患者癌症的医疗治疗。射束(例如,质子)中的粒子可以具有大于20MeV(例如,在70MeV和250MeV之间)的能量。粒子可以在粒子加速器中生成并且在处理站处递送给患者,在处理站处,粒子射束从照射喷嘴发出。喷嘴将射束引导到支撑件上的患者处,例如,将患者保持在相对于粒子射束的适当位置的可调整的轮床或椅子。粒子穿透的深度和粒子射束的位置可以变化,以便治疗患者体内的三维体积。深度控制可以通过变化粒子的能量来实现。台架用于围绕患者转动照射喷嘴以从不同角度照射患者体内的期望体积。
图1A中示出了粒子治疗系统100的配置。粒子治疗系统100从诸如粒子加速器之类的粒子射束源(未示出)接收粒子射束114(例如,质子射束)。粒子射束114从粒子射束源经由提供射束114的射束输送系统(未示出)输送到台架108以照射患者102。射束输送系统可以包括真空管和射束控制部件,诸如聚焦粒子射束的四极磁体和偏转粒子射束的偶极磁体。
粒子射束114经由转动真空密封件112进入台架108。在台架108内,粒子射束可以沿着蛇形路径行进到照射喷嘴122,该照射喷嘴122沿着路径110重定向粒子射束以照射患者102。台架108内的磁体118和120将粒子射束从真空密封件112重定向到照射喷嘴122。磁体118和120与照射喷嘴122一起转动,而磁体118和120之间的相对位置(即,磁体118和120之间的垂直于轴线116的垂直距离和平行于轴线116的水平距离)保持固定,即使它们的取向改变。
患者支撑件104将患者102定位成与台架108的转动轴线116对准。照射喷嘴122由台架108围绕转动轴线116转动,以从不同角度照射患者体内的治疗体积。可以转动台架108,使得射束110撞击患者102的治疗等中心点,而不需要改变磁体的磁场强度。例如,如图1B所图示的,台架可以将照射喷嘴122从患者上方的垂直位置130(例如,0°转动)移动到水平位置132(例如,90°转动),移动到患者下方的垂直位置134(180°转动),移动到患者相对侧上的另一水平位置136(例如,225°转动),以及移动到其间的各种点。为了适应照射喷嘴相对于患者102以恒定半径的转动,患者支撑件104将患者102保持在地板106上方的升高位置处。可替代地或附加地,台架108可以具有位于底板106下方以最小化或至少减少患者102所位于的高度的部分。
作为上述操作的结果,粒子治疗支架可以是重的并且具有显著大于常规光子治疗支架的覆盖区(footprint)。这种已知的台架设计需要复杂且庞大的结构,特别地,以便允许台架围绕照射对象被转动整个360°。
发明内容
本文中公开了用于射束输送的粒子射束系统、设备和方法。在所公开的主题的一个或多个示例性实施例中,用于传送粒子射束的射束输送组件包括第一射束管、第二射束管、一个或多个第一聚焦磁体、一个或多个第二聚焦磁体、以及可膨胀部分。第一射束管可以具有在真空下维持的第一内部体积。第二射束管可以具有在真空下维持的第二内部体积。第二射束管可以与第一射束管轴向地间隔开。一个或多个第一聚焦磁体可以沿着第一射束管布置。一个或多个第二聚焦磁体可以沿着第二射束管布置。可膨胀部分可以将第一射束管耦合到第二射束管,使得粒子射束可以在它们之间传送。可膨胀部分可以被配置成适应第一射束管和第二射束管相对于彼此的改变的位置,以便更改粒子射束通过射束输送组件的路径长度。
在所公开的主题的一个或多个示例性实施例中,一种用于使用粒子射束来照射对象的系统,包括射束输送组件、照射喷嘴、支撑件和控制器。射束输送组件可以沿着基本上垂直的方向传送来自粒子源的粒子射束,并且可以将粒子射束重定向到水平输入。照射喷嘴可以耦合到射束输送组件以在水平输入处接收粒子射束。照射喷嘴可以被配置成朝向对象重定向粒子射束并且在水平输入处围绕旋转轴线转动。支撑件可以被构造成相对于照射喷嘴来支撑对象、并且在垂直于旋转轴线的平面中水平移动。控制器可以被配置成协调射束输送组件、照射喷嘴和支撑件的移动。射束输送组件可以被构造成改变粒子射束的路径长度,以便跟随照射喷嘴的旋转轴线相对于支撑件的垂直位置。控制器可以被配置成协调粒子射束的路径长度改变、照射喷嘴围绕旋转轴线的转动、和/或支撑件的水平运动,以在将照射喷嘴维持在与被支撑的对象相距恒定距离的同时,在垂直于旋转轴线的平面中提供从各种角度照射被支撑的对象。
在所公开的主题的一个或多个示例性实施例中,一种用于照射对象的方法,可以包括:把来自粒子源的粒子射束沿着射束输送组件传送到照射喷嘴的水平输入。照射喷嘴可以被配置成在水平输入处围绕旋转轴线转动。该方法还可以包括:从照射喷嘴内的水平输入重定向粒子射束,并且引导来自照射喷嘴的粒子射束以从第一位置照射布置在支撑件上的对象。该方法还可以包括:改变射束输送组件中的粒子射束的路径长度,以便跟随照射喷嘴的旋转轴线相对于支撑件的垂直位置。
在所公开主题的一个或多个示例性实施例中,可以提供一种非暂态计算机可读存储介质和计算机处理系统。可以在计算机可读存储介质上体现用于控制系统使用粒子射束来照射对象的编程指令序列。计算机处理系统可以执行在计算机可读存储介质上体现的编程指令序列,以使计算机处理系统控制射束输送组件的一个或多个聚焦磁体以将来自粒子源的粒子射束沿着射束输送组件传送到照射喷嘴的水平输入;以控制一个或多个偏转磁体将粒子射束从照射喷嘴内的水平输入重定向并且引导来自照射喷嘴的粒子射束从第一位置照射布置在支撑件上的对象;和以控制射束输送组件改变粒子射束的路径长度,以便跟随照射喷嘴的旋转轴线相对于支撑件的垂直位置。照射喷嘴可以被配置成在水平输入处围绕旋转轴线转动。
在所公开的主题的一个或多个示例性实施例中,一种用于传送粒子射束的射束输送组件,包括射束管和至少一个第一弯曲磁体。射束管可以具有在真空下维持的内部体积,并且可以由材料形成或者具有允许粒子射束通过其壁的厚度。至少一个第一弯曲磁体可以将粒子射束从平行于射束管的轴线的方向重定向到照射喷嘴的输入。至少一个第一弯曲磁体可以被配置成在与射束管的轴线平行的方向上沿着射束管移动。
当结合附图考虑时,从以下描述中,所公开的主题的实施例的目的和优点将变得清楚。
附图说明
在下文中将参照附图对实施例进行描述,附图不一定按比例绘制。这些附图仅用于说明的目的,并不旨在以任何方式限制本公开的范围。在适用的情况下,可能不会图示一些特征以帮助对底层特征的说明和描述。在所有附图中,相同的附图标记表示相同的元件。如本文中所使用的,各种实施例可以意指一个、一些或所有实施例。
图1A示出了利用转动台架的典型粒子治疗系统的简化横截面视图。
图1B示出了当照射喷嘴通过台架围绕患者转动时该照射喷嘴的不同位置。
图2A至图2E示出了根据所公开的主题的一个或多个实施例的照射系统的喷嘴和患者支撑件的不同位置以在不使用转动台架的情况下提供通过粒子射束的360°照射。
图3是根据所公开的主题的一个或多个实施例的具有带有可膨胀部分的射束输送组件的照射系统的部件的简化图。
图4示出了根据所公开的主题的一个或多个实施例的照射系统的透视图。
图5至图9示出了根据所公开的主题的一个或多个实施例的分别在0°、45°、90°、180°和315°位置的图4的照射系统的透视图。
图10示出了根据所公开的主题的一个或多个实施例的采用从±180°之间的各个角度方向的照射序列的图4的照射系统的透视图。
图11是根据所公开的主题的一个或多个实施例的射束输送组件的可膨胀部分的简化图。
图12是根据所公开的主题的一个或多个实施例的具有其中可膨胀部分采用膨胀配置的射束输送组件的照射系统的简化图。
图13是其中可膨胀部分采用中间配置的图12的照射系统的简化图。
图14是其中可膨胀部分采用收缩配置的图12的照射系统的简化图。
图15A至图15B分别示出了根据所公开的主题的一个或多个实施例的使用滑动密封件的射束输送组件可膨胀部分的简化横截面图和侧视图。
图16A示出了处于收缩状态的图15B的可膨胀部分的透视(左)和侧(右)视图。
图16B示出了处于中间状态的图15B的可膨胀部分的透视(左)和侧(右)视图。
图16C示出了处于膨胀状态的图15B的可膨胀部分的透视图(左)和侧(右)视图。
图17A至图17B分别示出了根据所公开的主题的一个或多个实施例的使用转动密封件的射束输送组件可膨胀部分的简化横截面图和透视图。
图18A示出了处于收缩状态的图17B的可膨胀部分的透视(左)和侧(右)视图。
图18B示出了处于中间状态的图17B的可膨胀部分的透视(左)和侧(右)视图。
图18C示出了处于膨胀状态的图17B的可膨胀部分的透视图(左)和侧(右)视图。
图19A至图19B分别示出了根据所公开的主题的一个或多个实施例的使用转动真空容器的射束输送组件可膨胀部分的简化横截面图和透视图。
图20A示出了处于膨胀状态的图19B的可膨胀部分的透视图(左)和侧(右)视图。
图20B示出了处于中间状态的图19B的可膨胀部分的透视(左)和侧(右)视图。
图20C示出了处于收缩状态的图19B的可膨胀部分的透视图(左)和侧(右)视图。
图21A至图21B分别示出了根据所公开的主题的一个或多个实施例的分别处于收缩状态和膨胀状态的使用气体填充容器的射束输送组件可膨胀部分的简化横截面图。
图22A至图22B是根据所公开的主题的一个或多个实施例的分别容纳膨胀和收缩的粒子射束路径长度的具有单个射束管的射束输送组件的部件的简化图。
具体实施方式
根据所公开的主题的一个或多个实施例,粒子治疗系统可以具有被配置成沿着基本上线性的路径(例如,在垂直方向上)移动的照射喷嘴。射束源(例如,粒子加速器)和照射喷嘴之间的射束输送系统可以被设计成适应照射喷嘴的线性运动。与采用转动台架的传统粒子治疗系统相比较,所公开的粒子治疗系统的照射喷嘴的基本线性运动允许减少覆盖区(footprint)。
代替使用台架围绕位于台架中心的患者来转动照射喷嘴,所公开的主题的实施例能够通过组合照射喷嘴的线性运动(例如,垂直运动)、患者支撑件的线性运动(例如,水平运动)和/或照射喷嘴围绕与患者间隔开的轴线(例如,在射束进入照射喷嘴的位置)的转动运动而通过完全360°的覆盖来照射患者。例如,示例性照射喷嘴222围绕支撑在支撑件204上的患者102的定位在图2A至图2E中示出。照射喷嘴222可以在垂直方向上从如图2A所示的最大垂直高度移动到如图2D所示的最低垂直高度,该最低垂直高度低于地板206。可替代地,患者102可以通过支撑件204以高于地板206的足够高度来定位,使得照射喷嘴222可以从下面照射患者102而非在地板206下方移动。
当照射喷嘴222垂直移动时,照射喷嘴可以围绕旋转轴线214转动以继续将射束110引导到患者102处。支撑件204可以被配置成随着照射喷嘴222位移而水平移动,以便维持照射喷嘴222和患者102之间的射束路径长度。因此,照射喷嘴222可以在围绕轴线214顺时针转动并且将支撑件204水平地向左移动(即,在垂直于旋转轴线214的平面中)的同时,从如图2A所示的0°位置垂直向下移动,以便从如图2B所示的90°位置照射患者102。类似地,照射喷嘴222可以在围绕轴线214顺时针转动并且将支撑件204水平地向右移动(即,在垂直于旋转轴线214的平面中)的同时,从如图2C所示的90°位置垂直向下移动,以能够以如图2D所示的180°的位置来照射患者102。为了从如图2E所示的270°位置照射患者102,照射喷嘴222可以在围绕轴线214顺时针转动并且将支撑件204水平地向右移动的同时,从如图2D所示的180°位置垂直向上移动。可替代地,照射喷嘴222可以在围绕轴线214逆时针转动并且将支撑件204水平地向右(即,在垂直于旋转轴线214的平面中)移动的同时,从如图2A所示的0°位置垂直向下移动,以便从如图2E所示的270°位置来照射患者102。
为了允许照射喷嘴222的线性运动,射束输送组件可以变化粒子射束的路径长度,例如,以跟随照射喷嘴222的运动。在一些实施例中,粒子射束的可变路径长度可以由射束输送组件的可延伸部分提供。附加地或可替代地,可以通过沿着单射束管的垂直轴线而移动偏转器(例如,一个或多个弯曲磁体,诸如偶极磁体)来提供粒子射束的可变路径长度,使得粒子射束通过射束管的壁在最小散射的情况下离开。
射束输送组件可以在真空下具有内部体积,粒子射束通过该内部体积从源(例如,加速器)到照射喷嘴的途中行进。内部体积内的真空可以有助于最小化或至少减少粒子射束的散射数量,否则如果通过正常空气传播,则该粒子射束由于散射而可能变宽。射束输送组件可以通过粒子射束路径长度中的对应改变来适应粒子源和照射喷嘴之间的距离的改变,以便提供预先确定的行程(例如,至少300cm),其允许粒子射束跟随照射喷嘴的线性移动。
射束输送臂或组件可以包括一个或多个第一射束控制元件,例如,一个或多个聚焦磁体(例如,四极磁体),其与可膨胀部分一起纵向位移。射束输送组件还可以包括一个或多个第二射束控制元件,例如,一个或多个转向磁体(即,在单个平面中弯曲粒子射束的磁体),尽管可膨胀部分在一些实施例中移动,但其仍可以保持固定或在其它实施例中可以与可膨胀部分一起纵向位移。可替代地,一个或多个第一射束控制元件可以是固定的,而不管可膨胀部分的移动,并且一个或多个第二射束控制元件可以与可膨胀部分一起纵向位移。因此,在一些实施例中,第一射束控制元件相对于第二射束控制元件的位置可以随着可膨胀部分从收缩状态变化到膨胀状态而变化。一个或多个射束控制元件(例如,一个或多个聚焦磁体和/或一个或多个转向磁体)可以位于真空外部(例如,在粒子射束通过的射束管的外部或周围)或在真空内(例如,在粒子射束穿过的射束管内)。
所公开的主题的实施例可以提供以下功能中的一个或多个功能:
(1)当提供时,可膨胀部分在收缩状态和膨胀状态之间的受控运动;
(2)粒子射束沿着射束输送组件的射束管在收缩长度和膨胀长度之间的路径长度的受控改变;
(3)在射束输送组件内维持的真空,而不管射束运输组件的移动;和
(4)控制射束光学器件以补偿由于改变可膨胀部分的射束路径长度和/或粒子射束通过射束输送组件的射束管的壁而引起的射束特性的变化。
图3图示了根据所公开的主题的一个或多个实施例的示例性粒子治疗系统300的各种部件。粒子治疗系统300包括照射喷嘴302和从照射源326传送粒子射束的射束输送组件312。可移动支撑件304可以相对于照射喷嘴302将患者定位在地板306上方的高处(elevation)。例如,支撑件304可以水平移动,例如,在平行于垂直于喷嘴旋转轴线308的平面的方向上,照射喷嘴302可以围绕该旋转轴线转动。支撑件304还可以被配置成在平行于喷嘴旋转轴线308的方向上水平移动、和/或在垂直于地板306的方向上垂直移动。
照射喷嘴302可以包括已知的射束散射和/或射束扫描机构,以便在患者中实现适当的剂量构象(conformation)。可以由射束源326生成并且由射束输送组件310引导到照射喷嘴302的射束沿着平行于喷嘴旋转轴线308的方向(例如,在喷嘴302的水平输入处)而进入照射喷嘴中。在照射喷嘴302内,射束偏离入射方向例如90°,使得射束在垂直于入射方向的方向上离开照射喷嘴。例如,偏转可以通过合适的偏转磁体或其它偏转设备来实现。
照射喷嘴302可以至少垂直地移动(即,具有朝向或远离地板306的至少垂直平移分量的移动)。另外,照射喷嘴302可以围绕喷嘴旋转轴线308转动。粒子射束可以沿着喷嘴旋转轴线308从射束输送组件310进入照射喷嘴302或者至少平行于喷嘴旋转轴线308进入。这种配置允许通过照射喷嘴302的线性和转动运动与患者支撑件304的水平运动的组合来从各种角度方向照射患者,例如,如上文相对于图2A至图2E所描述的。结果,使用所公开的粒子治疗系统的照射可以避免照射对象(例如,患者)在从所有角度方向照射它的同时的垂直移动。
喷嘴旋转轴线308可以是基本上水平的,例如,平行于地板306。这种配置可以提供照射设备的更简单的设计,特别地,结合照射喷嘴302内的射束的偏转90°。如果喷嘴旋转轴线308是水平的并且射束在照射喷嘴302内偏转90°,则粒子射束在照射喷嘴302的运动期间行进的平面基本上是垂直的。
粒子治疗系统300的射束输送组件310还可以包括可膨胀部分314,其可以改变第一组射束控制光学器件316(例如,聚焦磁体)和第二组射束控制光学器件318(例如,聚焦磁体)之间的射束路径320的长度。可膨胀部分314因此使得射束输送组件310能够跟随和/或引起照射喷嘴302的垂直运动。射束输送组件310还可以包括用于将粒子射束从源326偏转到可膨胀部分314的一个或多个第一偏转器324(例如,弯曲磁体)和用于将粒子射束从可膨胀部分314偏转到照射喷嘴302的一个或多个第二偏转器312(例如,弯曲磁体)。
照射喷嘴302的垂直移动可以由射束输送组件310的可膨胀部分314的膨胀/收缩引起。可替代地,单独的机构可以移动照射喷嘴302和/或偏转器312,并且可膨胀部分314可以被配置成跟随照射喷嘴302和/或偏转器312的运动。例如,射束运输组件310和可膨胀部分314可以基本上垂直地布置,并且喷嘴旋转轴线308可以是基本上水平的。例如,射束可以在基本上水平的方向上从源326进入射束输送组件310中,并且可以例如通过偏转器324偏转到基本上垂直布置的可膨胀部分314中,其中在其一端具有另一偏转器312。
可以提供控制系统330用于控制粒子治疗系统300的各种方面,特别地,照射喷嘴302的移动,例如,照射喷嘴302的转动和垂直位移,以使得能够实现360°的照射覆盖照射对象。可选地,控制系统330还可以控制从照射喷嘴302照射的粒子射束的横向位置和角度方向。可选地,控制系统330可以包括位置验证系统,其被配置成验证照射对象(即,患者)的位置、并且响应于此而生成用于控制支撑件304和喷嘴302的移动的控制信号。
附加地,控制系统330可以被配置成协调粒子治疗系统300的部件的三个移动中的至少两个移动,例如,(i)患者支撑件304的水平移动,(ii)照射喷嘴302的垂直移动(和可选地,射束输送组件310的可膨胀部分的任何相关联的垂直移动、和/或通过射束输送组件的射束路径长度的改变以适应照射喷嘴302的移动),以及(iii)照射喷嘴302围绕旋转轴线308的转动移动,使得当支撑件304和/或照射喷嘴302移动时,粒子射束继续撞击在患者身上。支撑件304的水平移动和照射喷嘴304的垂直移动和转动移动被协调,使得当支撑件304和/或喷嘴302移动时,粒子射束以与照射喷嘴302相距预先确定的距离(例如,恒定半径)撞击患者,从而允许从不同角度方向但是以与照射喷嘴302相距恒定或预先确定的距离来照射。例如,控制系统330可以控制驱动系统328(其移动患者支撑件304)、使照射喷嘴302转动的转动驱动器332、和/或使可膨胀部分314位移的垂直驱动器322。例如,垂直驱动器322可以是螺杆驱动器、液压或气动活塞驱动器,或能够驱动提供受控的垂直位移的任何其它驱动器。
可选地,通过相对于房间地板306移动支撑件304或通过升高和降低其上放置有支撑件304的房间地板306,用于照射对象的支撑件304可以垂直移动。支撑件304的垂直运动可以与支撑件304的水平运动和/或支撑件304围绕垂直轴线(未示出)的转动运动、和/或照射喷嘴的垂直和/或转动运动进行组合。例如,可以使用这种运动的合适组合用于有利的照射治疗计划、和/或用于避免喷嘴302和照射对象或支撑件304之间的碰撞。
因为射束输送组件310的光学特性可以随着可膨胀部分314的长度改变而更改,所以控制单元330可以响应于射束输送组件310的可膨胀部分314的长度改变而控制射束控制光学器件(例如,第一组光学器件316和/或第二组光学器件318)。例如,控制单元330可以改变第一和第二聚焦磁体中的一个或多个聚焦磁体的强度,以补偿第一和第二聚焦磁体之间的距离的改变和/或射束管320的改变的长度,以便保持粒子射束的轮廓,而不管可膨胀部分的长度改变。控制单元可以例如使用查找表或通过使用例如来自沿着射束输送组件310(例如,伸缩射束输送臂)或射束照射喷嘴302布置的并且被配置成检测粒子射束的一个或多个特点的传感器334的反馈来根据照射喷嘴302的位置改变聚焦磁体的强度。
图4至图10示出了当辐射喷嘴围绕患者移动时粒子治疗系统的各种视图。图4示出了粒子治疗系统10的透视图,其包括作为施用粒子治疗的一部分的用于照射对象的支撑件12(例如,患者支撑件)。如箭头14所指示的,支撑件12可以在水平方向上左右移动,该水平方向可以平行于照射对象所在的房间(即,在粒子治疗的情况下的治疗房间)的后壁16和地板18。
粒子治疗系统10还包括照射喷嘴20,其将带电粒子射束30(例如,质子射束)朝向用于照射对象的支撑件12引导。粒子射束可以在基本上水平的方向上(例如,沿着水平喷嘴旋转轴线24,或至少基本上平行于喷嘴旋转轴线24)在其入口侧22进入照射喷嘴20。在照射喷嘴20内,粒子射束30可以偏转90°,以便在基本上垂直于喷嘴旋转轴线24的方向上在其出口侧26处从照射喷嘴20离开。如箭头28所指示的,喷嘴20可以围绕喷嘴旋转轴线24转动。附加地,喷嘴20可以垂直移动,使得喷嘴旋转轴线24可以如箭头29所指示的升高和降低。当喷嘴20围绕喷嘴旋转轴线24转动时,从照射喷嘴20离开的射束保持在基本上垂直的平面内。
如图5至图9所示,围绕喷嘴旋转轴线24的转动和照射喷嘴20的垂直位移的组合允许从所有角度方向对照射对象13(例如,在粒子治疗的情况下的患者)进行照射。照射喷嘴20可以围绕其喷嘴旋转轴线24转动到在-180°和+180°之间的角度位置(即,在垂直于旋转轴线24的平面中360°的覆盖)。附加地,照射喷嘴20可以从支撑件12上方的位置垂直移动到支撑件12下方的位置。支撑件可以相对于喷嘴旋转轴线24的垂直路径而水平地(平行于房间的后壁16)向左或向右移动。这允许喷嘴20相对于照射对象13的侧面位置,使得当支撑件12在其垂直路径上行进时喷嘴20可以通过支撑件12。
因此,在图5中,可以从作为0°位置的正上方对照射对象13进行照射。如图6所示,当照射喷嘴20在垂直方向向下移动并且围绕旋转轴线24顺时针转动到45°位置时,具有照射对象13的支撑件12可以向左移动。支撑件12的水平运动和喷嘴20的垂直和转动运动可以被协调,使得粒子射束30在与照射喷嘴20相距与在0°位置时相同的距离而相对于0°位置成45°的角度方向处撞击到照射对象13上。如图7所示,随着照射喷嘴20向下移动,支撑件12可以进一步向左移动,并且围绕其旋转轴线24在顺时针方向上进一步转动,使得从水平方向(即,90°位置)但在与照射喷嘴相距与0°和45°位置相同的距离处对照射对象13进行照射。如图8所示,支撑件12可以被移动回到照射喷嘴20的垂直路径上的中心位置,同时照射喷嘴20向下移动到下部位置(例如,最下部垂直位置,其可以位于或低于治疗房间的地板18),并且可以被转动使得射束从直接下方(即180°位置)照射对象13。当移动到图8的180°位置中时,支撑件12和照射喷嘴20的移动被协调,使得在与喷嘴20相距与在图5至图7的照射位置中相同的距离处对照射对象13进行照射。如图9所示,支撑件12可以在与图6相反的方向上移动(即,从照射喷嘴20的垂直路径向右移动),同时照射喷嘴20移动到与图6中相同的垂直位置(但逆时针转动到-45°位置)。在图9所示的布置中,与垂直方向相比较,从-45°的角度方向但在与照射喷嘴20相距与图5至图8的照射位置中相同的距离处对照射对象13进行照射。
图10示出了照射位置0°、45°、90°、135°、180°、-45°、-90°和-135°的序列的概况。通过支撑件12和照射喷嘴20的合适移动,可以在与照射喷嘴20相距恒定距离处从所有角度方向对照射对象13进行照射。而且,通过沿着支撑件12的长度(例如,沿着图4所图示的虚线32,其平行于旋转轴线24)移动该支撑件,可以移位来自照射喷嘴20的射束撞击照射对象13的点,以允许照射对象13的不同部分。
在所公开的主题的一个或多个实施例中,示例性照射方法可以包括:将照射对象(例如,患者)放置到可以至少水平移动的支撑件上。该方法还包括:将来自照射喷嘴的带电粒子射束(例如,质子射束)朝向照射对象照射。可以由射束源(例如,粒子加速器)生成并且由射束输送组件引导到照射喷嘴的射束被馈送到照射喷嘴中并且在其中偏转。撞击到照射对象上的射束的角度方向可以通过移动支撑件并且通过在围绕喷嘴旋转轴线转动照射喷嘴的同时垂直地移动照射喷嘴来变化。在撞击到照射对象上的射束的角度方向可以改变的同时,从照射喷嘴到照射对象的距离可以维持恒定或者维持为预先确定的值。
如上文所指出的,照射喷嘴的线性位移(例如,在垂直方向上)可以经由射束输送组件的可膨胀部分的延伸或收缩来实现。如图11所示,射束输送组件可以从具有最小长度的收缩状态314a转变到具有最大长度的膨胀状态314,以便提供与照射喷嘴的期望线性移动相对应的期望行程ΔL。在射束输送组件314的移动期间,第一组射束控制部件316可以相对于第二组射束控制部件318移动。例如,第二组射束控制部件318可以设置成比第一组射束控制部件318更靠近粒子源326。结果,第二组射束控制部件318可以保持静止,同时第一组射束控制部件318与射束路径320一起移动。可替代地,第一组射束控制部件316和第二组射束控制部件318可以与射束管320一起移动。第一组射束控制部件和第二组射束控制部件可具有一个或多个磁体(或其它射束部件),其可以相对于相应组内的其它部件而保持固定。
图12至图14图示了通过射束输送组件310的可膨胀部分314的膨胀/收缩的照射喷嘴20的垂直移动。射束输送组件310可以包括:第一偏转器56,其使粒子射束偏转(例如,90°)进入垂直可膨胀部分314中;和第二偏转器57,其使粒子射束偏转(例如,90°)到照射喷嘴20中。可膨胀部分314可以把长度从如图12所示的最大长度L1(即,膨胀状态)改变为如图14所示的最小长度L3(即,收缩状态)。如上文所指出的,支撑件12可以与照射喷嘴的移动协调而在水平方向上移动,使得支撑件12上的照射对象可以从所有角度方向照射预先确定的恒定距离。
在一个或多个实施例中,射束输送组件的可膨胀部分可以包括采用滑动密封件的伸缩段。例如,图15A至图16C图示了具有伸缩段的射束输送组件的可膨胀部分的示例性实施例。伸缩段500可以包括具有第一内径的外射束管504、以及具有小于第一内径的第二外径的内射束管506。内射束管506可以布置成其端部设置在外射束管504的内部内,使得内射束管506和外射束管504可以相对于彼此移动。例如,射束管504、506的相应轴线可以对准,并且射束管504、506可以被构造成相对于彼此轴向位移,使得增加或减少容纳在外射束管504内的内射束管506的端部的轴向长度。粒子射束502可以在通向照射喷嘴(未示出)的途中穿过射束管504、506的内部体积,并且可以例如与射束管504、506的相应轴线对准。
射束管504、506的内部体积可以在真空下维持,以使粒子射束在射束管504、506内的散射可以被最小化或至少减小。可以使用布置在内射束管506和外射束管504之间的一个或多个密封件来维持真空。例如,第一滑动密封件508和/或第二滑动密封件510可以提供在重叠区域512中的内射束管506的外周向表面和外射束管504的内周向表面之间。当射束管504、506彼此轴向地间隔开时,密封件508、510可以被构造成在周向表面中的一个或多个周向表面上滑动,以防止射束管504、506内的真空被损害。可选地,差动泵514可以提供在重叠区域512中的密封件508、510之间,以便提供射束管内的真空环境和射束管外部的大气之间的转变。
射束管504、506的尺寸被设置成提供射束路径长度(即,可膨胀部分的行程)的足够变化以适应照射头的期望运动,例如,至少300cm。例如,伸缩段500的最小轴向尺寸(例如,处于收缩状态)可以等于最大期望行程长度,并且伸缩段500的最大轴向尺寸(例如,处于膨胀状态)可以等于最大行程长度的两倍。
每个射束管504、506可以包括耦合到其上的一个或多个射束控制部件,以便与相应的射束管一起位移。例如,内射束管506可以具有耦合到其上并且能够与管506一起轴向位移的一个或多个聚焦磁体522(例如,四极磁体),同时外射束管504可以具有耦合到其上的一个或多个聚焦磁体520(例如,四极磁体)。图16A至图16C图示了当伸缩段500从收缩状态(图16A)转变到中间状态(图16B)到完全膨胀状态(图16C)时各种部件的布置。当内射束管506移动到外射束管504中时,聚焦磁体522与聚焦磁体520的距离减少。相反,当内射束管506从外射束管504移出时,聚焦磁体522与聚焦磁体520的距离增加。聚焦磁体520和/或聚焦磁体522的磁场可以被控制(例如,通过图3的控制系统330),以补偿射束路径长度的变化和聚焦磁体的位置的改变,从而维持粒子射束的轮廓。
可替代地或附加地,可以相对于射束管504、506提供其它射束控制部件,其保持固定在适当位置,而不管射束管504、506的移动。例如,一个或多个射束控制部件524(诸如转向磁体(例如,偶极磁体))可以围绕内部射束管506布置在聚焦磁体506和滑动密封件所在的重叠区域512之间。如图16A至图16C中,射束控制部件524的位置相对于滑动密封外壳512和聚焦磁体520保持固定,而不管内射束管506的轴向位移和聚焦磁体522的对应位移。在其它设想的实施例中,一个或多个射束控制部件524可以耦合到内射束管506,以便以与聚焦磁体522相同的方式与射束管506一起移动。
在一个或多个实施例中,射束输送组件的可膨胀部分可以包括具有一对转动密封件的可变长度真空容器。例如,图17A至图18C图示了使用真空容器和一对转动密封件的射束输送组件的可膨胀部分700的示例性实施例。真空容器708具有高度(即,平行于粒子射束702的传播方向的尺寸)变化的周向表面。真空容器708可以通过与第一射束管706接合的第一转动密封件710在一个轴向端封闭。在另一轴向端,真空容器708可以通过与第二射束管704接合的第二转动密封件712封闭。第一转动密封件710、第二转动密封件712和真空容器708一起限定了真空下的内部体积714,粒子射束702可以通过该内部体积714在第一射束管706和第二射束管704之间不间断地行进。
转动密封件710、712中的一个或两个转动密封件可以与垂直于粒子射束702的传播方向的平面成角度,以便遵循由真空容器708的变化高度而限定的轮廓。可替代地,转动密封件之一(例如,如图17A所图示的第一转动密封件710)可以被布置成在垂直于粒子射束702的传播方向的平面中转动,同时转动密封件中的另一个(例如,如图17A所图示的第二转动密封件712)可以相对于所述平面成一角度。转动密封件710、712中的每个转动密封件可以围绕旋转轴线716转动,该旋转轴线716可以与真空容器708的中心轴线相对应。转动密封件710、712可以耦合在一起以便围绕轴线716串联转动,从而维持管704、706之间的射束路径的对准。可替代地,转动密封件710、712可以围绕轴线716独立地转动,但被控制以维持粒子射束的射束路径的对准。可替代地或附加地,射束管的横向位置(即,在垂直于射束传播方向的方向上)可以保持固定,射束管的相对轴向移动(即,平行于传播方向)引起真空容器相对于转动密封件的转动以适应射束管之间的距离的改变。
粒子射束702在转动密封件710、712之间行进一定距离,该距离由真空容器708的周向表面的高度决定。因此,当密封件710、712围绕轴线716转动时,射束路径通过真空容器708的长度改变,从而导致射束输送组件的可膨胀部分700的膨胀或收缩。图18A至图18C图示了当可膨胀部分700从收缩状态(图18A)转变到中间状态(图18B)到完全膨胀状态(图18C)时各种部件的布置。当转动密封件710、712被定位成使射束管704、706接近真空容器708的周向表面的最大高度时,可膨胀部分处于如图17A和图18C所图示的膨胀状态。相反,当转动密封件710、712被定位成使射束管704、706接近真空容器708的周向表面的最小高度时,可膨胀部分处于如图17B和图18A所图示的收缩状态。
与图15A至图16C的实施例一样,射束输送组件的可膨胀部分700可以包括耦合到其上的一个或多个射束控制部件,以便与相应的射束管(例如,耦合到管706的聚焦磁体522和耦合到管704的聚焦磁体520)一起位移。聚焦磁体520和/或聚焦磁体522的磁场可以被控制(例如,通过图3的控制系统330)以补偿射束路径长度的变化、以及聚焦磁体520、522之间的距离的改变,以维持粒子射束的轮廓。
即使粒子射束702的路径长度可以改变,也可以维持在真空容器708的相应侧上的射束控制部件的位置。换句话说,一个或多个其它射束控制部件524(即,聚焦磁体522和真空容器708之间的)可以被配置成与相应的射束管706一起移动。例如,聚焦磁体522、射束控制部件524和/或转动密封件710的相对位置可以相对于彼此固定,而不管可膨胀部分700是处于膨胀状态还是收缩状态。类似地,聚焦磁体520和转动密封件712的相对位置可以相对于彼此固定,而不管可膨胀部分700是处于膨胀状态还是收缩状态。因此,由转动密封件710、712引起的射束路径长度的改变可以被限制在真空容器708内,而不影响射束控制部件沿着相应射束管704、706的布置。
在一个或多个实施例中,射束输送组件的可膨胀部分可以包括转动真空容器。例如,图19A至图20C图示了使用转动真空容器916的射束传输组件的可膨胀部分900的示例性实施例,该转动真空容器916定位在第一射束管904和第二射束管906之间的间隙中。真空窗口或箔914可以位于第一射束管904的端以维持管904内的真空,同时允许粒子射束902通过其中。类似地,真空窗口或箔908可以定位在第二射束管906的端,以维持管906内的真空,同时允许粒子射束902通过其中。
真空容器916设置在真空窗口908和真空窗口914之间的射束路径中,以最小化或至少减小粒子射束902必须通过的大气的量。例如,粒子射束902可以从射束管906通过真空窗口908行进到真空窗口908和真空容器916的真空窗口或箔910之间的大气空间中,通过真空窗口910进入在真空下维持的容器916的内部体积中,通过真空容器916的真空窗口或箔912进入真空窗口912和真空窗口914之间的大气空间中,并且通过真空窗口914进入射束管904中。可替代地,窗口和真空容器之间的大气空间可以例如通过使窗口908抵靠真空容器的窗口910并且通过使窗口914抵靠真空容器的窗口912来清除。因此,粒子射束902可以当其行进通过可膨胀部分时穿过至少两个(并且最多四个)不同的真空窗口。
如图19A至图20C所示,当在垂直于粒子射束902的传播方向的方向上观察时,真空容器916可以具有波状不均匀的横截面形状。当真空容器围绕旋转轴线(例如,中心轴线924,其垂直于粒子射束902的射束路径)转动时,粒子射束902行进通过真空容器916的距离以对应的方式而改变。图20A至图20C图示了当可膨胀部分900从膨胀状态(图20A)转变到中间状态(图20B)到收缩状态(图20C)时各种部件的布置。随着可膨胀部分接近完全膨胀状态,接近通过真空容器916的最大长度的射束路径920与粒子射束902对准。当可膨胀部分接近完全收缩状态时,接近通过真空容器916的最小长度的射束路径922与粒子射束902对准。可膨胀部分的中间长度由真空容器916内的在最小值和最大值之间的射束路径(例如,射束路径918)来适应。
与图17A至图18C的实施例一样,射束输送组件的可膨胀部分900可以包括耦合到其上的一个或多个射束控制部件,以便与相应的射束管(例如,耦合到管906的聚焦磁体522和耦合到管904的聚焦磁体520)一起位移。聚焦磁体520和/或聚焦磁体522的磁场可以被控制(例如,通过图3的控制系统330)以补偿射束路径长度的变化和聚焦磁体520、522之间的距离的改变,以维持粒子射束的轮廓。一个或多个其它射束控制部件524(即,聚焦磁体522和真空容器916之间的)也可以被配置成与相应的射束管(例如,射束管906)一起移动。例如,聚焦磁体522、射束控制部件524和/或真空窗口908的相对位置可以相对于彼此固定,而不管可膨胀部分900是处于膨胀状态还是收缩状态。类似地,聚焦磁体520和真空窗口914的相对位置可以相对于彼此固定,而不管可膨胀部分900是处于膨胀状态还是处于收缩状态。因此,由转动真空容器916引起的射束路径长度的改变可以被限制在窗口908和窗口914之间的空间,而不影响沿着相应的射束管904、906的射束部件的布置。
在一个或多个实施例中,射束输送组件的可膨胀部分可以包括气体填充容器。例如,图21A至图21B图示了使用定位在第一射束管1004和第二射束管1006之间的间隙中的气体填充容器的射束输送组件的可膨胀部分1000的示例性实施例。真空窗口或箔1014可以位于第一射束管1004的一端以维持管1004内的真空,同时允许粒子射束1002通过其中。类似地,真空窗口或箔1008可以定位在第二射束管1006的一端,以维持管1006内的真空,同时允许粒子射束1002通过其中。
容器1016设置在真空窗口1008和1014之间的射束路径中,以最小化或至少减小粒子射束1002必须通过的外部大气的量。例如,粒子射束1002可以从射束管1006通过真空窗口1008行进到容器1016的真空窗口1008和窗口1010之间的大气空间中,通过窗口1010进入容器1016的内部体积中,通过容器1016的窗口1012进入窗口1012和真空窗口1014之间的大气空间中,并且通过真空窗口1014进入射束管1004中。可替代地,可以清除窗口和容器1016之间的大气空间,例如,通过使窗口1008抵靠容器1016的窗口10110、以及通过使窗口1014抵靠容器1016的窗口1012。因此,粒子射束1002可以当其行进通过可膨胀部分时穿过至少两个(并且多达四个不同的)窗口。
容器1016的内部体积1018可以填充有气体或气体混合物。通过使用某些气体而不是空气,可以最小化或至少减少由散射引起的粒子射束的变宽。而且,使用气体代替真空避免了作用在容器上的真空力,否则该真空力将需要容器体积大或由更高强度的材料制成以抵抗这种力。气体或气体混合物的平均原子序数可以小于空气的平均原子序数。例如,容器1016可以填充有氦气。
气体或气体混合物的体积膨胀可以例如通过改变气体的温度或压力来更改。气体的体积1018的改变可以导致容器1016的窗口1010、1012之间的路径长度的对应改变。例如,气体填充容器1016可以由柔性材料形成,该柔性材料可以根据其中的气体的压力而膨胀或收缩。可替代地或附加地,气体填充容器1016可以由柔性材料形成,并且可以操纵以维持基本上恒定的体积,而不管窗口1010、1012之间的路径长度的改变。例如,通过容器1016的射束路径长度可以通过轴向(即,沿着粒子射束1002的传播方向)压缩容器1016而减少,其导致容器1016内的体积在如图21A所图示的径向向外方向上的对应位移。可以通过轴向(即,沿着粒子射束1002的传播方向)拉动容器1016来增加通过容器1016的射束路径长度,其在如图21B所图示的径向向内方向拉动容器体积。
如同图19A至图20C的实施例一样,射束输送组件的可膨胀部分1000可以包括耦合到其上的一个或多个射束控制部件,以便与相应的射束管(例如,耦合到管1006的聚焦磁体和/耦合到管1004的聚焦磁体)一起位移。可以控制聚焦磁体的磁场(例如,通过图3的控制系统330)以补偿射束路径长度的任何变化以及聚焦磁体之间的距离的改变,以维持粒子射束的轮廓。由气体填充容器1016的膨胀/收缩引起的射束路径长度的改变可以被限制到窗口1008和窗口1014之间的区域,而不必影响射束部件沿着相应射束管1004、1006的相对布置。
尽管上文已经使用一对相对于彼此移动的射束管来描述实施例,以便允许照射喷嘴的垂直移动,但是根据一个或多个设想的实施例,使用单个射束管的其它配置也是可能的。例如,图22A至图22B图示了包括单个射束管2220的射束输送组件。在图22A中,射束输送组件被示出为处于其中第一偏转器2224(例如,弯曲磁体)与第二偏转器2212(例如,弯曲磁体)间隔开第一垂直距离的膨胀配置。因此,来自源2226的粒子射束进入射束输送组件,并且被第一偏转器2224偏转,以沿着射束管2220朝向第二偏转器2212行进。第二偏转器2212可以进一步偏转离开其顶端2210处的射束管2220的粒子射束到达照射喷嘴(未示出)。
如同先前的实施例一样,第一组射束控制光学器件2216(例如,聚焦磁体)和第二组射束控制光学器件2218(例如,聚焦磁体)可以沿着射束管2220的长度设置。第一组射束控制光学器件2216可以例如通过耦合器2222而耦合到第二偏转器2212,该耦合器2222允许第一组射束控制光学器件2216与第二偏转器2212一起移动。因此,第一组射束控制器光学器件2216和第二组射束控制光学器件2218之间的距离可以随着第二偏转器2212的位置改变而变化。
射束管2220可以具有足以适应第二偏转器2212的位移所需的长度,以提供期望的照射覆盖(例如,至少300cm的行程长度)。例如,当射束输送组件处于如图22A所示的膨胀配置时,粒子射束2202可以在射束管2220的端2210处离开。当射束输送组件转变到收缩配置时,第二偏转器2212朝向第一偏转器2224移动。因为射束管2220具有固定长度,所以第二偏转器2212沿着射束管2220的轴线相对于射束管2220移动,并且使得粒子射束2202通过射束管的壁2234离开射束管,如图22B所图示的。射束管2220可以由材料制成和/或具有足够薄的壁,以便允许包含在其中的粒子射束2202以最小的散射效应来穿透射束管2220的壁。
可替代地或附加地,射束管2220可以耦合到第二偏转器2212以便一起移动。在这样的配置中,来自源2226的粒子射束2202可以被第一偏转器2224偏转,以通过其壁进入射束管2220,类似于图22B中的粒子射束离开射束管的方式。在又一备选方案中,射束管2220的位置保持固定,并且第一偏转器2224和第二偏转器2212可以沿着其轴线相对于射束管2220移动。第一偏转器2224和第二偏转器2212可以使粒子射束2202在射束管的相应端处或者通过射束管2202的壁的相应部分进入/离开射束管2220,这取决于偏转器相对于射束管的位置。
根据一个或多个设想的实施例,射束输送组件还可以沿着粒子射束源和照射喷嘴之间的射束路径的至少一部分将粒子射束传送通过非真空环境(例如,通过空气或使散射最小化的特定气体或气体混合物,诸如但不限于氦气)。例如,在本文中的其中射束输送组件(例如,(多个)射束管)的部件处于真空下的实施例中的任一实施例中,可以提供空气或气体环境而不是真空,或者真空部件或(多个)射束管可以完全省略。可以通过聚焦和/或偏转磁体的适当控制(例如,磁场强度)和/或位移(例如,沿着射束路径的位置)来补偿可能由穿过非真空环境的行进引起的任何散射。当射束输送组件处于短的或收缩状态时,这种散射可能特别低。
在一些实施例中,当射束输送组件处于较长或膨胀状态时,可以维持沿着射束路径的真空,并且散射可能另外存在问题。当射束输送组件处于较短或收缩状态时,可以允许非真空环境,并且任何所得散射由聚焦和/或偏转磁体来控制。
在一个或多个第一实施例中,用于输送粒子射束的射束输送组件包括第一射束管、第二射束管、一个或多个第一聚焦磁体、一个或多个第二聚焦磁体和可膨胀部分。第一射束管具有在真空下维持的第一内部体积。第二射束管具有在真空下维持的第二内部体积。第二射束管与第一射束管轴向地间隔开。一个或多个第一聚焦磁体沿着第一射束管布置,并且一个或多个第二聚焦磁体沿着第二射束管布置。可膨胀部分将第一射束管耦合到第二射束管,使得粒子射束可以在其间传送。可膨胀部分被配置成适应第一射束管和第二射束管相对于彼此的改变位置,以便更改粒子射束通过射束输送组件的路径长度。
在第一实施例或任何其它实施例中,可膨胀部分被配置成改变长度,以便更改第一聚焦磁体和第二聚焦磁体之间的粒子的路径长度。
在第一实施例或任何其它实施例中,一个或多个第一聚焦磁体和一个或多个第二聚焦磁体包括四极磁体。
在第一实施例或任何其它实施例中,一个或多个第一聚焦磁体被耦合到第一射束管并且与其一起移动。
在第一实施例或任何其它实施例中,第一射束管的外径小于第二射束管的内径,并且可膨胀部分包括第一射束管和第二射束管之间的第一滑动密封件。第一射束管被配置成滑动到第二内部体积中以减少粒子射束的路径长度。
在第一实施例或任何其它实施例中,可膨胀部分包括第一射束管和第二射束管之间的第二滑动密封件。第二滑动密封件与第一滑动密封件轴向地间隔开。差动泵耦合到第一滑动密封件和第二滑动密封件之间的体积。
在第一实施例或任何其它实施例中,可膨胀部分包括真空容器,其设置在第一射束管和第二射束管之间并且被构造成相对于第一射束管和第二射束管转动。
在第一实施例或任何其它实施例中,真空容器的高度在与第一射束管和第二射束管的轴线平行的方向上变化。
在第一实施例或任何其它实施例中,第一射束管通过设置在真空容器的轴向第一端处的第一转动密封件而耦合到真空容器,并且第二射束管通过设置在真空容器的轴向相对的第二端处的第二转动密封件而耦合到真空容器。第一转动密封件和第二转动密封件被构造成围绕平行于第一射束管和第二射束管的所述轴线的第一转动轴线而转动。第一转动轴线在垂直于第一射束管和第二射束管的轴线的方向上与第一射束管和第二射束管的轴线间隔开。
在第一实施例或任何其它实施例中,真空容器被构造成围绕垂直于第一射束管和第二射束管的轴线的第二转动轴线转动,使得通过真空容器的内部体积的路径长度变化。
在第一实施例或任何其它实施例中,第一射束管和第二射束管的接近真空容器的相应端包括真空窗口或箔,并且面向第一射束管和第二射束管的所述端的真空容器的周向表面包括真空窗口或箔。
在第一实施例或任何其它实施例中,可膨胀部分包括设置在第一射束管和第二射束管之间的气体填充容器。
在第一实施例或任何其它实施例中,气体填充容器包括柔性结构,使得通过容器的路径长度的改变通过压缩或膨胀柔性结构来实现。
在第一实施例或任何其它实施例中,第一射束管和第二射束管的接近气体填充容器的相应端包括真空窗口或箔,并且气体填充容器的面向第一射束管和第二射束管的所述端的周向表面包括窗口或箔。
在第一实施例或任何其它实施例中,容器填充有氦气。
在一个或多个第二实施例中,一种用于使用粒子射束来照射对象的系统,包括射束输送组件、照射喷嘴、支撑件和控制器。射束输送组件沿着基本上垂直的方向传送来自粒子源的粒子射束,并且将粒子射束重定向到水平输入。照射喷嘴耦合到射束输送组件以在水平输入处接收粒子射束。照射喷嘴被配置成将粒子射束重定向朝向对象、并且在水平输入处围绕旋转轴线转动。支撑件被构造成相对于照射喷嘴来支撑对象并且在垂直于旋转轴线的平面中水平地移动。控制器被配置成协调射束输送组件、照射喷嘴和支撑件的移动。射束输送组件被构造为改变粒子射束的路径长度以便跟随照射喷嘴的旋转轴线相对于支撑件的垂直位置,并且控制器被配置成协调粒子射束的路径长度改变、照射喷嘴围绕旋转轴线的转动、和/或支撑件的水平运动,以在垂直于旋转轴线的平面中从各种角度提供照射被支撑的对象,同时将照射喷嘴维持在与被支撑的对象相距恒定距离处。
在第二实施例或任何其它实施例中,照射喷嘴被配置成在水平输入处将粒子射束从粒子射束的方向重定向90°。
在第二实施例或任何其它实施例中,被支撑的对象是患者,并且该系统被配置成将粒子射束作为患者的粒子治疗的一部分来递送。
在第二实施例或任何其它实施例中,旋转轴线和粒子射束在水平输入处的传播方向是重合的。
在第二实施例或任何其它实施例中,控制器被配置成协调粒子射束的路径长度改变、照射喷嘴围绕旋转轴线的转动、和/或支撑件的水平运动,以提供围绕被支撑的对象的360°的照射。
在第二实施例或任何其它实施例中,射束输送组件包括一个或多个聚焦磁体。
在第二实施例或任何其它实施例中,控制器被配置成响应于粒子射束的路径长度的改变来控制一个或多个聚焦磁体的磁场。
在第二实施例或任何其它实施例中,控制器包括存储查找表的存储器,该查找表将粒子射束的路径长度的改变与一个或多个聚焦磁体的磁场的控制值相关。
在第二实施例或任何其它实施例中,系统包括传感器,其在路径长度改变时监测粒子射束并且向控制器提供反馈信号。控制器被配置成响应于反馈信号来控制一个或多个聚焦磁体的磁场。
在第二实施例或任何其它实施例中,支撑件进一步被构造成在平行于旋转轴线的平面中水平地和/或垂直地移动。
在第二实施例或任何其它实施例中,射束输送组件包括:第一偶极磁体,其沿着射束输送组件的垂直延伸部分来重定向来自粒子源的粒子射束;和第二偶极磁体,其将粒子射束重定向到水平输入。
在第二实施例或任何其它实施例中,射束输送组件包括第一射束管、第二射束管和可膨胀部分。第一射束管具有在真空下维持的第一内部体积。第二射束管具有在真空下维持的第二内部体积。第二射束管与第一射束管轴向地间隔开。可膨胀部分将第一射束管耦合到第二射束管,使得粒子射束可以在其间传送。粒子射束的路径长度的改变由可膨胀部分适应。
在第二实施例或任何其它实施例中,第一射束管的外径小于第二射束管的内径,并且可膨胀部分包括第一射束管和第二射束管之间的第一滑动密封件。第一射束管被配置成滑动到第二内部体积以减少粒子射束的路径长度。
在第二实施例或任何其它实施例中,可膨胀部分包括设置在第一射束管和第二射束管之间并且被构造成相对于第一射束管和第二射束管转动的真空容器。真空容器的高度在与第一射束管和第二射束管平行的轴线的方向上变化。第一射束管通过设置在真空容器的轴向第一端处的第一转动密封件而耦合到真空容器,并且第二射束管通过设置在真空容器的轴向相对的第二端处的第二转动密封件而耦合到真空容器。第一转动密封件和第二转动密封件被构造成围绕平行于第一射束管和第二射束管的所述轴线的第一转动轴线而转动。第一转动轴线在垂直于第一射束管和第二射束管的轴线的方向上与第一射束管和第二射束管的轴线间隔开。
在第二实施例或任何其它实施例中,可膨胀部分包括设置在第一射束管和第二射束管之间并且被构造成相对于第一射束管和第二射束管转动的真空容器。真空容器被构造成围绕垂直于第一射束管和第二射束管的轴线的第二转动轴线而转动,使得粒子射束通过真空容器的内部体积的路径长度变化。
在第二实施例或任何其它实施例中,可膨胀部分包括设置在第一射束管和第二射束管之间的气体填充容器。气体填充容器是柔性结构,使得通过容器的路径长度的改变通过压缩或膨胀柔性结构来实现。容器充满氦气。
在第二实施例或任何其它实施例中,射束组件具有单射束管,其由材料形成或具有允许粒子射束通过单射束管的壁的厚度。
在一个或多个第三实施例中,一种用于照射对象的方法,包括:将来自粒子源的粒子射束沿着射束输送组件传送到照射喷嘴的水平输入,将粒子射束从照射喷嘴内的水平输入重定向并且引导来自照射喷嘴的粒子射束以从第一位置照射布置在支撑件上的对象,并且改变射束输送组件中的粒子射束的路径长度,以便跟随照射喷嘴的旋转轴线相对于支撑件的垂直位置。照射喷嘴被配置成在水平输入处围绕旋转轴线而转动。
在第三实施例或任何其它实施例中,该方法还包括:响应于改变长度,改变射束输送组件的一个或多个聚焦磁体的磁场强度。
在第三实施例或任何其它实施例中,所述更改磁场强度包括:基于射束输送组件的长度,从存储在存储器中的查找表选择磁场强度的控制值。
在第三实施例或任何其它实施例中,所述更改磁场强度响应于来自监测粒子射束的传感器的反馈信号。
在第三实施例或任何其它实施例中,被支撑的对象是患者,并且照射是患者的粒子治疗的一部分。
在第三实施例或任何其它实施例中,射束输送组件包括第一射束管、第二射束管和可膨胀部分。第一射束管具有在真空下维持的第一内部体积。第二射束管具有在真空下维持的第二内部体积。第二射束管与第一射束管轴向地间隔开。可膨胀部分将第一射束管耦合到第二射束管,使得粒子射束可以在其间传送。
在第三实施例或任何其它实施例中,第一射束管的外径小于第二射束管的内径。可膨胀部分包括第一射束管和第二射束管之间的第一滑动密封件。第一射束管被配置成滑动到第二内部体积中以减少粒子射束的路径长度。所述改变粒子射束的路径长度包括:相对于第一射束管和第二射束管中的一个射束管,轴向地滑动第一射束管和第二射束管中的另一个射束管。
在第三实施例或任何其它实施例中,可膨胀部分包括设置在第一射束管和第二射束管之间并且被构造成相对于第一射束管和第二射束管转动的真空容器。真空容器的高度在与第一射束管和第二射束管的轴线平行的方向上变化。第一射束管通过设置在真空容器的轴向第一端处的第一转动密封件而耦合到真空容器,并且第二射束管通过设置在真空容器的轴向相对的第二端处的第二转动密封件而耦合到真空容器。第一转动密封件和第二转动密封件被构造成围绕平行于第一射束管和第二射束管的所述轴线的第一旋转轴线而转动。第一旋转轴线在垂直于第一射束管和第二射束管的轴线的方向上而与第一射束管和第二射束管的轴线间隔开。所述改变粒子射束的路径长度包括:围绕第一转动轴线来转动真空容器,同时使第一射束管和第二射束管相对于彼此而轴向地位移。
在第三实施例或任何其它实施例中,可膨胀部分包括设置在第一射束管和第二射束管之间并且被构造成相对于第一射束管和第二射束管转动的真空容器。真空容器被构造成围绕垂直于第一射束管和第二射束管的轴线的第二旋转轴线而转动,使得通过真空容器的内部体积的路径长度变化。所述改变粒子射束的路径长度包括:围绕第二转动轴线来转动真空容器,同时使第一射束管和第二射束管相对于彼此而轴向地位移。
在第三实施例或任何其它实施例中,可膨胀部分包括设置在第一射束管和第二射束管之间的气体填充容器。气体填充容器是柔性结构,使得通过容器的路径长度的改变通过压缩或膨胀柔性结构来实现。容器充满氦气。所述改变粒子射束的路径长度包括:在使第一射束管和第二射束管相对于彼此轴向位移的同时,压缩或膨胀柔性结构。
在第三实施例或任何其它实施例中,射束输送组件包括射束管和至少一个第一弯曲磁体。射束管具有在真空下维持的内部体积。射束管由材料形成和/或具有允许粒子射束通过其壁的厚度。至少一个第一弯曲磁体将粒子射束从平行于射束管的轴的方向重定向到照射喷嘴的输入。至少一个第一弯曲磁体被配置成在平行于射束管的轴线的方向上沿着射束管移动。所述改变粒子射束的路径长度包括:沿着射束管移动至少一个第一弯曲磁体。
在第三实施例或任何其它实施例中,该方法还包括:在改变粒子射束的路径长度的同时,围绕旋转轴线来转动照射喷嘴、和/或在垂直于旋转轴线的平面中移动支撑件以从第二位置照射对象。第二位置和第一位置与对象相距的距离相同,但在垂直于旋转轴线的平面中成不同的角度。
在一个或多个第四实施例中,提供了一种非暂态计算机可读存储介质和计算机处理系统。非暂态计算机可读存储介质被体现为具有用于控制系统以使用粒子射束来照射对象的编程指令序列。计算机处理系统执行在计算机可读存储介质上体现的编程指令序列,以使计算机处理系统控制射束输送组件的一个或多个聚焦磁体以沿着射束输送组件将来自粒子源的粒子射束传送到照射喷嘴的水平输入,控制一个或多个偏转磁体以对来自照射喷嘴内的水平输入的粒子射束进行重定向,并且引导来自照射喷嘴的粒子射束以从第一位置照射布置在支撑件上的对象,并且控制射束输送组件以改变粒子射束的路径长度,以便跟随照射喷嘴的旋转轴线相对于支撑件的垂直位置。照射喷嘴被配置成在水平输入处围绕旋转轴线而转动。
在第四实施例或任何其它实施例中,计算机可读存储介质还使计算机处理系统:响应于粒子射束的路径长度的改变而更改射束输送组件的一个或多个聚焦磁体的磁场强度。
在第四实施例或任何其它实施例中,计算机可读存储介质还使计算机处理系统:基于射束输送组件的改变的长度,从存储在存储器中的查找表中选择用于更改的磁场强度的控制值。
在第四实施例或任何其它实施例中,计算机可读存储介质还使计算机处理系统:响应于来自监测粒子射束的传感器的反馈信号而更改磁场强度
在第四实施例或任何其它实施例中,计算机可读存储介质还使计算机处理系统:在改变粒子射束的路径长度的同时,控制照射喷嘴以围绕旋转轴线转动和/或控制支撑件在垂直于旋转轴线的平面中移动,以便从第二位置照射对象,该第二位置和第一位置与对象相距的距离相同,但在垂直于旋转轴线的平面中成不同的角度。
在一个或多个第五实施例中,一种用于传送粒子射束的射束输送组件,包括射束管和至少一个第一弯曲磁体。射束管具有在真空下维持的内部体积。射束管由材料形成和/或具有允许粒子射束通过其壁的厚度。至少一个第一弯曲磁体将粒子射束从平行于射束管的轴线的方向重定向到照射喷嘴的输入。至少一个第一弯曲磁体被配置成在平行于所述射束管的轴线的方向上沿着射束管而移动。
在第五实施例或任何其它实施例中,射束输送组件还包括至少两个聚焦磁体,其沿着射束管布置并且在平行于射束管的轴线的方向上彼此间隔开。
在第五实施例或任何其它实施例中,至少两个聚焦磁体中的一个聚焦磁体被配置成相对于至少两个聚焦磁体中的另一个聚焦磁体而沿着平行于射束管的轴线的方向移动。
在第五实施例或任何其它实施例中,至少两个聚焦磁体包括四极磁体。
在第五实施例或任何其它实施例中,至少一个第一弯曲磁体是第一偶极磁体。射束输送组件还包括第二偶极磁体,其在平行于射束管的轴线的方向上沿着所述射束管重定向来自粒子源的粒子射束。
在第五实施例或任何其它实施例中,射束输送组件还包括沿着射束管布置并且在平行于射束管的轴线的方向上彼此间隔开的至少两个聚焦磁体。至少两个聚焦磁体中的一个聚焦磁体被耦合到第一偶极磁体和第二偶极磁体中的一个偶极磁体并且与其一起移动。
在一个或多个第六实施例中,提供了一种用于执行本文中所公开的方法中的任一方法的系统。
尽管本文中的实施例已经相对于递送粒子射束作为对患者的治疗进行了描述,但是所公开的主题的实施例不限于此。相反,实施例可以包括:递送用于照射对象或动物的粒子射束(例如,质子或任何其它高能粒子)。
尽管射束输送组件在本文中已经被描述为把粒子射束从源传送到辐射喷嘴,但是可以设想,可以在源和喷嘴之间提供其它射束输送部件。换句话说,可变长度射束输送组件不需要在一端直接邻近源,而在另一端直接邻近照射喷嘴。例如,可以在源和照射喷嘴之间提供其它射束输送部件(例如,固定长度的射束管、转向磁体、弯曲磁体和/或聚焦磁体),其中可变长度射束输送组件用作例如源和照射喷嘴之间的射束路径的部分腿(partialleg)。
另外,本文中使用术语“水平”和“垂直”来描述所公开的实施例的不同部件的相对位置和运动。然而,实施例不限于严格的水平和垂直方向。当使用这样的描述性术语时,它们要包括与其的偏差。例如,“水平”可以包括具有较小垂直分量(例如,至多10%)的方向,并且“垂直”可以包括具有较小水平分量(例如,至多10%)的方向。
而且,本文中使用术语“水平”和“垂直”是为了方便描述部件及其运动的相对定向,并且不旨在限制照射系统相对于重力的布置。实际上,可以设想,在所公开的主题的一些实施例中,垂直方向可以垂直于重力方向而延伸,并且水平方向可以平行于重力方向而延伸。
在本申请中,除非另有明确说明,否则单数的使用包括复数,并且使用“或”表示“和/或”。此外,术语“包括”或“具有”以及其它形式(诸如“包括(includes)”、“包括(included)”、“具有(has)”或“具有(had)”)的使用不是限制性的。本文中所描述的任何范围将被理解为包括端点、以及端点之间的所有值。
在所公开的主题的一个或多个实施例中,可以提供一种非暂态计算机可读存储介质和计算机处理系统。在所公开的主题的一个或多个实施例中,非暂态计算机可读存储介质可以由用于控制照射设备执行粒子治疗的编程指令序列来体现,在计算机可读存储介质上体现的编程指令序列使计算机处理系统执行所公开的方法中的一个或多个方法。
应当领会,上文所描述的模块、过程、系统和设备可以以硬件、由软件编程的硬件、存储在非暂态计算机可读介质上的软件指令、或上述的组合来实现。例如,可以例如使用被配置成执行存储在非暂态计算机可读介质上的编程指令序列的处理器来实施用于控制照射系统执行粒子照射的方法。例如,处理器可以包括但不限于个人计算机、或工作站、或包括处理器、微处理器、微控制器设备的其它这样的计算系统,或者包括控制逻辑,该控制逻辑包括集成电路,诸如例如,专用集成电路(ASIC)。可以根据按照诸如Java、C++、C#.net之类的编程语言提供的源代码指令来编译指令。指令还可以包括按照例如Visual Basic TM语言、Lab VIEW、或另一结构化或面向对象的编程语言提供的代码和数据对象。编程指令序列和与其相关联的数据可以存储在非暂态计算机可读介质中,诸如计算机存储器或存储设备,其可以是任何合适的存储装置,诸如但不限于只读存储器(ROM)、可编程只读存储器(PROM)、电可擦除可编程只读存储器(EEPROM)、随机存取存储器(RAM)、闪存、磁盘驱动器等。
此外,模块、过程、系统和设备可以被实现为单个处理器或分布式处理器。进一步地,应当领会,本文中所提及的步骤可以在单个或分布式处理器(单核和/或多核)上执行。还有,在本文中的实施例的各种附图和用于实施例的各种附图中描述的过程、模块和子模块可以分布在多个计算机或系统上,或者可以共同位于单个处理器或系统中。下文提供了适合于实现本文中所描述的模块、段、系统、装置或过程的示例性结构备选实施例。
上文所描述的模块、过程、系统和设备可以被实现为例如编程的通用计算机、使用微代码编程的电子设备、硬连线模拟逻辑电路、存储在计算机可读介质或信号上的软件、光学计算设备、电子和/或光学设备的联网系统、专用计算设备、集成电路设备、半导体芯片、以及存储在计算机可读介质或信号上的软件模块或对象。
方法、过程、模块、设备和系统(或其子部件或模块)的实施例可以在通用计算机、专用计算机、编程微处理器或微控制器和外围集成电路元件、ASIC或其它集成电路、数字信号处理器、硬连线电子或逻辑电路(诸如分立元件电路)、可编程逻辑电路(诸如可编程逻辑器件(PLD)、可编程逻辑阵列(PLA)、现场可编程门阵列(FPGA)、可编程阵列逻辑(PAL)设备)等上实现。一般而言,能够实现本文中所描述的功能或步骤的任何过程可以用于实现方法、系统或计算机程序产品(存储在非暂态计算机可读介质上的软件程序)的实施例。
此外,所公开的方法、过程、模块、设备、系统和计算机程序产品的实施例可以容易地使用例如对象或面向对象的软件开发环境的软件来完全或部分地实现,该软件开发环境提供可移植源代码,其可以在多种计算机平台上使用。可替代地,所公开的方法、过程、模块、设备、系统和计算机程序产品的实施例可以使用例如标准逻辑电路或超大规模集成(VLSI)设计来部分地或全部地以硬件实现。取决于所利用的系统、特定功能和/或特定软件或硬件系统、微处理器或微型计算机的速度和/或效率要求,可以使用其它硬件或软件来实现实施例。可以从本文中所提供的功能描述和使用粒子射束照射系统、控制系统和/或计算机程序设计领域的一般基本知识,由本领域普通技术人员使用任何已知或以后开发的系统或结构、设备和/或软件以硬件和/或软件来实现方法、过程、模块、设备、系统和计算机程序产品的实施例。
所公开的实施例的特征可以在本发明的范围内进行组合、重新布置、省略等以产生附加的实施例。此外,某些特征有时可以有利地被使用,而没有对应地使用其它特征。
因此,清楚的是,按照本公开提供了用于随后照射的粒子射束输送的系统、设备和方法。通过本公开实现了许多替代、修改和变型。虽然已经详细地示出了和描述了特定实施例以说明本发明的原理的应用,但是应当理解,在不背离这些原理的情况下,可以以其它方式来体现本发明。因此,申请人旨在涵盖在本发明的精神和范围内的所有这样的替代、修改、等同物和变型。

Claims (53)

1.一种用于传送粒子射束的射束输送组件,所述射束输送组件包括:
第一射束管,具有在真空下维持的第一内部体积;
第二射束管,具有在真空下维持的第二内部体积,所述第二射束管与所述第一射束管轴向地间隔开;
一个或多个第一聚焦磁体,沿着所述第一射束管布置;
一个或多个第二聚焦磁体,沿着所述第二射束管布置;和
可膨胀部分,将所述第一射束管耦合到所述第二射束管,使得所述粒子射束能够在其间传送,
其中,所述可膨胀部分被配置成适应所述第一射束管和所述第二射束管相对于彼此的改变的位置,以便更改所述粒子射束通过所述射束输送组件的路径长度。
2.根据权利要求1所述的射束输送组件,其中,所述一个或多个第一聚焦磁体和所述一个或多个第二聚焦磁体包括四极磁体。
3.根据权利要求1所述的射束输送组件,其中,所述一个或多个第一聚焦磁体耦合到所述第一射束管并且与所述第一射束管一起移动。
4.根据权利要求1所述的射束输送组件,其中,所述第一射束管的外径小于所述第二射束管的内径,并且所述可膨胀部分包括所述第一射束管与所述第二射束管之间的第一滑动密封件,所述第一射束管被配置成滑动到所述第二内部体积中,以减少所述粒子射束的所述路径长度。
5.根据权利要求4所述的射束输送组件,其中,所述可膨胀部分包括所述第一射束管与所述第二射束管之间的第二滑动密封件,所述第二滑动密封件与所述第一滑动密封件轴向地间隔开,并且还包括耦合到所述第一滑动密封件与所述第二滑动密封件之间的体积的差动泵。
6.根据权利要求1所述的射束输送组件,其中,所述可膨胀部分包括真空容器,所述真空容器设置在所述第一射束管与所述第二射束管之间并且被构造成相对于所述第一射束管和所述第二射束管转动。
7.根据权利要求6所述的射束输送组件,其中,所述真空容器的高度在平行于所述第一射束管的和所述第二射束管的轴线的方向上变化。
8.根据权利要求7所述的射束输送组件,其中,所述第一射束管通过设置在所述真空容器的轴向第一端处的第一转动密封件而耦合到所述真空容器,并且所述第二射束管通过设置在所述真空容器的轴向相对的第二端处的第二转动密封件而耦合到所述真空容器,所述第一转动密封件和所述第二转动密封件被构造成围绕平行于所述第一射束管的和所述第二射束管的所述轴线的第一转动轴线而转动,所述第一转动轴线在与所述第一射束管和所述第二射束管的轴线垂直的方向上与所述第一射束管的和所述第二射束管的所述轴线间隔开。
9.根据权利要求6所述的射束输送组件,其中,所述真空容器被构造成围绕垂直于所述第一射束管的和所述第二射束管的轴线的第二转动轴线而转动,使得通过所述真空容器的内部体积的路径长度变化。
10.根据权利要求9所述的射束输送组件,其中,所述第一射束管的和所述第二射束管的靠近所述真空容器的相应端包括真空窗口或箔,并且所述真空容器的面向所述第一射束管的和所述第二射束管的所述端的周向表面包括真空窗口或箔。
11.根据权利要求1所述的射束输送组件,其中,所述可膨胀部分包括设置在所述第一射束管与所述第二射束管之间的气体填充容器。
12.根据权利要求11所述的射束输送组件,其中,所述气体填充容器包括柔性结构,使得通过所述容器的路径长度的变化通过压缩或膨胀所述柔性结构来实现。
13.根据权利要求11所述的射束输送组件,其中,所述第一射束管的和所述第二射束管的靠近所述气体填充容器的相应端包括真空窗口或箔,并且所述气体填充容器的面向所述第一射束管的和所述第二射束管的所述端的周向表面包括窗口或箔。
14.根据权利要求11所述的射束输送组件,其中,所述容器填充有氦气。
15.一种用于使用粒子射束来照射对象的系统,所述系统包括:
射束输送组件,沿着基本上垂直的方向传送来自粒子源的粒子射束,并且把所述粒子射束重定向到水平输入;
照射喷嘴,耦合到所述射束输送组件以在所述水平输入处接收所述粒子射束,所述照射喷嘴被配置成朝向所述对象重定向所述粒子射束并且在所述水平输入处围绕旋转轴线转动;
支撑件,被构造成相对于所述照射喷嘴来支撑所述对象并且在垂直于所述旋转轴线的平面中水平地移动;和
控制器,被配置成协调所述射束输送组件、所述照射喷嘴和所述支撑件的运动,
其中,所述射束输送组件被构造成改变所述粒子射束的路径长度,以便跟随所述照射喷嘴的所述旋转轴线相对于所述支撑件的垂直位置,以及
所述控制器被配置成协调所述粒子射束的路径长度的改变、所述照射喷嘴围绕所述旋转轴线的转动、和/或所述支撑件的水平运动,以在将所述照射喷嘴维持在与所述被支撑的对象相距的恒定距离处的同时,在垂直于所述旋转轴线的平面中从各种角度照射所述被支撑的对象。
16.根据权利要求15所述的系统,其中,所述照射喷嘴被配置成在所述水平输入处从所述粒子射束的方向来重定向所述粒子射束90°。
17.根据权利要求15所述的系统,其中,所述被支撑的对象是患者,并且所述系统被配置成递送所述粒子射束作为所述患者的粒子治疗的一部分。
18.根据权利要求15所述的系统,其中,所述旋转轴线和所述粒子射束在所述水平输入处的传播方向是重合的。
19.根据权利要求15所述的系统,其中,所述控制器被配置成协调所述粒子射束的所述路径长度的改变、所述照射喷嘴围绕所述旋转轴线的转动、和/或所述支撑件的水平运动,以提供围绕所述被支撑的对象的360°的照射。
20.根据权利要求15所述的系统,其中,所述射束输送组件包括一个或多个聚焦磁体。
21.根据权利要求20所述的系统,其中,所述控制器被配置成响应于所述粒子射束的路径长度的改变来控制所述一个或多个聚焦磁体的磁场。
22.根据权利要求21所述的系统,其中,所述控制器包括存储器,存储器存储查找表,所述查找表将所述粒子射束的路径长度的改变与所述一个或多个聚焦磁体的所述磁场的控制值相关。
23.根据权利要求21所述的系统,还包括传感器,所述传感器随着所述路径长度改变而监测所述粒子射束、并且向所述控制器提供反馈信号,所述控制器被配置成响应于所述反馈信号来控制所述一个或多个聚焦磁体的所述磁场。
24.根据权利要求15所述的系统,其中,所述支撑件还被构造成在平行于所述旋转轴线的平面中水平地和/或垂直地移动。
25.根据权利要求15所述的系统,其中,所述射束输送组件包括第一偶极磁体和第二偶极磁体,所述第一偶极磁体将来自所述粒子源的所述粒子射束沿着所述射束输送组件的垂直延伸部分进行重定向,所述第二偶极磁体将所述粒子射束重定向到所述水平输入。
26.根据权利要求15所述的系统,其中,所述射束输送组件包括:
第一射束管,具有在真空下维持的第一内部体积;
第二射束管,具有在真空下维持的第二内部体积,所述第二射束管与所述第一射束管轴向地间隔开;和
可膨胀部分,将所述第一射束管耦合到所述第二射束管,使得所述粒子射束能够在其间传送;
其中,所述粒子射束的所述路径长度改变由所述可膨胀部分来适应。
27.根据权利要求26所述的系统,其中,所述第一射束管的外径小于所述第二射束管的内径,并且所述可膨胀部分包括所述第一射束管与所述第二射束管之间的第一滑动密封件,所述第一射束管被配置成滑动到所述第二内部体积中以减少所述粒子射束的所述路径长度。
28.根据权利要求26所述的系统,其中:
所述可膨胀部分包括真空容器,所述真空容器设置在所述第一射束管与所述第二射束管之间、并且被构造成相对于所述第一射束管和所述第二射束管而转动,所述真空容器的高度在平行于所述第一射束管的和所述第二射束管的轴线的方向上变化;和
所述第一射束管通过设置在所述真空容器的轴向第一端处的第一转动密封件而耦合到所述真空容器,并且所述第二射束管通过设置在所述真空容器的轴向相对的第二端处的第二转动密封件而耦合到所述真空容器,所述第一转动密封件和所述第二转动密封件被构造成围绕平行于所述第一射束管的和所述第二射束管的所述轴线的第一转动轴线而转动,所述第一转动轴线与所述第一射束管的和所述第二射束管的所述轴线在垂直于所述第一射束管的和所述第二射束管的所述轴线的方向上间隔开。
29.根据权利要求26所述的系统,其中:
所述可膨胀部分包括真空容器,所述真空容器设置在所述第一射束管与所述第二射束管之间、并且被构造成相对于所述第一射束管和所述第二射束管而转动;和
所述真空容器被构造成围绕垂直于所述第一射束管的和所述第二射束管的轴线的第二转动轴线而转动,使得穿过所述真空容器的内部体积的所述粒子射束的所述路径长度变化。
30.根据权利要求26所述的系统,其中,所述可膨胀部分包括设置在所述第一射束管与所述第二射束管之间的气体填充容器,所述气体填充容器是柔性结构,使得通过所述容器的路径长度的改变通过压缩或膨胀所述柔性结构来实现,所述容器填充有氦气。
31.根据权利要求15所述的系统,其中,所述射束组件具有单射束管,所述单射束管由材料形成、或具有允许所述粒子射束通过所述单个射束管的壁的厚度。
32.一种用于照射对象的方法,所述方法包括:
将来自粒子源的粒子射束沿着射束输送组件传送到照射喷嘴的水平输入,所述照射喷嘴被配置成在所述水平输入处围绕旋转轴线而转动;
从所述照射喷嘴内的所述水平输入重定向所述粒子射束,并且引导来自所述照射喷嘴的所述粒子射束从第一位置照射布置在支撑件上的所述对象;和
改变所述射束输送组件中的所述粒子射束的路径长度,以便跟随所述照射喷嘴的所述旋转轴线相对于所述支撑件的垂直位置。
33.根据权利要求32所述的方法,还包括:响应于所述改变长度,更改所述射束输送组件的一个或多个聚焦磁体的磁场强度。
34.根据权利要求32所述的方法,其中,所述更改磁场强度包括:基于所述射束输送组件的长度从存储在存储器中的查找表来选择所述磁场强度的控制值。
35.根据权利要求32所述的方法,其中,所述更改磁场强度是响应于来自监测所述粒子射束的传感器的反馈信号。
36.根据权利要求32所述的方法,其中,所支持的对象是患者,并且所述照射是对所述患者的粒子治疗的一部分。
37.根据权利要求32所述的方法,其中:
所述射束输送组件包括:
第一射束管,具有在真空下维持的第一内部体积,
第二射束管,具有在真空下维持的第二内部体积,所述第二射束管与所述第一射束管轴向地间隔开,和
可膨胀部分,将所述第一射束管耦合到所述第二射束管,使得所述粒子射束能够在所述第一射束管与所述第二射束管之间传送;
所述第一射束管的外径小于所述第二射束管的内径,
所述可膨胀部分包括所述第一射束管与所述第二射束管之间的第一滑动密封件,所述第一射束管被配置成滑动到所述第二内部体积中以减少所述粒子射束的所述路径长度;和
所述改变所述粒子射束的路径长度包括:相对于所述第一射束管和所述第二射束管中的一个射束管来轴向地滑动所述第一射束管和所述第二射束管中的另一个射束管。
38.根据权利要求32所述的方法,其中
所述射束输送组件包括:
第一射束管,具有在真空下维持的第一内部体积,
第二射束管,具有在真空下维持的第二内部体积,所述第二射束管与所述第一射束管轴向地间隔开,和
可膨胀部分,将所述第一射束管耦合到所述第二射束管,使得所述粒子射束能够在所述第一射束管与所述第二射束管之间传送,所述可膨胀部分包括真空容器,所述真空容器设置在所述第一射束管与所述第二射束管之间、并且被构造成相对于所述第一射束管和所述第二射束管而转动,所述真空容器的高度在平行于所述第一射束管的和所述第二射束管的轴线的方向上变化,
所述第一射束管通过设置在所述真空容器的轴向第一端处的第一转动密封件而耦合到所述真空容器,并且所述第二射束管通过设置在所述真空容器的轴向相对的第二端处的第二转动密封件而耦合到所述真空容器,所述第一转动密封件和所述第二转动密封件被构造成围绕平行于所述第一射束管的和所述第二射束管的所述轴线的第一转动轴线而转动,所述第一转动轴线与所述第一射束管的和所述第二射束管的所述轴线在垂直于所述第一射束管的和所述第二射束管的所述轴线的方向上间隔开;和
所述改变所述粒子射束的路径长度包括:在使所述第一射束管和所述第二射束管相对于彼此轴向位移的同时,围绕所述第一转动轴线来转动所述真空容器。
39.根据权利要求32所述的方法,其中:
所述射束输送组件包括:
第一射束管,具有在真空下维持的第一内部体积,
第二射束管,具有在真空下维持的第二内部体积,所述第二射束管与所述第一射束管轴向地间隔开,和
可膨胀部分,将所述第一射束管耦合到所述第二射束管,使得所述粒子射束能够在所述第一射束管与所述第二射束管之间传送,所述可膨胀部分包括真空容器,所述真空容器设置在所述第一射束管与所述第二射束管之间、并且被构造成相对于所述第一射束管和所述第二射束管而转动,
所述真空容器被构造成围绕垂直于所述第一射束管的和所述第二射束管的轴线的第二转动轴线而转动,使得通过所述真空容器的内部体积的路径长度变化;和
所述改变所述粒子射束的路径长度包括:在使所述第一射束管和所述第二射束管相对于彼此轴向位移的同时,围绕所述第二转动轴线来转动所述真空容器。
40.根据权利要求32所述的方法,其中:
所述射束输送组件包括:
第一射束管,具有在真空下维持的第一内部体积,
第二射束管,具有在真空下维持的第二内部体积,所述第二射束管与所述第一射束管轴向地间隔开,和
可膨胀部分,将所述第一射束管耦合到所述第二射束管,使得所述粒子射束能够在所述第一射束管与所述第二射束管之间传送,所述可膨胀部分包括设置在所述第一射束管与所述第二射束管之间的气体填充容器,所述气体填充容器是柔性结构,使得通过所述容器的路径长度的改变通过压缩或膨胀所述柔性结构来实现,所述容器填充有氦气;和
所述改变所述粒子射束的路径长度包括:在使所述第一射束管和所述第二射束管相对于彼此轴向位移的同时,压缩或膨胀所述柔性结构。
41.根据权利要求32所述的方法,其中:
所述射束输送组件包括:
射束管,具有在真空下维持的内部体积,所述射束管由材料形成、或者具有允许所述粒子射束通过其壁的厚度;和
至少一个第一弯曲磁体,将所述粒子射束从平行于所述射束管的轴线的方向重定向到照射喷嘴的输入,所述至少一个第一弯曲磁体被配置成在与所述射束管的所述轴线平行的方向上沿着所述射束管移动;和
所述改变所述粒子射束的路径长度包括:沿着所述射束管移动所述至少一个第一弯曲磁体。
42.根据权利要求32所述的方法,还包括:在所述改变所述粒子射束的路径长度的同时,围绕所述旋转轴线转动所述照射喷嘴、和/或在垂直于所述旋转轴线的平面中移动所述支撑件以便从第二位置照射所述对象,所述第二位置和所述第一位置与所述对象相距的距离相同,但在垂直于所述旋转轴线的平面中成不同的角度。
43.一种非暂态计算机可读存储介质,在所述非暂态计算机可读存储介质上体现用于控制系统以使用粒子射束来照射对象的编程指令序列,以及一种计算机处理系统,所述计算机处理系统执行在所述计算机可读介质上体现的所述编程指令序列以使所述计算机处理系统:
控制射束输送组件的一个或多个聚焦磁体,以将来自粒子源的粒子射束沿着所述射束输送组件传送到照射喷嘴的水平输入,所述照射喷嘴被配置成在所述水平输入处围绕旋转轴线而转动;
控制一个或多个偏转磁体以将所述粒子射束从所述照射喷嘴内的水平输入进行重定向,并且引导来自所述照射喷嘴的所述粒子射束以从第一位置照射布置在支撑件上的所述对象;和
控制所述射束输送组件以改变所述粒子射束的路径长度,以便跟随所述照射喷嘴的所述旋转轴线相对于所述支撑件的垂直位置。
44.根据权利要求43所述的计算机可读存储介质,其中,所述计算机可读存储介质还使所述计算机处理系统:响应于所述粒子射束的所述路径长度改变而更改所述射束输送组件的所述一个或多个聚焦磁体的磁场强度。
45.根据权利要求44所述的计算机可读存储介质,其中,所述计算机可读存储介质还使所述计算机处理系统:基于所述射束输送组件的所述改变的长度,从存储在存储器中的查找表来选择用于所述更改的磁场强度的控制值。
46.根据权利要求44所述的计算机可读存储介质,其中,所述计算机可读存储介质还使所述计算机处理系统:响应于来自监测所述粒子射束的传感器的反馈信号而更改所述磁场强度。
47.根据权利要求43所述的计算机可读存储介质,其中,所述计算机可读存储介质还使所述计算机处理系统:在所述改变所述粒子射束的路径长度的同时,控制所述照射喷嘴围绕所述旋转轴线转动、和/或控制所述支撑件在垂直于所述旋转轴线的平面中移动以便从第二位置照射所述对象,所述第二位置和所述第一位置与所述对象相距的距离相同、但在垂直于所述旋转轴线的所述平面中成不同角度。
48.一种用于传送粒子射束的射束输送组件,所述射束输送组件包括:
射束管,具有在真空下维持的内部体积,所述射束管由材料形成、或具有允许所述粒子射束通过其壁的厚度;和
至少一个第一弯曲磁体,将所述粒子射束从平行于所述射束管的轴线的方向重定向到照射喷嘴的输入,
其中,所述至少一个第一弯曲磁体被配置成在平行于所述射束管的所述轴线的方向上沿着所述射束管移动。
49.根据权利要求48所述的射束输送组件,还包括:至少两个聚焦磁体,其沿着所述射束管布置并且在与所述射束管的所述轴线平行的方向上彼此间隔开。
50.根据权利要求49所述的射束输送组件,其中,所述至少两个聚焦磁体中的一个聚焦磁体被配置成沿着与所述射束管的所述轴线平行的方向相对于所述至少两个聚焦磁体中的另一个聚焦磁体而移动。
51.根据权利要求49所述的射束输送组件,其中,所述至少两个聚焦磁体包括四极磁体。
52.根据权利要求48所述的射束输送组件,其中,所述至少一个第一弯曲磁体是第一偶极磁体,并且还包括第二偶极磁体,所述第二偶极磁体在与所述射束管的所述轴线平行的方向上沿着所述射束管重定向来自所述粒子源的所述粒子射束。
53.根据权利要求52所述的射束输送组件,还包括至少两个聚焦磁体,其沿着所述射束管布置并且在与所述射束管的所述轴线平行的方向上彼此间隔开,其中,所述至少两个聚焦磁体中的一个聚焦磁体被耦合到所述第一偶极磁体和所述第二偶极磁体中的一个偶极磁体并且与其一起移动。
CN201580045015.2A 2014-08-22 2015-08-21 粒子治疗系统、设备和射束输送方法 Active CN106605452B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010188052.1A CN111346303B (zh) 2014-08-22 2015-08-21 将粒子射束从粒子源传送至支撑装置的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462040657P 2014-08-22 2014-08-22
US62/040,657 2014-08-22
PCT/US2015/046239 WO2016029083A1 (en) 2014-08-22 2015-08-21 Particle therapy systems, devices, and methods for beam transportation

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202010188052.1A Division CN111346303B (zh) 2014-08-22 2015-08-21 将粒子射束从粒子源传送至支撑装置的方法

Publications (2)

Publication Number Publication Date
CN106605452A true CN106605452A (zh) 2017-04-26
CN106605452B CN106605452B (zh) 2020-04-03

Family

ID=55351279

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010188052.1A Active CN111346303B (zh) 2014-08-22 2015-08-21 将粒子射束从粒子源传送至支撑装置的方法
CN201580045015.2A Active CN106605452B (zh) 2014-08-22 2015-08-21 粒子治疗系统、设备和射束输送方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202010188052.1A Active CN111346303B (zh) 2014-08-22 2015-08-21 将粒子射束从粒子源传送至支撑装置的方法

Country Status (4)

Country Link
US (2) US10532229B2 (zh)
EP (1) EP3183945A4 (zh)
CN (2) CN111346303B (zh)
WO (1) WO2016029083A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108175952A (zh) * 2016-12-08 2018-06-19 离子束应用公司 用于眼部治疗的粒子治疗装置
CN110493948A (zh) * 2019-09-12 2019-11-22 中国科学院近代物理研究所 一种分层重离子/质子治疗装置及专用传输线路
CN111905275A (zh) * 2019-05-07 2020-11-10 禾荣科技股份有限公司 中子束产生装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD857202S1 (en) * 2016-12-20 2019-08-20 Elekta Limited Radiotherapy device
USD876631S1 (en) * 2016-12-20 2020-02-25 Electa Limited Radiotherapy device
CN113082549B (zh) * 2021-03-26 2022-12-06 中以康联国际医疗科技有限公司 粒子射束监控方法及粒子射束治疗装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006445A1 (en) * 1994-08-18 1996-02-29 Swenson Donald A Radio frequency focused drift tube linear accelerator
WO2000028797A1 (en) * 1998-11-05 2000-05-18 International Isotopes, Inc. Internally cooled linear accelerator and drift tubes
US7432516B2 (en) * 2006-01-24 2008-10-07 Brookhaven Science Associates, Llc Rapid cycling medical synchrotron and beam delivery system
CN102387836A (zh) * 2009-03-04 2012-03-21 普罗汤姆封闭式股份公司 多场带电粒子癌症治疗方法和设备
CN103153397A (zh) * 2010-11-16 2013-06-12 三菱电机株式会社 物块、物块的制造方法、粒子射线治疗装置、及治疗计划装置
US20130289330A1 (en) * 2012-04-27 2013-10-31 Mitsubishi Electric Corporation Particle beam rotational irradiation apparatus
CN103492025A (zh) * 2011-04-25 2014-01-01 住友重机械工业株式会社 带电粒子束照射装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4870287A (en) 1988-03-03 1989-09-26 Loma Linda University Medical Center Multi-station proton beam therapy system
EP0986070B1 (en) 1998-09-11 2010-06-30 GSI Helmholtzzentrum für Schwerionenforschung GmbH Ion beam therapy system and a method for operating the system
JP2001178834A (ja) 1999-12-27 2001-07-03 Mitsubishi Electric Corp 荷電粒子照射システム
EP2039393B1 (en) 2001-08-24 2012-08-15 Mitsubishi Heavy Industries, Ltd. Radiation treatment apparatus
US7239684B2 (en) 2005-02-28 2007-07-03 Mitsubishi Heavy Industries, Ltd. Radiotherapy apparatus monitoring therapeutic field in real-time during treatment
US8426833B2 (en) * 2006-05-12 2013-04-23 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
US8173981B2 (en) * 2006-05-12 2012-05-08 Brookhaven Science Associates, Llc Gantry for medical particle therapy facility
DE202006019307U1 (de) 2006-12-21 2008-04-24 Accel Instruments Gmbh Bestrahlungsvorrichtung
US8378321B2 (en) * 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US9168392B1 (en) * 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
CN102172106B (zh) * 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 带电粒子癌症疗法束路径控制方法和装置
US8093564B2 (en) * 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8269197B2 (en) 2009-07-22 2012-09-18 Intraop Medical Corporation Method and system for electron beam applications
DE102010001743B4 (de) * 2010-02-10 2012-07-12 Siemens Aktiengesellschaft Vorrichtung mit einer Kombination aus einer Magnetresonanzvorrichtung und einer Strahlentherapievorrichtung
JP2012070880A (ja) 2010-09-28 2012-04-12 Mitsubishi Heavy Ind Ltd 放射線治療装置制御装置および放射線治療装置制御方法
US9406411B2 (en) 2011-02-08 2016-08-02 Accuray Incorporated Automatic calibration for device with controlled motion range
US8405044B2 (en) 2011-07-15 2013-03-26 Accuray Incorporated Achromatically bending a beam of charged particles by about ninety degrees
ES2739634T3 (es) * 2012-09-28 2020-02-03 Mevion Medical Systems Inc Control de terapia de partículas
EP3153211A1 (en) * 2013-12-17 2017-04-12 Varian Medical Systems Particle Therapy GmbH Irradiation device and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006445A1 (en) * 1994-08-18 1996-02-29 Swenson Donald A Radio frequency focused drift tube linear accelerator
WO2000028797A1 (en) * 1998-11-05 2000-05-18 International Isotopes, Inc. Internally cooled linear accelerator and drift tubes
US7432516B2 (en) * 2006-01-24 2008-10-07 Brookhaven Science Associates, Llc Rapid cycling medical synchrotron and beam delivery system
CN102387836A (zh) * 2009-03-04 2012-03-21 普罗汤姆封闭式股份公司 多场带电粒子癌症治疗方法和设备
CN103153397A (zh) * 2010-11-16 2013-06-12 三菱电机株式会社 物块、物块的制造方法、粒子射线治疗装置、及治疗计划装置
CN103492025A (zh) * 2011-04-25 2014-01-01 住友重机械工业株式会社 带电粒子束照射装置
US20130289330A1 (en) * 2012-04-27 2013-10-31 Mitsubishi Electric Corporation Particle beam rotational irradiation apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108175952A (zh) * 2016-12-08 2018-06-19 离子束应用公司 用于眼部治疗的粒子治疗装置
CN111905275A (zh) * 2019-05-07 2020-11-10 禾荣科技股份有限公司 中子束产生装置
US11510308B2 (en) 2019-05-07 2022-11-22 Heron Neutron Medical Corp. Neutron beam generating device
CN110493948A (zh) * 2019-09-12 2019-11-22 中国科学院近代物理研究所 一种分层重离子/质子治疗装置及专用传输线路

Also Published As

Publication number Publication date
CN106605452B (zh) 2020-04-03
EP3183945A1 (en) 2017-06-28
CN111346303A (zh) 2020-06-30
US11738213B2 (en) 2023-08-29
WO2016029083A1 (en) 2016-02-25
US10532229B2 (en) 2020-01-14
CN111346303B (zh) 2022-05-13
EP3183945A4 (en) 2018-04-11
US20170239495A1 (en) 2017-08-24
US20200108279A1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
CN106605452A (zh) 粒子治疗系统、设备和射束输送方法
US8053745B2 (en) Device and method for administering particle beam therapy
AU2002301526B2 (en) Medical charged particle irradiation apparatus
CN109499019B (zh) 机载于可转动龙门架上的具有能量选择的紧凑的质子治疗系统
JP6654102B2 (ja) 粒子線治療システム
US20140066755A1 (en) Simultaneous Imaging and Particle Therapy Treatment system and Method
US10406382B2 (en) Dual-axis ring gantry radiotherapy systems
CN204863241U (zh) 具有封闭环形的机架的医学x射线系统
CN112752594B (zh) 质子治疗台架
CN105101876A (zh) X射线装置
JP6527168B2 (ja) 照射装置及び照射方法
JP5829162B2 (ja) X線撮影装置
CN204106195U (zh) 支架,尤其是地面支架
CN213667592U (zh) 粒子射束治疗装置
JP6161702B2 (ja) 画像撮影デバイスを備えるハドロン治療装置
CN213667591U (zh) 小型化粒子射束治疗装置
CN213667590U (zh) 粒子射束治疗装置
CN213667589U (zh) 粒子射束治疗装置
CN112169191A (zh) 粒子射束治疗装置
CN112169189A (zh) 小型化粒子射束治疗装置
CN107050666B (zh) 一种kv级射线装置及放射治疗装置与控制方法
CN112169190A (zh) 粒子射束治疗装置
CN112169192A (zh) 粒子射束治疗装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: California, USA

Patentee after: VARIAN MEDICAL SYSTEMS, Inc.

Patentee after: Varian Medical System particle therapy Co.,Ltd.

Address before: California, USA

Patentee before: VARIAN MEDICAL SYSTEMS, Inc.

Patentee before: VARIAN MEDICAL SYSTEMS PARTICLE THERAPY GmbH

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: California, USA

Patentee after: VARIAN MEDICAL SYSTEMS, Inc.

Patentee after: Varian Medical System particle therapy Co.,Ltd.

Address before: California, USA

Patentee before: VARIAN MEDICAL SYSTEMS, Inc.

Patentee before: Varian Medical System particle therapy Co.,Ltd.

CP01 Change in the name or title of a patent holder