CN106601885A - Light emitting diode epitaxial structure and growth method thereof - Google Patents
Light emitting diode epitaxial structure and growth method thereof Download PDFInfo
- Publication number
- CN106601885A CN106601885A CN201611167259.0A CN201611167259A CN106601885A CN 106601885 A CN106601885 A CN 106601885A CN 201611167259 A CN201611167259 A CN 201611167259A CN 106601885 A CN106601885 A CN 106601885A
- Authority
- CN
- China
- Prior art keywords
- type
- layer
- doping
- emitting diode
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 230000007547 defect Effects 0.000 claims abstract description 52
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 239000010410 layer Substances 0.000 claims description 166
- 239000002356 single layer Substances 0.000 claims description 19
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims 2
- 229910052593 corundum Inorganic materials 0.000 claims 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims 2
- 238000002347 injection Methods 0.000 abstract description 8
- 239000007924 injection Substances 0.000 abstract description 8
- 238000009827 uniform distribution Methods 0.000 abstract 1
- 230000006798 recombination Effects 0.000 description 9
- 238000005215 recombination Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000004080 punching Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/819—Bodies characterised by their shape, e.g. curved or truncated substrates
- H10H20/821—Bodies characterised by their shape, e.g. curved or truncated substrates of the light-emitting regions, e.g. non-planar junctions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/01—Manufacture or treatment
- H10H20/011—Manufacture or treatment of bodies, e.g. forming semiconductor layers
- H10H20/013—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials
- H10H20/0137—Manufacture or treatment of bodies, e.g. forming semiconductor layers having light-emitting regions comprising only Group III-V materials the light-emitting regions comprising nitride materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10H—INORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
- H10H20/00—Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
- H10H20/80—Constructional details
- H10H20/81—Bodies
- H10H20/815—Bodies having stress relaxation structures, e.g. buffer layers
Landscapes
- Led Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及发光二极管技术领域,尤其是指一种发光二极管的外延结构及其生长方法。The invention relates to the technical field of light emitting diodes, in particular to an epitaxial structure of a light emitting diode and a growth method thereof.
背景技术Background technique
现有技术中,白光LED芯片通常外延在蓝宝石衬底上GaN基多层薄膜结构,其发光效率=载子注入效率(IE)×内量子效率(IQE)×光萃取效率(EE)。由于P型GaN中Mg掺杂的激活效率低,有效空穴浓度仅有1-5E17/cm3,远低于N型GaN中Si掺杂的激活效率和有效电子浓度5E18/cm3-2E19/cm3,因此,空穴注入效率是发光效率的瓶颈。由于空穴注入效率比电子低,易造成电子泄露,一般情况下表现为仅有最靠近P型GaN的1-2个QW(量子阱)主要发光,其它QW不发光或者发光极弱。In the prior art, white LED chips are usually epitaxial on a GaN-based multilayer film structure on a sapphire substrate, and its luminous efficiency = carrier injection efficiency (IE) × internal quantum efficiency (IQE) × light extraction efficiency (EE). Due to the low activation efficiency of Mg doping in P-type GaN, the effective hole concentration is only 1-5E17/cm3, which is far lower than the activation efficiency and effective electron concentration of Si doping in N-type GaN 5E18/cm3-2E19/cm3, Therefore, the hole injection efficiency is the bottleneck of the luminous efficiency. Since the hole injection efficiency is lower than that of electrons, it is easy to cause electron leakage. Generally, only 1-2 QWs (quantum wells) closest to P-type GaN mainly emit light, and other QWs do not emit light or emit light very weakly.
如图1所示,现有技术揭示的一种LED结构,N型层10上生长有源层20,有源层20上生长P型层30,该N型层10、有源层20及P型层30都为平面结构,三层结构互相平行,其空穴、电子流动及复合如图1a所示,*表示电子空穴复合发光,↓表示电流/电场方向,+表示P型层,-表示N型层,如图1a所示,其发光效率较低。As shown in FIG. 1, in a LED structure disclosed in the prior art, an active layer 20 is grown on an N-type layer 10, and a P-type layer 30 is grown on the active layer 20. The N-type layer 10, the active layer 20 and the P The type layer 30 is a planar structure, and the three-layer structure is parallel to each other. The flow and recombination of holes and electrons are shown in Figure 1a. * indicates electron-hole recombination light emission, ↓ indicates the direction of current/electric field, + indicates the P-type layer, - Represents an N-type layer, as shown in Figure 1a, which has a lower luminous efficiency.
为了增加空穴的注入,提高发光二极管的发光效率,现有技术改进了一种LED结构,N型层10平面生长有源层20,有源层20上形成V型缺陷坑201,形成V型缺陷坑201的有源层20凹陷面上生长P型层30,如图2所示。其空穴、电子流动及复合如图2a所示,*表示电子空穴复合发光,↓表示电流/电场方向,+表示P型层,-表示N型层。其缺陷在于:V型缺陷坑的底部距离N型层较近,容易形成漏电和电子泄露,从而影响光电性能。In order to increase the injection of holes and improve the luminous efficiency of light-emitting diodes, an LED structure has been improved in the prior art. The N-type layer 10 is planarly grown with an active layer 20, and a V-shaped defect pit 201 is formed on the active layer 20 to form a V-shaped defect pit. The P-type layer 30 is grown on the concave surface of the active layer 20 of the defect pit 201 , as shown in FIG. 2 . The flow and recombination of holes and electrons are shown in Figure 2a. * indicates electron-hole recombination light emission, ↓ indicates the direction of current/electric field, + indicates the P-type layer, and - indicates the N-type layer. The disadvantage is that the bottom of the V-shaped defect pit is relatively close to the N-type layer, which is easy to cause electric leakage and electron leakage, thereby affecting the photoelectric performance.
发明内容Contents of the invention
本发明的目的在于提供一种发光二极管的外延结构及其生长方法,以增加电子和空穴向有源区的注入效率,使电子和空穴在有源区获得均匀的分布,进而增加有源区内量子效率,提高发光效率。The object of the present invention is to provide an epitaxial structure of a light emitting diode and a growth method thereof, so as to increase the injection efficiency of electrons and holes into the active region, so that electrons and holes can be uniformly distributed in the active region, thereby increasing the active region. The quantum efficiency in the region improves the luminous efficiency.
为达成上述目的,本发明的解决方案为:To achieve the above object, the solution of the present invention is:
一种发光二极管的外延结构,在衬底表面生长N型层,N型层表面形成V型缺陷坑,在形成V型缺陷坑的N型层上生长有源层,并在有源层上保持V型缺陷坑的开口形态和开口深度,在有源层上生长P型层并将V型缺陷坑填平。An epitaxial structure of a light-emitting diode, in which an N-type layer is grown on the surface of a substrate, a V-type defect pit is formed on the surface of the N-type layer, an active layer is grown on the N-type layer forming the V-type defect pit, and maintained on the active layer The opening shape and opening depth of the V-type defect pits, grow a P-type layer on the active layer and fill up the V-type defect pits.
进一步,N型层包括在衬底表面由下至上依次生长的非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层、重N型掺杂的AlxInyGa(1-x-y)N层和重N型掺杂的AlxInyGa(1-x-y)N应力释放层,V型缺陷坑形成于重N型掺杂的AlxInyGa(1-x-y)N应力释放层表面;其中, 0≤x≤1,0≤y≤1,N型掺杂浓度为0-1E20cm-3,重N型掺杂浓度为1E18-1E20cm-3。Further, the N-type layer includes an unintentionally doped or N-type doped Al x In y Ga (1-xy) N layer, a heavily N-type doped Al x In y Ga (1-xy) N layer grown sequentially from bottom to top on the substrate surface. (1-xy) N layer and heavily N-type doped Al x In y Ga (1-xy) N stress release layer, V-type defect pits are formed in heavily N-type doped Al x In y Ga (1-xy ) the surface of the N stress release layer; wherein, 0≤x≤1, 0≤y≤1, the N-type doping concentration is 0-1E20cm -3 , and the heavy N-type doping concentration is 1E18-1E20cm -3 .
进一步,非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层为单层或多层结构,每一层的厚度为0-10um,N型掺杂源为Si、Hf或C元素。Further, the unintentionally doped or N-type doped Al x In y Ga (1-xy) N layer is a single-layer or multi-layer structure, the thickness of each layer is 0-10um, and the N-type doping source is Si, Hf or C element.
进一步,重N型掺杂的AlxInyGa(1-x-y)N层为单层或多层结构,每一层的厚度为0-10um,N型掺杂源为Si、Hf或C元素。Further, the heavily N-type doped Al x In y Ga (1-xy) N layer is a single-layer or multi-layer structure, the thickness of each layer is 0-10um, and the N-type doping source is Si, Hf or C element .
进一步,重N型掺杂的AlxInyGa(1-x-y)N应力释放层为单层或多层结构,每一层的厚度为0-10um,N型掺杂源为Si、Hf或C元素。Further, the heavily N-type doped Al x In y Ga (1-xy) N stress release layer is a single-layer or multi-layer structure, the thickness of each layer is 0-10um, and the N-type doping source is Si, Hf or C element.
进一步,非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层及重N型掺杂的AlxInyGa(1-x-y)N层中分别形成相互连接的穿通位错,V型缺陷坑形成于穿通位错的顶部,V型缺陷坑开口大小为0-1um,深度为0-1um。Further, unintentionally doped or N-type doped Al x In y Ga (1-xy) N layers and heavily N-type doped Al x In y Ga (1-xy) N layers respectively form interconnected through-holes Dislocations, V-type defect pits are formed on the top of threading dislocations, the size of the V-type defect pit opening is 0-1um, and the depth is 0-1um.
进一步,有源层为AlxInyGa(1-x-y)N的单层、多层、超晶格或多量子阱结构,其中 0≤x≤1,0≤y≤1,每一层的厚度0-1um。Further, the active layer is a single-layer, multi-layer, superlattice or multi-quantum well structure of Al x In y Ga (1-xy) N, where 0≤x≤1, 0≤y≤1, each layer Thickness 0-1um.
进一步,衬底为Al2O3、SiC、Si、GaN或AlN。Further, the substrate is Al 2 O 3 , SiC, Si, GaN or AlN.
进一步,P型层为AlxInyGa(1-x-y)N的单层、多层、超晶格或多量子阱结构,其中 0≤x≤1,0≤y≤1,每一层的厚度为0-1um;P型掺杂源为Mg元素,掺杂浓度1E17-1E21cm-3。Further, the P-type layer is a single-layer, multi-layer, superlattice or multi-quantum well structure of Al x In y Ga (1-xy) N, where 0≤x≤1, 0≤y≤1, each layer The thickness is 0-1um; the P-type doping source is Mg element, and the doping concentration is 1E17-1E21cm -3 .
一种发光二极管的外延结构生长方法,包括以下步骤:A method for growing an epitaxial structure of a light emitting diode, comprising the following steps:
一,在衬底表面生长N型层,N型层表面形成V型缺陷坑;1. An N-type layer is grown on the surface of the substrate, and V-type defect pits are formed on the surface of the N-type layer;
二,在形成V型缺陷坑的N型层上生长有源层,并在有源层上保持V型缺陷坑的开口形态和开口深度;Second, grow an active layer on the N-type layer forming the V-type defect pit, and maintain the opening shape and opening depth of the V-type defect pit on the active layer;
三,在有源层上生长P型层并将V型缺陷坑填平。Third, grow a P-type layer on the active layer and fill up the V-type defect pits.
进一步,在生长N型层时包括以下步骤:在衬底表面由下至上依次生长的非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层、重N型掺杂的AlxInyGa(1-x-y)N层和重N型掺杂的AlxInyGa(1-x-y)N应力释放层,V型缺陷坑形成于重N型掺杂的AlxInyGa(1-x-y)N应力释放层表面;其中, 0≤x≤1,0≤y≤1,N型掺杂浓度为0-1E20cm-3,重N型掺杂浓度为1E18-1E20cm-3。Further, the following steps are included when growing the N-type layer: an unintentionally doped or N-type doped Al x In y Ga (1-xy) N layer grown sequentially from bottom to top on the substrate surface, heavy N-type doped Al x In y Ga (1-xy) N layer and heavily N-doped Al x In y Ga (1-xy) N stress release layer, V-type defect pits are formed in heavily N-doped Al x In y Ga (1-xy) N stress release layer surface; where, 0≤x≤1,0≤y≤1, N-type doping concentration is 0-1E20cm -3 , heavy N-type doping concentration is 1E18-1E20cm -3 3 .
进一步,非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层为单层或多层结构,每一层的厚度为0-10um,N型掺杂源为Si、Hf或C元素。Further, the unintentionally doped or N-type doped Al x In y Ga (1-xy) N layer is a single-layer or multi-layer structure, the thickness of each layer is 0-10um, and the N-type doping source is Si, Hf or C element.
进一步,重N型掺杂的AlxInyGa(1-x-y)N层为单层或多层结构,每一层的厚度为0-10um,N型掺杂源为Si、Hf或C元素。Further, the heavily N-type doped Al x In y Ga (1-xy) N layer is a single-layer or multi-layer structure, the thickness of each layer is 0-10um, and the N-type doping source is Si, Hf or C element .
进一步,重N型掺杂的AlxInyGa(1-x-y)N应力释放层为单层或多层结构,每一层的厚度为0-10um,N型掺杂源为Si、Hf或C元素。Further, the heavily N-type doped Al x In y Ga (1-xy) N stress release layer is a single-layer or multi-layer structure, the thickness of each layer is 0-10um, and the N-type doping source is Si, Hf or C element.
进一步,非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层及重N型掺杂的AlxInyGa(1-x-y)N层中分别形成相互连接的穿通位错,V型缺陷坑形成于穿通位错的顶部,V型缺陷坑开口大小为0-1um,深度为0-1um。Further, unintentionally doped or N-type doped Al x In y Ga (1-xy) N layers and heavily N-type doped Al x In y Ga (1-xy) N layers respectively form interconnected through-holes Dislocations, V-type defect pits are formed on the top of threading dislocations, the size of the V-type defect pit opening is 0-1um, and the depth is 0-1um.
进一步,有源层为AlxInyGa(1-x-y)N的单层、多层、超晶格或多量子阱结构,其中 0≤x≤1,0≤y≤1,每一层的厚度0-1um。Further, the active layer is a single-layer, multi-layer, superlattice or multi-quantum well structure of Al x In y Ga (1-xy) N, where 0≤x≤1, 0≤y≤1, each layer Thickness 0-1um.
进一步,衬底为Al2O3、SiC、Si、GaN或AlN。Further, the substrate is Al 2 O 3 , SiC, Si, GaN or AlN.
进一步,P型层为AlxInyGa(1-x-y)N的单层、多层、超晶格或多量子阱结构,其中 0≤x≤1,0≤y≤1,每一层的厚度为0-1um;P型掺杂源为Mg元素,掺杂浓度1E17-1E21cm-3。Further, the P-type layer is a single-layer, multi-layer, superlattice or multi-quantum well structure of Al x In y Ga (1-xy) N, where 0≤x≤1, 0≤y≤1, each layer The thickness is 0-1um; the P-type doping source is Mg element, and the doping concentration is 1E17-1E21cm -3 .
采用上述方案后,本发明N型层表面形成V型缺陷坑,在N型层上生长有源层,并在有源层上保持V型缺陷坑的开口形态和开口深度,在有源层上生长P型层并将V型缺陷坑填平,从而获得空间折叠且平行的P-N结,增加电子和空穴向有源区的注入效率,使电子和空穴在有源区获得更加均匀的分布,进而增加有源区内量子效率,提高发光效率。After adopting the above scheme, V-type defect pits are formed on the surface of the N-type layer of the present invention, an active layer is grown on the N-type layer, and the opening shape and opening depth of the V-type defect pits are maintained on the active layer. The P-type layer is grown and the V-type defect pits are filled up to obtain a spatially folded and parallel P-N junction, which increases the injection efficiency of electrons and holes into the active region, and makes electrons and holes more uniformly distributed in the active region , thereby increasing the quantum efficiency in the active region and improving the luminous efficiency.
附图说明Description of drawings
图1是现有技术发光二极管外延结构示意图;FIG. 1 is a schematic diagram of the epitaxial structure of a light-emitting diode in the prior art;
图1a是现有技术发光二极管外延结构空穴、电子流动及复合示意图;Figure 1a is a schematic diagram of hole, electron flow and recombination in the epitaxial structure of the light emitting diode in the prior art;
图2是现有技术另一发光二极管外延结构示意图;Fig. 2 is a schematic diagram of another light-emitting diode epitaxial structure in the prior art;
图2a是现有技术另一发光二极管外延结构空穴、电子流动及复合示意图;Fig. 2a is a schematic diagram of hole, electron flow and recombination in another light-emitting diode epitaxial structure in the prior art;
图3是本发明发光二极管外延结构示意图;Fig. 3 is a schematic diagram of the epitaxial structure of the light emitting diode of the present invention;
图3a是本发明发光二极管外延结构空穴、电子流动及复合示意图;Fig. 3a is a schematic diagram of hole and electron flow and recombination in the light-emitting diode epitaxial structure of the present invention;
图4至图8是本发明的生长流程图。4 to 8 are growth flow diagrams of the present invention.
标号说明Label description
N型层10 有源层20N-type layer 10 active layer 20
V型缺陷坑201 P型层30V-type defect pit 201 P-type layer 30
衬底1Substrate 1
非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层2Unintentionally doped or N-type doped Al x In y Ga (1-xy) N layer 2
穿通位错21punching dislocation 21
重N型掺杂的AlxInyGa(1-x-y)N层3Heavy N-doped Al x In y Ga (1-xy) N layer3
穿通位错31 AlxInyGa(1-x-y)N应力释放层4Threading dislocation31 Al x In y Ga (1-xy) N Stress release layer4
V型缺陷坑5 有源层6V-shaped defect pit 5 active layer 6
P型层7 N型层8。P-type layer 7 N-type layer 8 .
具体实施方式detailed description
以下结合附图及具体实施例对本发明做详细描述。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
参阅图4至图8所示,本发明揭示的一种发光二极管的外延结构生长方法,包括以下步骤:Referring to Figures 4 to 8, a method for growing an epitaxial structure of a light-emitting diode disclosed in the present invention includes the following steps:
一,如图4所示,在衬底1表面生长非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层2,其中, 0≤x≤1,0≤y≤1,N型掺杂浓度为0-1E20cm-3。非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层2中由于应力作用形成穿通位错21。非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层2为单层或多层结构,每一层的厚度为0-10um,N型掺杂源为Si、Hf或C元素。衬底1为Al2O3、SiC、Si、GaN或AlN。One, as shown in FIG. 4 , grow an unintentionally doped or N-type doped Al x In y Ga (1-xy) N layer 2 on the surface of the substrate 1, where 0≤x≤1, 0≤y≤ 1. N-type doping concentration is 0-1E20cm -3 . A threading dislocation 21 is formed in the unintentionally doped or N-type doped Al x In y Ga (1-xy) N layer 2 due to stress. Unintentionally doped or N-type doped Al x In y Ga (1-xy) N layer 2 is a single-layer or multi-layer structure, the thickness of each layer is 0-10um, and the N-type doping source is Si, Hf or C elements. The substrate 1 is Al 2 O 3 , SiC, Si, GaN or AlN.
二,如图5所示,在非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层2上生长重N型掺杂的AlxInyGa(1-x-y)N层3,其中, 0≤x≤1,0≤y≤1,重N型掺杂浓度为1E18-1E20cm-3。由于应力作用,N型掺杂的AlxInyGa(1-x-y)N层3中对应形成穿通位错31。重N型掺杂的AlxInyGa(1-x-y)N层3为单层或多层结构,每一层的厚度为0-10um,N型掺杂源为Si、Hf或C元素。Two, as shown in Figure 5, grow heavy N-type doped AlxInyGa ( 1- xy ) on the AlxInyGa (1- xy ) N layer 2 of unintentional doping or N-type doping N layer 3, wherein, 0≤x≤1, 0≤y≤1, heavy N-type doping concentration is 1E18-1E20cm -3 . Due to stress, threading dislocations 31 are correspondingly formed in the N-type doped Al x In y Ga (1-xy) N layer 3 . The heavily N-type doped AlxInyGa (1-xy) N layer 3 is a single-layer or multi-layer structure, each layer has a thickness of 0-10um, and the N-type doping source is Si, Hf or C element.
三,如图6所示,在重N型掺杂的AlxInyGa(1-x-y)N层3上生长重N型掺杂的AlxInyGa(1-x-y)N应力释放层4,其中, 0≤x≤1,0≤y≤1,重N型掺杂浓度为1E18-1E20cm-3。重N型掺杂的AlxInyGa(1-x-y)N应力释放层4为单层或多层结构,每一层的厚度为0-10um,N型掺杂源为Si、Hf或C元素。重N型掺杂的AlxInyGa(1-x-y)N应力释放层4表面形成V型缺陷坑5,V型缺陷坑5形成于穿通位错31的顶部,V型缺陷坑5开口大小为0-1um,深度为0-1um。Three, as shown in Figure 6, grow heavily N-type doped AlxInyGa (1- xy ) N stress release layer on heavily N-type doped AlxInyGa (1- xy ) N layer 3 4. Wherein, 0≤x≤1, 0≤y≤1, the heavy N-type doping concentration is 1E18-1E20cm -3 . The heavy N-type doped Al x In y Ga (1-xy) N stress release layer 4 is a single-layer or multi-layer structure, the thickness of each layer is 0-10um, and the N-type doping source is Si, Hf or C element. A V-type defect pit 5 is formed on the surface of the heavily N-type doped Al x In y Ga (1-xy) N stress release layer 4, and the V-type defect pit 5 is formed on the top of the threading dislocation 31. The opening size of the V-type defect pit 5 is 0-1um, the depth is 0-1um.
四,如图7所示,在重N型掺杂的AlxInyGa(1-x-y)N应力释放层4上生长有源层6,并在有源层6上保持V型缺陷坑5的开口形态和开口深度。有源层6为AlxInyGa(1-x-y)N的单层、多层、超晶格或多量子阱结构,其中 0≤x≤1,0≤y≤1,每一层的厚度0-1um。Fourth, as shown in FIG. 7, an active layer 6 is grown on the heavily N-doped AlxInyGa (1-xy) N stress release layer 4, and a V-shaped defect pit 5 is maintained on the active layer 6 opening shape and opening depth. The active layer 6 is a single-layer, multi-layer, superlattice or multi-quantum well structure of Al x In y Ga (1-xy) N, where 0≤x≤1, 0≤y≤1, the thickness of each layer 0-1um.
五,如图8所示,在有源层6上生长P型层7并将V型缺陷坑5填平。P型层7为AlxInyGa(1-x-y)N的单层、多层、超晶格或多量子阱结构,其中 0≤x≤1,0≤y≤1,每一层的厚度为0-1um;P型掺杂源为Mg元素,掺杂浓度1E17-1E21cm-3。Fifth, as shown in FIG. 8 , grow a P-type layer 7 on the active layer 6 and fill up the V-type defect pits 5 . The P-type layer 7 is a single-layer, multi-layer, superlattice or multi-quantum well structure of Al x In y Ga (1-xy) N, where 0≤x≤1, 0≤y≤1, the thickness of each layer 0-1um; P-type doping source is Mg element, doping concentration 1E17-1E21cm -3 .
如图3及图3a所示,上述方法生长的发光二极管的外延结构,在衬底1表面生长N型层8,N型层8表面形成V型缺陷坑5,在形成V型缺陷坑5的N型层8上生长有源层6,并在有源层6上保持V型缺陷坑5的开口形态和开口深度,在有源层6上生长P型层7并将V型缺陷坑5填平。As shown in Fig. 3 and Fig. 3a, in the epitaxial structure of the light emitting diode grown by the above method, an N-type layer 8 is grown on the surface of the substrate 1, and V-type defect pits 5 are formed on the surface of the N-type layer 8, and V-type defect pits 5 are formed. The active layer 6 is grown on the N-type layer 8, and the opening shape and opening depth of the V-type defect pit 5 are maintained on the active layer 6, and the P-type layer 7 is grown on the active layer 6 and the V-type defect pit 5 is filled. flat.
所述N型层8包括在衬底1表面由下至上依次生长的非故意掺杂或N型掺杂的AlxInyGa(1-x-y)N层2、重N型掺杂的AlxInyGa(1-x-y)N层3和重N型掺杂的AlxInyGa(1-x-y)N应力释放层4,V型缺陷坑5形成于重N型掺杂的AlxInyGa(1-x-y)N应力释放层4表面;其中, 0≤x≤1,0≤y≤1,N型掺杂浓度为0-1E20cm-3,重N型掺杂浓度为1E18-1E20cm-3。The N-type layer 8 includes an unintentionally doped or N-type doped Al x In y Ga (1-xy) N layer 2, a heavily N-type doped Al x In y Ga (1-xy) N layer 3 and heavily N-type doped Al x In y Ga (1-xy) N stress release layer 4, V-type defect pits 5 formed in heavily N-type doped Al x In y Ga (1-xy) N stress release layer 4 surface; wherein, 0≤x≤1, 0≤y≤1, N-type doping concentration is 0-1E20cm -3 , heavy N-type doping concentration is 1E18-1E20cm -3 .
如图3a所示,空穴、电子流动及复合示意图,*表示电子空穴复合发光,↓表示电流/电场方向,+表示P型层,-表示N型层,从图3a可知,本发明获得空间折叠且平行的P-N结,增加电子和空穴向有源区的注入效率,使电子和空穴在有源区获得更加均匀的分布,进而增加有源区内量子效率,提高发光效率。As shown in Figure 3a, a schematic diagram of the flow and recombination of holes and electrons, * indicates electron-hole recombination light emission, ↓ indicates the direction of current/electric field, + indicates a P-type layer, and - indicates an N-type layer. It can be seen from Figure 3a that the present invention obtains The spatially folded and parallel P-N junction increases the injection efficiency of electrons and holes into the active area, so that electrons and holes are more uniformly distributed in the active area, thereby increasing the quantum efficiency in the active area and improving the luminous efficiency.
V型缺陷坑的形成为穿通位错释放应力的结果,如GaN表面生长InGaN/GaN多量子阱或超晶格结构,由于晶格常数差异导致应力积累到一定程度就会在穿通位错处释放应力形成V型缺陷坑。The formation of V-shaped defect pits is the result of the release of stress by threading dislocations. For example, if InGaN/GaN multi-quantum wells or superlattice structures are grown on the surface of GaN, the stress will be released at the threading dislocations when the stress accumulates to a certain extent due to the difference in lattice constants. V-shaped defect pits are formed.
以上所述仅为本发明的优选实施例,并非对本案设计的限制,凡依本案的设计关键所做的等同变化,均落入本案的保护范围。The above descriptions are only preferred embodiments of the present invention, and are not limitations on the design of this case. All equivalent changes made according to the key points of the design of this case fall within the scope of protection of this case.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611167259.0A CN106601885A (en) | 2016-12-16 | 2016-12-16 | Light emitting diode epitaxial structure and growth method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611167259.0A CN106601885A (en) | 2016-12-16 | 2016-12-16 | Light emitting diode epitaxial structure and growth method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106601885A true CN106601885A (en) | 2017-04-26 |
Family
ID=58599521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611167259.0A Pending CN106601885A (en) | 2016-12-16 | 2016-12-16 | Light emitting diode epitaxial structure and growth method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106601885A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107768493A (en) * | 2017-10-24 | 2018-03-06 | 江门市奥伦德光电有限公司 | A kind of preparation method of the high LED epitaxial structure of luminous efficiency |
CN108039397A (en) * | 2017-11-27 | 2018-05-15 | 厦门市三安光电科技有限公司 | A kind of nitride semiconductor LED |
CN108447956A (en) * | 2018-03-30 | 2018-08-24 | 华灿光电(浙江)有限公司 | A kind of epitaxial wafer of light-emitting diode and its preparation method |
CN110197861A (en) * | 2019-06-17 | 2019-09-03 | 南昌大学 | A kind of AlInGaN based light-emitting diode |
CN111697112A (en) * | 2020-06-12 | 2020-09-22 | 东莞理工学院 | Deep ultraviolet light-emitting diode based on AIN/PSS composite substrate and preparation method thereof |
CN111933761A (en) * | 2020-07-23 | 2020-11-13 | 厦门士兰明镓化合物半导体有限公司 | Epitaxial structure and manufacturing method thereof |
CN111933762A (en) * | 2020-07-23 | 2020-11-13 | 厦门士兰明镓化合物半导体有限公司 | Epitaxial structure and manufacturing method thereof |
CN112736174A (en) * | 2021-01-04 | 2021-04-30 | 宁波安芯美半导体有限公司 | Deep ultraviolet LED epitaxial structure and preparation method thereof |
CN113675307A (en) * | 2021-08-20 | 2021-11-19 | 广东省科学院半导体研究所 | Light emitting diode structure and preparation method thereof |
WO2022052097A1 (en) * | 2020-09-14 | 2022-03-17 | 安徽三安光电有限公司 | Light-emitting diode and preparation method therefor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102983243A (en) * | 2011-09-05 | 2013-03-20 | Lg伊诺特有限公司 | Light emitting device and the packaging including a light emitting structure |
CN103460409A (en) * | 2011-09-29 | 2013-12-18 | 东芝技术中心有限公司 | P-type doping layers for use with light emitting devices |
US20150221826A1 (en) * | 2014-02-04 | 2015-08-06 | Jung Seung YANG | Nitride semiconductor light emitting device |
CN105609606A (en) * | 2014-11-14 | 2016-05-25 | 三星电子株式会社 | Light emitting device and method of manufacturing the same |
KR20160072914A (en) * | 2014-12-15 | 2016-06-24 | 일진엘이디(주) | Nitride semiconductor light emitting device |
CN105762241A (en) * | 2016-04-28 | 2016-07-13 | 厦门乾照光电股份有限公司 | Manufacturing method for epitaxial structure of enhanced injection type light-emitting diode |
-
2016
- 2016-12-16 CN CN201611167259.0A patent/CN106601885A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102983243A (en) * | 2011-09-05 | 2013-03-20 | Lg伊诺特有限公司 | Light emitting device and the packaging including a light emitting structure |
CN103460409A (en) * | 2011-09-29 | 2013-12-18 | 东芝技术中心有限公司 | P-type doping layers for use with light emitting devices |
US20150221826A1 (en) * | 2014-02-04 | 2015-08-06 | Jung Seung YANG | Nitride semiconductor light emitting device |
CN105609606A (en) * | 2014-11-14 | 2016-05-25 | 三星电子株式会社 | Light emitting device and method of manufacturing the same |
KR20160072914A (en) * | 2014-12-15 | 2016-06-24 | 일진엘이디(주) | Nitride semiconductor light emitting device |
CN105762241A (en) * | 2016-04-28 | 2016-07-13 | 厦门乾照光电股份有限公司 | Manufacturing method for epitaxial structure of enhanced injection type light-emitting diode |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107768493A (en) * | 2017-10-24 | 2018-03-06 | 江门市奥伦德光电有限公司 | A kind of preparation method of the high LED epitaxial structure of luminous efficiency |
CN108039397A (en) * | 2017-11-27 | 2018-05-15 | 厦门市三安光电科技有限公司 | A kind of nitride semiconductor LED |
CN108447956A (en) * | 2018-03-30 | 2018-08-24 | 华灿光电(浙江)有限公司 | A kind of epitaxial wafer of light-emitting diode and its preparation method |
CN108447956B (en) * | 2018-03-30 | 2020-09-29 | 华灿光电(浙江)有限公司 | Epitaxial wafer of light-emitting diode and preparation method thereof |
CN110197861A (en) * | 2019-06-17 | 2019-09-03 | 南昌大学 | A kind of AlInGaN based light-emitting diode |
CN110197861B (en) * | 2019-06-17 | 2024-04-02 | 南昌大学 | AlInGaN-based light-emitting diode |
CN111697112B (en) * | 2020-06-12 | 2021-10-01 | 东莞理工学院 | A kind of deep ultraviolet light emitting diode based on AlN/PSS composite substrate and preparation method thereof |
CN111697112A (en) * | 2020-06-12 | 2020-09-22 | 东莞理工学院 | Deep ultraviolet light-emitting diode based on AIN/PSS composite substrate and preparation method thereof |
CN111933762A (en) * | 2020-07-23 | 2020-11-13 | 厦门士兰明镓化合物半导体有限公司 | Epitaxial structure and manufacturing method thereof |
CN111933761A (en) * | 2020-07-23 | 2020-11-13 | 厦门士兰明镓化合物半导体有限公司 | Epitaxial structure and manufacturing method thereof |
CN111933761B (en) * | 2020-07-23 | 2022-04-26 | 厦门士兰明镓化合物半导体有限公司 | Epitaxial structure and manufacturing method thereof |
WO2022052097A1 (en) * | 2020-09-14 | 2022-03-17 | 安徽三安光电有限公司 | Light-emitting diode and preparation method therefor |
CN112736174A (en) * | 2021-01-04 | 2021-04-30 | 宁波安芯美半导体有限公司 | Deep ultraviolet LED epitaxial structure and preparation method thereof |
CN113675307A (en) * | 2021-08-20 | 2021-11-19 | 广东省科学院半导体研究所 | Light emitting diode structure and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106601885A (en) | Light emitting diode epitaxial structure and growth method thereof | |
CN106057989B (en) | A kind of production method of the epitaxial wafer of GaN base light emitting | |
CN104393124B (en) | A kind of preparation method of LED epitaxial slice structure | |
CN105789394A (en) | GaN-based LED epitaxial structure and manufacture method thereof | |
CN105762241A (en) | Manufacturing method for epitaxial structure of enhanced injection type light-emitting diode | |
CN103681985A (en) | Light-emitting diode epitaxial wafer and manufacture method thereof | |
CN105226149A (en) | A kind of LED epitaxial structure and manufacture method | |
CN103441196B (en) | Light emitting element and manufacturing method thereof | |
CN204407349U (en) | A kind of gallium nitride based light emitting diode | |
CN107919416A (en) | A kind of GaN base light emitting epitaxial structure and preparation method thereof | |
CN106057990B (en) | A kind of manufacturing method of epitaxial wafer of GaN-based light-emitting diode | |
CN104681676B (en) | A light-emitting diode epitaxial wafer | |
CN105870283A (en) | Light-emitting diode with composite polar face electron blocking layer | |
CN105514232B (en) | A kind of production method of LED epitaxial slice, light emitting diode and epitaxial wafer | |
CN105870273B (en) | A kind of iii-nitride light emitting devices | |
CN106653968A (en) | III-V nitride growth-used composite substrate, device structure and preparation method | |
CN105355741A (en) | LED epitaxial structure and making method thereof | |
CN103594579B (en) | A kind of epitaxial structure of iii-nitride light emitting devices | |
CN108305920B (en) | Nitride light-emitting diode | |
CN103515490A (en) | Light-emitting diode and manufacturing method thereof | |
CN208014726U (en) | A kind of iii-nitride light emitting devices | |
CN106653964B (en) | A kind of LED epitaxial structure | |
CN102437262B (en) | A nitride light emitting diode structure | |
CN106784217A (en) | Compound substrate, semiconductor device structure and preparation method thereof | |
CN113838954B (en) | LED (light-emitting diode) epitaxy and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170426 |