CN106601396A - 电介质绝缘磁极螺旋抗弧处理技术 - Google Patents

电介质绝缘磁极螺旋抗弧处理技术 Download PDF

Info

Publication number
CN106601396A
CN106601396A CN201610829769.3A CN201610829769A CN106601396A CN 106601396 A CN106601396 A CN 106601396A CN 201610829769 A CN201610829769 A CN 201610829769A CN 106601396 A CN106601396 A CN 106601396A
Authority
CN
China
Prior art keywords
spiral
electrode
magnetic pole
chip
arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610829769.3A
Other languages
English (en)
Inventor
肖小驹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Chenju Electronic Technology Co Ltd
Original Assignee
Shenzhen Chenju Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Chenju Electronic Technology Co Ltd filed Critical Shenzhen Chenju Electronic Technology Co Ltd
Priority to CN201610829769.3A priority Critical patent/CN106601396A/zh
Publication of CN106601396A publication Critical patent/CN106601396A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/12Overvoltage protection resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/144Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the terminals or tapping points being welded or soldered

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本发明公开一种电介质绝缘磁极螺旋抗弧处理技术,该技术为在电子元器件本体上设置有电极,电极呈螺旋线形,当通过电流时,产生垂直于芯片电极表面的轴向磁场,轴向磁场产生的洛伦兹的作用力,使得芯片体内的电子以螺旋前进的方式运动。引线端头布置在中心区域,电流最后到达中心区域,使中心的表面电流密度大幅度下降,并减弱了引线端头间的场强,这样电流很难在中心部位引线两端头之间形成拉弧。实验中螺旋式MOV不仅有高3‑4倍的能量吸收能力,而且表现出了MOV的抗热融击穿能力。其持续抗过电压温度达到直线L式引线压敏的1.7‑2.0倍,温度达到在150℃~174℃,完全超出了业界的一般水平。

Description

电介质绝缘磁极螺旋抗弧处理技术
技术领域
本发明公开一种抗拉弧方法,特别是一种电介质绝缘磁极螺旋抗弧处理技术。
背景技术
一、压敏电阻MOV的拉弧燃烧起火
1、MOV拉弧起火一直是压敏制造行业头疼的问题,其拉弧起火主要原因是:压敏电阻的启动电流都是在毫安mA级别下就可以启动工作/拉弧,而电器路中里面所有的保险丝断开熔断器的断开时的工作电流都是在安培A级别下才启动断开保护,故而在电路自身产生的操作过电压(尤其电路中感性电路真空开断的电路如变频电路使其更容易产生)形成持续的谐振电压,其就可以使压敏电阻启动工作后,电路这时的工频电流穿入持续加在压敏电阻上,超过压敏电阻的工频耐受的承受范围,引起毫安级别下压敏电阻开始拉弧起火,其弧外温度在1500-1600℃,弧中心温度达2500-3500℃,电路中的其它保护器件根本来不及反应,从而带来巨大的财产损失和生命安全,这种拉弧起火还不包括整体电器外部环境的电力系统里的过电压过电流(雷电直击感应)的影响部分,可见对压敏电阻的拉弧起火的防火考虑有多重要!
2、电器电路拉弧起火原因系统论分析表
二、MOV的失效模式
在交流情况下,由于趋肤效应的影响,导线电极的L式的布置使得电流只在芯片外环状区通过,芯片中心成为空白,整体芯片的电流通过量大大减少,从而使得芯片的电性能整体没有得以充分发挥,同时也埋下了拉弧起火的弊端。
1、MOV的失效分类汇总:
压敏电阻失效模式炸裂与穿孔与ac和dc下炸裂与穿孔的空间(位置)的关系见失效分类汇总表中的12项和13项。失效问题的再处理从以上失效分类汇总中看到15项的失效分类中14/15=93.33%失效与电子电路中的电流的性质好坏有关,也可能与芯片本体的性质好坏有关,似乎只有一项(第11项)引线拉弧起火失效1/15=6.66%的失效与MOV的引线导体有关。
其实不然,在对象/A---联系/C---对象/B的翘翘板结构模式系统中,联系对系统很重要,导线可以替AB二者担负起并能处理好协调好对影响产品整体性能 与品质不良因素(尽管90%多数是A或B干的相关带来的),导线可以改变电流也可以影响与改变到芯片本体的性能:
MOV失效模式中,热击穿问题在人们的工作中具有重要的实际意义,压敏电阻失效模式炸裂与穿孔与脉冲电流和脉冲持续时间的关系:
1)脉冲宽度大于100us,失效模式主要是穿孔,ac和dc电流都会引起。
2)脉冲宽度小于50us,失效模式主要是炸裂,大冲击电流也容易出现破裂损坏。
应该指出MOV芯片的冲击破坏不仅与冲击电流波长有关,而且和芯片结构均匀有关,长波电流作用下,主要是因热熔化造成的穿孔,破坏短波电流作用下,主要是因热应力而导致的破裂损坏的观点更为合理。
2、MOV失效穿孔位置:
在排除MOV自身芯片制造过程的缺陷下,常年在压敏行业的工作人员经常看到MOV具体现场失效有两种:瞬间的本体炸裂---冲击破坏;时续的熔洞穿孔燃烧---热破坏。第一种炸裂破坏性不大,关键是第二种热失效,导致的不可恢复性击穿一般表现为压敏电阻器瓷片穿孔,进而发生电弧,形成短路;持续的加电使得电弧产生的明火,点燃包封层或周围的可燃物,引起烧机,更甚者引起火灾,这是极不希望的模式,属不安全的失效模式。
从对比表中可以看到,在排除芯片MOV制程的缺陷下,在AC和DC情况下,传统MOV的穿孔出现次数最少和最多,是芯片中心与引线端头这两个位置,这说明影响其穿孔位置分布主要是电流在芯片分布密度的不同造成的,其交流 下导体的趋肤效应与导线的直“L"形状是产生差异问题的根本影响因素。
3、就此对传统MOV的金属导线电极不合理的直线L式设计带来的种种弊端陈列如下:
1)电路的电流不能平稳引出到芯片电极表面,在L电极拐弯处形成电流应力冲击。
2)芯片电极的涂银层电流密度不均匀,引起芯片电极面温度不一。
3)在通过电流时,直线L式金属导体会产生热胀变形,导体电极膨胀沿导线累积,拉扯芯片的涂银层,造成破坏。
4)对芯片的散热性也不好。
5)引线端头呈开放性布置在芯片边缘,很容易形成芯片在引线端头附近拉弧穿孔。
三、对在电子电路中弧的关键区分与严重性的陈述。
1、既然防电气火灾的重点是防电气短路,发生电气短路的原因又是什么呢?
电气线路发生短路主要有两个原因。一是受机械损伤,线芯外露接触不同电位导体而短路。例如:线路布设过低,又未用套管或槽盒等外护物作机械保护,受外物碰撞挤压因绝缘损伤而短路;或线路穿墙、楼板未穿套管,受外力损伤而短路等。关于防机械损伤的措施,在有关电器线路安装规范中都有具体规定,不在赘述。
而是电气短路因过热、水浸、长霉、阳光辐射等的作用而导致绝缘水平下降,此外因触发下,例如受雷电瞬态过电压或回路暂时过电压的冲击,绝缘被击穿而短路。在这些原因中以过热导致绝缘劣化为最多见,是绝缘过热的热源 有外部热源,例如距电气线路过近的暖气管道、高温的炉子等;也有内部热源,那就是电气线路过载温升过高的线芯,这两种热源引起线路短路的后果是一样的。
2、何谓金属性短路起火?
当不同电位的两导体接触时,大短路电流通过接触电阻而产生高温,使接触点金属熔化。如金属熔化化成团收缩而脱离接触,电流就不在导通,短路现象自然消失,引不起电气事故;如两导体接触点熔化焊牢,其阻抗可忽略不计,则成为金属性短路。由于短路回路阻抗小,短路电流可达线路额定载流量的几百倍以至几千倍,这时回路上的短路防护电器应迅速动作,以保护线路绝缘。但重要的是防范短路产生的高温引燃近旁可燃物而酿成火灾,导致生命财产损失。如果短路防护电器失效拒动(例如熔断器误被铜丝或铁丝替代,断路器被短接或因其他种种原因失效拒动),短路状态将持续。以PVC绝缘为例,当线芯温度超过355℃时,PVC绝缘分解出的氯化氢将因剧烈氧化而燃烧,这时沿线路全长线芯烧红,PVC绝缘线也自然而形成一条“火龙”,其近旁的可燃物都有被引燃起火的危险,酿成火灾的危险极大。
金属性短路虽然起火危险大,但只要按规范要求安装短路防护电器,并保持其防护的有效性,这种短路火灾是不难避免的。生活中的实际体验说明了这点。从上述过程也可知电气线路的过载并不直接引起火灾。过载的后果是因绝缘劣化加速绝缘损坏而引起短路,不同形式的短路才是电气火灾的直接起因。现时所谓过载期货的说法是不严谨的。
3、两导体间电弧的发生与施加电压高低的关系如何?为什么电弧易成为起火源?
如在两导体间施加不大于300v的电压,不论导体间空气间隙为多小,间隙是不会击穿燃弧的。如果空气间隙为10mm,则需施加3kV的电压才能击穿燃弧。如将两导体接触后拉开,建立了电弧,则维持此10mm长的电弧只需20V的电压。电弧电压与电弧电流没多少关联,但电弧的局部温度却甚高,会引燃近旁可燃物而成为火灾的起火源。电压小于300V时也可燃弧,那就是在绝缘表面上形成的导电膜上的爬电电弧,它也能引起火灾。
4、电气线路何以发生电弧性短路?
电气线路电弧性短路的发生多种形式。例如:当电气线路的两线芯相互接触而短路时,线芯未焊死而熔化成团,两熔化金属团收缩脱离接触时可能建立电弧。又如:线路绝缘水平严重下降,雷电等产生的瞬态过电压或电网故障产生的暂时过电压都可能击穿劣化的线路绝缘而建立能引燃起火的电弧。
5、为什么配电线路电弧性短路的起火危险远大于金属性短路?
电气故障产生的电弧持续存在很容易导致火灾的发生,电气线路电弧性短路的起火危险远大于金属性短路的起火危险。这是因为电弧具有很大的阻抗和电压降,它限制了电气线路的短路电流,使过电流防护器不能动作或不能及时动作来切断电源,而几安的电弧的局部高温可达2000-4000℃,足以引燃邻近的可燃物起火,因此电气线路的短路火灾大多是电弧性短路而非金属性短路引起的。
6、为什么配电线路带电导体间的电弧性短路引起的电气火灾难以防范?
带电导体(相线和中性线)间的短路只能靠过电流防护器来切断电源,而过电流防护电器对电流不大的电弧性短路是难以切断电源的,所以对带电导体电弧性短路起火的防范一直是个难题。今年,美国开发了一种电弧故障断路器(AFCI),它可以在被保护回路发生电弧短路时切断电源,其装用要求已编入美国《国家电气法规》(NEC)第210节中。该节规定住宅卧式单相15A和20A插座回路内应装用这种防护电器来防室内电弧性短路起火。美国还颁布了这种短路器的UL试验标准。这种防电弧火灾的新技术尚在初始阶段,由于技术上的困难,其额定回路电流最大仅20A,不能对大电流干线的电弧性火灾起防范作用
7、何谓爬电起火?它是否也是电弧性起火?
爬电也能因燃弧而起火。爬电电弧也是发生在导体之间的电弧,但它不是出现在空气间隙中的电弧,而是出现在设备绝缘表面上的电弧。设备绝缘表面有带相电压的导体,也有带电位的导体。例如:电源插头的绝缘表面上的一个或多个相线插脚和PE线或中性线插脚,他们之间的绝缘表面可能发生爬电,这中爬电可能建立电弧从而引燃起火。
8、形成爬电燃弧的过程和其可能引起的电气危险。
绝缘表面爬电是缓慢形成的一种绝缘故障。设备工作环境中的空气中如含有潮气,当空气由热变冷时潮气就凝结在绝缘表面,在两导体间形成一层能微弱导电的液膜。两导体间因电位差而产生一很小的电流,电流的热效应使液体气化,液体本身也能蒸发,但液膜中的盐分和导电尘埃却遗留在绝缘表面上,绝缘表面上的盐分和导电尘埃不断增多,其导电性也随之提高,其爬电电流缓慢增大,当导电性达到一定程度时,即使不存在水分的绝缘表面也能导电。电流产生的热量能使绝缘碳化,绝缘表面出现星星火花而逐渐形成爬弧,它能使绝缘失效﹑设备损坏,邻近旁有可燃物也可引燃起火。
9、在火灾现场一片瓦砾灰烬中如何判定电气短路起火?
消防部门的救火人员能从火灾现场迹象很快找出火灾的起火处。如果起火处有电气导体熔化的熔珠,则有可能是电气短路起火,引起火灾的电气短路被消防部门称作一次短路;因其他原因起火的火灾烧坏电气绝缘而引起的电气短路则被称为二次短路。这两种短路的熔珠的金相结构是不同的,很容易分辨,有关消防研究所可用仪器对熔珠作金相分析,判定是一次还是二次短路,如果是一次短路,即可判定火灾是电气短路引起。
消防部门的救火人员可很快判定是否是电气短路起火,但他们并非专业人员,难以分辨一次短路是线间短路还是对地短路,常将对地短路误认为是线间短路,其结果是电气短路火灾统计不准确。发达国家统计的电气短路起火中接地短路起火都占绝大多数,而我国的统计数字却相反,接地短路起火只占很少数,说明我国对短路起火的判断和统计有误。我国电气火灾中短路起火约占60%,是防范的重点。这一错误的统计数字影像了我国对常见多发的接地短路起火的重视和防范,不能不说这是我国多年来电气火灾居高不下的一个重要原因。
发明内容
针对上述提到的现有技术中的电子元件容易产生拉弧的问题,本发明提供一种电介质绝缘磁极螺旋抗弧处理技术,其采用螺旋线形的电极,可有效解决拉弧的问题。
本发明解决其技术问题采用的技术方案是:一种电介质绝缘磁极螺旋抗弧处理技术,该技术为在电子元器件本体上设置有电极,电极呈螺旋线形,当通过电流时,产生垂直于芯片电极表面的轴向磁场以及径向电场,轴向磁场产生的洛伦兹的作用力,使得芯片体内的电子得以螺旋旋转前进并聚焦的方式运动,螺旋线式的引线端头在中心区域布置端头,无限地接近芯片中心点,让电流很 难在芯片的中心部位引线两端头之间形成拉弧。
本发明解决其技术问题采用的技术方案进一步还包括:
所述的电子元器件本体呈片状,螺旋线形电极固定设置在芯片本体两侧。
所述的螺旋线形电极采用平面等角螺旋线或平面等速螺旋线。
所述的电子元器件本体呈柱状,螺旋线形电极固定设置在芯片本体两端。
所述的螺旋线形电极采用无断开端头的双螺旋线。
所述的电子元器件本体上设有涂银层,螺旋线形电极固定设置在涂银层上。
所述的螺旋线形电极采用焊接的方式设置在涂银层上。
所述的螺旋线形电极在电子元器件本体内埋置。
所述的电子元器件本体两侧的螺旋线形电极朝向同一方向旋转,或者朝向不同方向旋转。
所述的螺旋线形电极采用空心金属螺旋线或者采用扁平金属螺旋引线。
本发明的有益效果是:实现了更高的耐浪涌冲击能力和更好的工频耐受力。
在实验中,施加累计冲击电流,螺旋式芯片很少炸裂。螺旋式的失效温度为:106C,工频电压耐受升压实验伏秒(U-t)特性热击穿与电化学击穿试验中,螺旋引线在升压测试中能承受更高的工频电压,与直引线压敏电阻相比高出10V-20V,加压比Rap(荷电率)最高可达1.33倍,螺旋式电极承受的最高温度在112-174C范围,且未见拉弧起火,只是引线、芯片脱落,参数全无。有的螺旋式的芯片实验在50~180℃区间的实验中,没有出现过明火、没有出来一次的拉弧燃烧的现象发生,与他们用L式引线时的表现完全不同。螺旋式MOV不仅有高3-4倍的能量吸收能力,而且有持久的抗拉弧燃烧的能力。实验中持续抗过电压时间达到直线L式引线压敏的1.7-2.0倍,温度达到150℃~174℃,完 全超出了业界的一般水平。
下面将结合附图和具体实施方式对本发明做进一步说明。
附图说明
图1为本发明实施例一立体结构示意图。
图2为本发明实施例二立体结构示意图。
图3为本发明导通时电子元器件体表电流分布示意图。
图4为现有技术中的压敏电阻导通时芯片体表电流分布示意图。
图5为本发明导通时电子元器件体内电流分布示意图。
图6为现有技术中的压敏电阻导通时芯片体内电流分布示意图。
图7为现有技术中的直线L式电子元器件电流导通路径与长度比较图。
图8为本发明中的螺旋式电子元器件的电流导通路径与长度比较图。
图中,1-电子元器件本体,2-涂银层,3-螺旋线形电极,4-电子分布。
具体实施方式
本实施例为本发明优选实施方式,其他凡其原理和基本结构与本实施例相同或近似的,均在本发明保护范围之内。
请结合参看附图1至附图8,本发明主要为一种电介质绝缘磁极螺旋抗弧处理技术,该技术为在电子元器件本体1上设置有电极,电极呈螺旋线形,当通过电流时,产生垂直于芯片电极表面的轴向磁场以及径向电场,轴向磁场产生的洛伦兹的作用力,使得芯片体内的电子得以螺旋旋转前进并聚焦的方式运动,螺旋线式的引线端头在中心区域布置端头,无限地接近芯片中心点,让电流很难在芯片的中心部位引线两端头之间形成拉弧。
本实施例中的电子元器件本体1呈片状,螺旋线形电极3固定设置在芯片 本体1两侧,螺旋线形电极3采用平面等角螺旋线或平面等速螺旋线,具体实施时,电子元器件也可以呈柱状,螺旋线形电极3固定设置在芯片本体两端,螺旋线形电极3采用无断开端头的双螺旋线。
本实施例中,电子元器件本体1上设有涂银层2,螺旋线形电极3固定设置在涂银层2上,其中,螺旋线形电极3采用最常规的焊接的方式设置在涂银层2上,具体实施时,也可以采用其他方式。
本实施例中,螺旋线形电极3设置在电子元器件本体1表面,具体实施时,螺旋线形电极3也可在电子元器件本体1内埋置。
电子元器件本体1两侧的螺旋线形电极3朝向同一方向旋转,或者朝向不同方向旋转,螺旋线形电极3采用空心金属螺旋线或者采用扁平金属螺旋引线。
一、压敏电阻MOV的温度角度的证明。
1、压敏电阻其主要功能是泄放浪涌冲击,将过电压降压限制到被保护的元气件范围内,其本身也吸收能量,对MOV来讲,能量吸收能力是其仅次于非线性参数的第二重要的性能,其以J·cm-3来度量吸收能量的大小,现在的压敏电阻吸收能量的水平视脉冲持续的时间的不同大概在200~250J·cm-3内。该吸收能量的使压敏电阻体的温度不会超过100℃,具体温度与压敏电阻的能量密度有关,并以130℃(约为403K)作为压敏电阻的极限温度,就可以计算出压敏电阻总的吸收能力,称之为“焓”,若以常温(25℃)来计算起到130℃,吸收能力为612J.cm-3,以绝对温度来计算,从绝对零度到130℃,其吸收能力的绝对上线为1215J.cm-3。
2、吸量三倍以上的提升:从已测试的升压结果数据来看,当MOV温度为T=165℃时,其对应吸收能量能力为700J·m-3,所以螺旋式MOV的能量吸收 能力是传统直线MOV的能量吸收能力:700J/250-200J=3.0-3.5倍。
3、外施电压作用前后的压敏陶瓷的热刺激电流(TSC)结果是离子迁移学说的有力证据,经直流电压作用后,TSC曲线峰值温度出现在160-170℃,随着电场的增加,峰值温度向高温度方向移动,单位体积TSC积累最高温度为177℃,其后电流密度和电场强度都呈现下降趋势。
压敏电阻加压前后电流密度-电场强度特征性的对比。
从压敏电阻器切割小片样品测得的TSC曲线(小插图中的符号表示直流电压应力的极性)。
电荷数(nTSC)与时间的关系为:
nTSC=ktn
流密度随时间上升的关系可以表示为:
JRt-JRO=ktn
电流密度随时间呈指数律下降:
JRt-JR∞=(JRi-JR∞)exp(-t/τ)n
式中,JR∞为压敏电阻充分恢复以后的稳态电流密度;τ为时间常数;JRi为有实验确定的常数,
E0.5mA随时间的下降也有类似的规律
E0.5mA(t)=E0.5mA(0)exp(-t/τ)n
式中,E0.5mA(t)和E0.5mA(0)分别为在时间t时刻的值和初始值。
对于大多数压敏陶瓷来说,n的数值为0.5。可见,可以通过上述两种方法得到n值,由于去掉应力后电流衰减与TSC电流的性质是类似的,两种方法得到的n值相近也就不奇怪了。
引用资料:「氧化锌压敏陶瓷制造与应用」科学出版社王振林李盛涛2.4耐受能量冲击特性部分。
实验数据分析证明完毕,得到两个价值规律的发现与收获:(1)磁极螺旋式MOV脉动处理器的不同凡响;(2)电子电路的拉弧处理规律的价值发现。
4、灭弧电压分析
灭弧电压是避雷器最重要的设计参数依据,例如:采用多少只单位间隙,多少个阀片均系根据灭弧电压而不是根据其额度电压选定的。
灭弧电压应该大于避雷器安装点可能出现的最大工频电压,在中性点有效接地电路中,可能出现的最大工频电压只等于电网额定(线)电压的80%;而在电性点非有效接电电网中,发生一相接地故障时仍能继续运行,但另外两健全相的对地电压会升为线电压,如:这两相上的避雷器此时因雷击而动作,作用在它上面的最大工频电压将等于该电网额定(线)的电压的100%~110%。
常理上讲的加压比Rap:
螺旋结构与直线L结构都是采用的都是随机挑选同一生产厂家同类同一规格同批次的芯片制作的产品,在介质绝缘的固体电介质的击穿问题(电化学击穿)上,压敏电阻到了压敏电阻的工频耐受1.12-1.13Um时,工频稳定性一分钟后能否发生拉弧起火?质量好一些的压敏电阻的工频耐受到:1.15—1.18Um(加压比Rap:Um最大持续交流工作峰值电压与压敏电压Un之比)。
按道理,不应该出现完全不同、差别之大、背道而驰的意外现象。而且是人们一直最头疼的电流拉弧不见了,在电子电路中,金属导体间开断闭合时或接触不良时,电流会拉弧瞬间引发的电弧温度在1500℃~1600℃以上,弧中心温度至少在2000℃~3000℃以上,因此而造成的各种灾害与损失不少而且严重危 害到人们社会的生命安全。
这也是螺旋式产品在升压实验的实际验证中,MOV体表温度都过了其极限温度130℃线,都到了160~170℃都没有出现拉弧明火燃烧的现象,而直线导体电极结构芯片都在55℃~60℃左右这条规律温度线后都会100%拉弧起火有10s之久的剧烈燃烧。
5、经过工频实验的芯片(螺旋式)在经过150-170℃的实验后,测试其电性能参数时,全无那么至少可证明芯片中的电介质成分结构已经发生了不可恢复的转变,即电介质的绝缘强度向低绝缘强度的导电的发展,不可能是绝缘强度向好的转变,这一点在能量守恒的角度是讲不过去的,变差的都不拉弧,原本电介质绝缘好的直线式都拉弧,那么肯定的可以讲抗拉弧能力的出现肯定有另外的因素在起作用,排除没变化的条件后只有螺旋电极的改动,即非它莫属,最重要的发现工作实验中意外收获发现抗拉弧。
二、芯片在电磁场下电子的路径角度的证明:
在低压电器控制系统里面,各种短路故障拉弧起火对环境危害最大,其电气连接在设备里的本质是电与磁的连接,其保护工作主要有:电流型保护(短路过电流过载断相电压保护型)失电压、欠压、过电压保护。
电流电动力效应的破坏作用:由物理学可知,在载流导体周围空间存在磁场,在磁场里的载流导体受到电磁力的作用,如果导线A、B都有电流,那么导线A的电流会在它的周围空间产生磁场,而导线B在导线A所产生的磁场里将受到电磁力的作用。同理,导线B上的电流也会在它的周围空间形成磁场,导线A在该磁场里,也会受到电磁力的作用,这样两根载流导体相互间有作用力存在,这种作用力叫做点动力。
根据安培定律的推导,每根平行导体,当A、B上分别通过以电流i1和i2(KA),AB的距离为d(m)时,每米导线所受的作用力按一下式计算式中(l0为1m):
当导线有电流流过时,载流导体周围会有磁场存在,导线间的作用力是通过磁场的磁力来作用的,当A、B两条平行导线La、Lb分别通过电流i1和电流i2(KA),A、B的距离d(m)时,则根据安培定律可知每米导线的作用力如下:
F=1.02×(2L0/d)×i1×i2×10-8 式中L0为1m
若两条导线电流i都为100KA时,导线间距离为50cm,则这两条导线每米都受408kg的力,同样,在同一根导线折弯的部分也会受到电动力,角度越小,其电动力大,那么直线式引线电极在大电流情况下带来的破坏可想而知!
电介质的局部放电及击穿,当作为绝缘材料的电介质承受的电场强度超过一定限值时,就会失去绝缘能力而损坏,若强场区局限于较小范围,则电介质可能只是局部损坏,发生局部放电;若强场区范围很大,则电介质将全部失去绝缘性能,造成电极间短路,即电介质击穿。电介质耐受电场的限度称为临界电场强度E0,它除与材料、工艺有关外,还与电极形状、极间距离、电场不均匀程度、散热条件等因素有关,下表中列出了一些常用电介质的临界场强,工程上分析高压设备中电场的主要目的是,在规定的电压和一定的绝缘条件下,使最大电场强度不超过允许值--参照临界场强并考虑一定裕度而确定的数值。
常用电介质的临界场强及相对介电常数
在电磁学漫长的发展历史上,经历了以德国物理学家(安培、库仑、韦伯等)为代表的“源派”持超作用观点和以英国物理学家(法拉第、麦克斯韦)为代表“场论派”近距作用观点时期。1892年,荷兰物理学家洛伦兹集场源两派理论之长、弃其短,创立了经典电子论,做出了重要贡献,其给出了磁场对 运动带电粒子作用力的公式为:
F=qv×B洛伦兹力公式
除了磁场B,还有电场E,带电粒子还受电力qE,其中,E是带电粒子所在处的电场强度,既电场对电粒子的作用力为:
F=qE+qv x B
以qv取代安培力公式中的idl,则可以把F=qv×B,就可以把洛伦兹力公式推广为F=qE+qv x B
此力既含电场力qE,又含磁场力qv x B,后者使电子做圆周运动,前者使电子做加速运动。
洛伦兹力公式和麦克斯韦电磁方程式是经典电磁理论的两大支柱,两位科学家对电磁学做出杰出的贡献。
洛伦兹力作为基本的磁作用力与其它作用力的不同特征:
1)洛伦兹力按照矢积的定义,洛伦兹力F的方向与v和B构成的平面垂直,并与带电粒子所带电荷正负有关,受力方向为正电荷方向,库仑力、万有引力都是两个点的连线方向上,而洛伦兹力则不同而是与垂直沿“横向”;
2)洛伦兹力还和带电粒子v垂直,其永远不对运动的带电粒子做功,它不能改变带电粒子的速率和动能,只能改变带电粒子运动的方向使之偏转;
3)洛伦兹力其大小依赖于带电粒子的速度。
带电粒子在垂直于B的平面内做匀速圆周运动或B的方向上或沿B线旋转做螺旋回转等距前进。
带电粒子在沿B的方向做上并沿B的方向上围绕B轴线旋转前进,旋转半径时大时小的旋转前进并有磁聚焦作用。
其导线引出端头在中心区域的布置,按道理芯片在生产压片制程中,形成芯片中心,其晶粒结构体积相对与周围的晶粒结构体积要大一些,没有周围的晶粒致密,更容易击穿一些,但在实验中看到的是,中心部位反而没事,倒是传统电极布置其拉弧穿孔现象,在芯片中心四周的频频出现,这说明螺旋结构的特殊特征让电流很难在芯片的中心部位引线两端头之间形成拉弧。
首先,金属引线导体电极部分呈螺旋线式结构同芯片银层面焊接在一起,该结构的金属导体,当通过电流时,产生了垂直于芯片电极表面的轴向磁场以及径向电场,轴向磁场产生的洛伦兹的作用力,使得芯片体内的电子得以螺旋旋转前进并聚焦的方式运动,其旋转半径越小磁场越大,前进螺距、聚焦距离都分别受到电极中电流流动的大小产生的时变磁场和时变电场的影响。
在交流情况下,芯片体内的电子在轴向磁场作用下旋转运动前进,电子整个运动途径被延长,电流线变得更细更长,即使形成电流弧线,因其很细很容易被磁场吹断。
这主要原因如下:
要形成MOV芯片体内两金属导体引出端头间的拉弧击穿,则必定有以下现象过程会发生:
A:导线中若有拉弧短路时,其导体中流动的电流必定会有很大的、突然增大变化;
B:若芯片被击穿穿孔,孔的直径大约在1mm左右。
说明在弧电流穿孔通道里,运动的电子旋转r很小(很小:1mm/140mm, 压敏电阻的片径),其能量值很高,这部分电子在弧通道里运动轨迹是以1mm的旋转直径旋转前进。那么,肯定是芯片中通过的电子群中最具有能量部 分的电子。
孔洞的直径与芯片厚度相关,是由于先在一个点融化,这个部位电阻减小,然后电流集中在此部位流过,产生更大的热量,使融化点以球体的方式扩散开来,达到芯片厚度后贯穿。所以孔径与厚度相关。
而实际情况,在螺旋式金属导体结构中流动电流形成的芯片轴向磁场,以及芯片上下电极面的电场,共同作用于芯片中运动传导的电子,使其获得能量,在芯片中做旋转(半径r)加速(v)前进(行程),并消散成弧区的能量。螺旋电极的电感特性天然地使之具有抵抗电压电流变化的能力,防止拉弧的产生。
旋转前进的方式,导致拉弧路径的延长,因此形成拉弧就需要更高的瞬态能量。显然更多的瞬态能量额外获得,在螺旋结构下要实现没那么容易。
这一独立系统的动态平衡系统的过程:
脉冲电流——》流经螺旋结构——》产生磁场——》电荷螺旋前进——》抵抗电流变化——》延长拉弧路径、消散能量集中——》三方面减弱脉冲电流影响,使拉弧难以产生。
正是由于在缓和脉冲冲击、几何路径的延长、消散能量集中三方面的负反馈因素及散热更好的特点,使磁极螺旋结构可以有效地防止拉弧现象的发生。
在用空心铜管做引线的样品上,可以更好地防止引线上集肤效应的影响,而且可以起到更好的散热效果,实验中实现了比普通芯片工作温度下降近30℃的效果。
本发明和早期的磁吹阀避雷器应用都是一样的道理,磁场灭弧精准迅速实效。是利用磁场对电弧的电动力,迫使电弧加快运动,现在拉长使弧柱中失去 电离作用能对付大流量的电弧,故磁灭弧能力比任何人为的保险丝热熔断脱扣利用电流产生的热效应达到人为设定的数值后引发机械式脱扣断开而且只能断开一次电弧的不可恢复性要更精准、迅速并可重复,应对灭弧任务更具实效性的多。只不过,有以下几点是它不同于磁吹阀避雷器以及熔断器的地方:
1、所有的机械断路器都是依靠电弧介质快速冷却提高介质强度或所需电弧电压来断开电路。磁极螺旋技术也是。螺旋电极具有的线圈电感性质和磁场性质来进一步自动控制电极间电荷量和电流量的增大,不让金属电极间的载流子进一步加大来实现断弧,有点像固态功率控制器,只是通过不提供载流子(电子或空穴)来实现断弧。但是固态功率控制器(300mA)附加了许多电路与集成芯片来实现断开载流子来断弧,成本自然不低。
2、磁极螺旋技术也可应用在以下环境中,开关的断开从大电流变到小电流,电极的电感性质也会参与进来来实现抗弧。
3、在绝缘电介质中,灭弧不是在空气间隙中形成弧后的防护工作,而是在绝缘介质中,在未成弧之前就进行抗弧处理的技术,即电子元器件的电介质来进行断弧更具有前瞻性和主动性。
4、磁场不光是电弧的电动力,而且也是电子和电弧的能量源头,也就是说,因螺旋电极,磁场的大小变化率相对电极里电流大小变化率而变化,这也就决定了磁场具有对芯片体内电弧电流大小变化有相当阻抗变化的影响力,电流拉弧时所需要的短路大电流与低阻抗被螺旋式电极结构的高阻抗给遏制住了。
5、电子电路的应用中,由于MOV的芯片体积就不大,不可能为了芯片灭其拉弧穿孔去设计一个比芯片体积大许多倍的大体积的磁铁来绕线来磁吹灭弧,这在电力系统还行之有效,在电子系统的电子电路中,这是不可取的做法。 对于分立式无源元件,其固体介质的绝缘击穿就地取材,对其插脚引线进行螺旋加工弯曲,不被上板(PCB)剪掉浪费,且不增加任何额外的材料成本的背景下形成高性能低成本体系的设计方向,更符合未来电子电路的电子集成化的未来趋势。
6、系统内的动态系统的自我真正自治:螺旋弯曲其元件原有的金属引线形成磁螺旋磁场与弧电流(弧)串联起来实行自治,而不是外力涉入干涉的处理技术体系,这是低成本体系形成的关键,所在为客户市场创造价值。
7、从导线传输电流到芯片,既从线到面的传输导线,应该从“线”转化到“面”的扑拓设计才能使得拉弧现象的减少。在低压电器控制系统里面这种电气传导导致的各种短路故障拉弧起火对环境危害最大。电气连接在设备里的本质是电与磁的连接,是最基本的单元部分,基础单元的处理好坏是未来大厦的能盖多高质量是否过硬的基石。
8、另外,磁极螺旋抗弧技术只要有电传导的地方就可以应用。例如在电路起保护工作主要有:电流型保护(短路过电流过载断相电压保护型),失电压、欠压、过电压保护都可以发挥结构设计来实现与电与磁与弧安全的变换。

Claims (10)

1.一种电介质绝缘磁极螺旋抗弧处理技术,其特征是:该技术为在电子元器件本体上设置有电极,电极呈螺旋线形,当通过电流时,产生垂直于芯片电极表面的轴向磁场以及径向电场,轴向磁场产生的洛伦兹的作用力,使得芯片体内的电子得以螺旋旋转前进并聚焦的方式运动,螺旋线式的引线端头在中心区域布置端头,无限地接近芯片中心点,让电流很难在芯片的中心部位引线两端头之间形成拉弧。
2.根据权利要求1所述的电介质绝缘磁极螺旋抗弧处理技术,其特征是:所述的电子元器件本体呈片状,螺旋线形电极固定设置在芯片本体两侧。
3.根据权利要求2所述的电介质绝缘磁极螺旋抗弧处理技术,其特征是:所述的螺旋线形电极采用平面等角螺旋线或平面等速螺旋线。
4.根据权利要求1所述的电介质绝缘磁极螺旋抗弧处理技术,其特征是:所述的电子元器件本体呈柱状,螺旋线形电极固定设置在芯片本体两端。
5.根据权利要求4所述的电介质绝缘磁极螺旋抗弧处理技术,其特征是:所述的螺旋线形电极采用无断开端头的双螺旋线。
6.根据权利要求1所述的电介质绝缘磁极螺旋抗弧处理技术,其特征是:所述的电子元器件本体上设有涂银层,螺旋线形电极固定设置在涂银层上。
7.根据权利要求6所述的电介质绝缘磁极螺旋抗弧处理技术,其特征是:所述的螺旋线形电极采用焊接的方式设置在涂银层上。
8.根据权利要求1所述的电介质绝缘磁极螺旋抗弧处理技术,其特征是:所述的螺旋线形电极在电子元器件本体内埋置。
9.根据权利要求1至8中任意一项所述的电介质绝缘磁极螺旋抗弧处理技术,其特征是:所述的电子元器件本体两侧的螺旋线形电极朝向同一方向旋转,或者朝向不同方向旋转。
10.根据权利要求1至8中任意一项所述的电介质绝缘磁极螺旋抗弧处理技术,其特征是:所述的螺旋线形电极采用空心金属螺旋线或者采用扁平金属螺旋引线。
CN201610829769.3A 2016-09-19 2016-09-19 电介质绝缘磁极螺旋抗弧处理技术 Pending CN106601396A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610829769.3A CN106601396A (zh) 2016-09-19 2016-09-19 电介质绝缘磁极螺旋抗弧处理技术

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610829769.3A CN106601396A (zh) 2016-09-19 2016-09-19 电介质绝缘磁极螺旋抗弧处理技术

Publications (1)

Publication Number Publication Date
CN106601396A true CN106601396A (zh) 2017-04-26

Family

ID=58555742

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610829769.3A Pending CN106601396A (zh) 2016-09-19 2016-09-19 电介质绝缘磁极螺旋抗弧处理技术

Country Status (1)

Country Link
CN (1) CN106601396A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018049669A1 (zh) * 2016-09-19 2018-03-22 深圳市辰驹电子科技有限公司 螺旋磁电极封装全能脉冲技术

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1197276A (zh) * 1998-04-17 1998-10-28 黄恒超 一种高分子热敏元件及其制造方法
CN201387780Y (zh) * 2009-03-06 2010-01-20 温州市安能机械有限公司 正温度系数热敏电阻
CN203013430U (zh) * 2012-12-24 2013-06-19 深圳市百亨电子有限公司 一种氧化膜瓷管电阻
US20150294826A1 (en) * 2012-11-15 2015-10-15 Ms Techvision Co., Ltd. Complex Protection Component Having Overcurrent Blocking Function and Surge Absorbing Function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1197276A (zh) * 1998-04-17 1998-10-28 黄恒超 一种高分子热敏元件及其制造方法
CN201387780Y (zh) * 2009-03-06 2010-01-20 温州市安能机械有限公司 正温度系数热敏电阻
US20150294826A1 (en) * 2012-11-15 2015-10-15 Ms Techvision Co., Ltd. Complex Protection Component Having Overcurrent Blocking Function and Surge Absorbing Function
CN203013430U (zh) * 2012-12-24 2013-06-19 深圳市百亨电子有限公司 一种氧化膜瓷管电阻

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018049669A1 (zh) * 2016-09-19 2018-03-22 深圳市辰驹电子科技有限公司 螺旋磁电极封装全能脉冲技术

Similar Documents

Publication Publication Date Title
US8816812B2 (en) Varistor fuse element
Li et al. Electrical-thermal failure of metal–oxide arrester by successive impulses
CN101651323A (zh) 一种利用导电流体和磁性流体的自恢复限流断路方法和装置
Wang et al. Research and application of jet stream arc-quenching lightning protection gap (JSALPG) for transmission lines
CN106601396A (zh) 电介质绝缘磁极螺旋抗弧处理技术
Zamanan et al. Modelling arcing high impedances faults in relation to the physical processes in the electric arc
JP5747033B2 (ja) 高速作動可溶性リンク
Wilkins et al. Effect of insulating barriers in arc flash testing
Zhen et al. Simple analysis of the measurement methods of arc fault
CN106449321A (zh) 一种绝缘屏蔽的小型电涌保护装置
CN206148198U (zh) 电介质绝缘磁极螺旋抗弧moa压敏电阻器
Wade et al. Investigation of arc flash in single-phase vertical conductors in a box
CN206516597U (zh) 一种绕线型温度电阻式保险丝
Zia et al. Determine the electrode configuration and sensitivity of the enclosure dimensions when performing arc flash analysis
JP5769202B2 (ja) 感温ペレット型温度ヒューズ
WO2018049670A1 (zh) 电介质绝缘磁极螺旋抗弧处理技术
Liao et al. A novel post-arc current measuring equipment based on vacuum arc commutation and arc blow
Bajda et al. To the Problem of Protection of Medium Voltage Instrument Transformers with Fuses: Analytical Research
Zhang et al. Microsecond‐scale fast fusing and cutout characteristics of high current fuse
JP4386274B2 (ja) ヒューズエレメント
CN206164089U (zh) 一种具有高性能防弧罩灭弧的电涌保护装置
CN202275793U (zh) 电压互感器高压熔断器
Somathilaka et al. Nature of Series-Arc Faults and Parameters Affecting the Risk of Domestic Electrical Fires
CN215817523U (zh) 一种热保护型电涌保护器
Sălceanu et al. Experimental Study of the Pressure Exerted in the Body of a High-Voltage Fuse

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170426

RJ01 Rejection of invention patent application after publication