CN106596665B - 一种氧化铜掺氮石墨烯气凝胶的应用 - Google Patents

一种氧化铜掺氮石墨烯气凝胶的应用 Download PDF

Info

Publication number
CN106596665B
CN106596665B CN201611018377.5A CN201611018377A CN106596665B CN 106596665 B CN106596665 B CN 106596665B CN 201611018377 A CN201611018377 A CN 201611018377A CN 106596665 B CN106596665 B CN 106596665B
Authority
CN
China
Prior art keywords
copper oxide
electrode
doped graphene
oxide nitrogen
graphene aeroge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611018377.5A
Other languages
English (en)
Other versions
CN106596665A (zh
Inventor
孔泳
杨静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Xi'an Meinan Biotechnology Co ltd
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201611018377.5A priority Critical patent/CN106596665B/zh
Publication of CN106596665A publication Critical patent/CN106596665A/zh
Application granted granted Critical
Publication of CN106596665B publication Critical patent/CN106596665B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明涉及一种水热法合成氧化铜掺氮石墨烯气凝胶的应用。包括以下步骤:氧化铜掺氮石墨烯气凝胶修饰电极的制备,氧化铜掺氮石墨烯气凝胶用于葡萄糖的电化学检测,氧化铜掺氮石墨烯气凝胶对于葡萄糖电化学检测中干扰物的抗干扰测试。本发明的有益效果是氧化铜掺氮石墨烯气凝胶对于葡萄糖的电化学检测具有较宽的检测范围、较低的灵敏度和优异的抗干扰能力。

Description

一种氧化铜掺氮石墨烯气凝胶的应用
技术领域
本发明涉及一种氧化铜掺氮石墨烯气凝胶的应用,属于电分析化学的研究领域。
技术背景
葡萄糖是人体重要的能量来源,在糖尿病诊断过程中,精确高效的检测血糖中葡萄糖浓度对临床诊断具有重要的意义。在目前所具有的检测方法中,电化学检测是最具有吸引力的一种方法,它具有成本低、易操作、效率高等优点。
自1962年第一个利用葡萄糖氧化酶制备的葡萄糖免疫传感器的报道以来,研究者已经研究了大量关于葡萄糖氧化酶的免疫传感器,它们具有良好的生物活性和较高的灵敏度,但是葡萄糖氧化酶的免疫传感器成本较高,且稳定性也较差。基于酶传感器的这些缺点我们开始研究无酶葡萄糖免疫传感器。
目前为止关于氧化铜纳米粒子与掺氮石墨烯气凝胶复合材料用于葡萄糖检测的研究未有报道,所以通过氧化铜掺氮石墨烯气凝胶修饰电极制备无酶免疫传感器应用于葡萄糖的检测。因复合材料兼有氧化铜和掺氮石墨烯的优点具有更大的比表面积、更高的电子转移率、更好的电化学催化活性,使其对于葡萄糖的检测具有较低的检测限、较高的灵敏度和较宽的线性范围。
发明内容
本发明的目的是在于提供一种氧化铜掺氮石墨烯气凝胶在葡萄糖检测中的应用。
本发明所述一种氧化铜掺氮石墨烯气凝胶的应用,包括以下步骤:
1、一种氧化铜掺氮石墨烯气凝胶修饰电极的制备,其特征在于:步骤如下:
氧化铜掺氮石墨烯气凝胶修饰电极的制备:将氧化铜掺氮石墨烯气凝胶超声分散于超纯水中,然后将分散液滴涂到电极上,室温下干燥,得到氧化铜掺氮石墨烯气凝胶修饰的电极。
2、氧化铜掺氮石墨烯气凝胶的应用,其特征在于:步骤如下:
a、氧化铜掺氮石墨烯气凝胶修饰电极对于葡萄糖检测性能的测试:本发明使用氧化铜掺氮石墨烯气凝胶修饰电极通过电化学法对葡萄糖进行电化学检测,本实验采用三电极体系,氧化铜掺氮石墨烯气凝胶修饰电极为工作电极,铂片为对电极,饱和甘汞电极为参比电极,电解液为氢氧化钠溶液,在以上条件下进行葡萄糖的电流-时间曲线测试,并通过电流-时间曲线计算出氧化铜掺氮石墨烯气凝胶修饰电极用于葡萄糖检测时的检测限,灵敏度和线性范围;
b、氧化铜掺氮石墨烯气凝胶修饰电极对于葡萄糖检测抗干扰性能的测试:本发明使用氧化铜掺氮石墨烯气凝胶修饰电极通过电化学法对葡萄糖检测时抗干扰性能的测试,本实验采用三电极体系,氧化铜掺氮石墨烯气凝胶修饰电极为工作电极,铂片为对电极,饱和甘汞电极为参比电极,氢氧化钠溶液为电解液,在以上条件下进行葡萄糖的电流-时间曲线测试,测试过程中,每隔60s向电解液中分别加入不同的干扰物质考察对葡萄糖电流响应值的影响。
进一步,所述步骤1中分散液的体积为5~10μL,浓度为1~4mg/mL。
进一步,所述步骤2(a)和(b)中电化学测试中氢氧化钠电解液浓度为0.1~0.3mol/L。
本发明的有益效果是:氧化铜掺氮石墨烯气凝胶对于葡萄糖的检测具有较宽的线性范围、较低的灵敏度和优异的抗干扰能力。
附图说明
下面结合附图对本发明进一步说明。
图1为实施例一中氧化铜掺氮石墨烯气凝胶修饰电极对葡萄糖检测的电流-时间曲线;
图2为实施例一中根据氧化铜掺氮石墨烯气凝胶修饰电极对葡萄糖检测的电流-时间曲线而绘制的线性曲线;
图3为实施例二中氧化铜掺氮石墨烯气凝胶修饰电极对葡萄糖检测时添加有机物干扰物时的电流-时间曲线;
图4为实施例二中氧化铜掺氮石墨烯气凝胶修饰电极对葡萄糖检测时添加无机离子干扰物时的电流-时间曲线。
具体实施方式
现在结合具体实施例对本发明做进一步说明,以下实施例旨在说明本发明而不是对本发明的进一步限定。
实施例一:
本发明使用氧化铜掺氮石墨烯气凝胶通过电化学法对葡萄糖的性能进行检测,本实验采用三电极体系,氧化铜掺氮石墨烯气凝胶修饰电极为工作电极,铂片电极为对电极,饱和甘汞电极为参比电极,电解液为氢氧化钠溶液,在以上条件下进行电流-时间曲线测试,并通过电流-时间曲线图计算氧化铜掺氮石墨烯气凝胶对葡萄糖检测的检测限、灵敏度和检测范围。从附图1和图2所知,该氧化铜掺氮石墨烯气凝胶对葡萄糖检测限是2.7μM,灵敏度为228.9μA mM-1cm-2,线性范围达到10μM~760μM。
实施例二:
本发明使用氧化铜掺氮石墨烯气凝胶通过电化学法对葡萄糖检测时抗干扰性能的研究,本实验采用三电极体系,氧化铜掺氮石墨烯气凝胶修饰电极为工作电极,铂片电极为对电极,饱和甘汞电极为参比电极,氢氧化钠溶液为电解液,在以上条件下进行电流-时间曲线测试,加入不同干扰物时氧化铜掺氮石墨烯气凝胶修饰电极对葡萄糖的电流响应值。从附图3和图4所知,在加入干扰物质之后再检测葡萄糖,该氧化铜掺氮石墨烯气凝胶修饰电极对葡萄糖仍然具有较高的电流响应,干扰物质造成电流的变化小于3.6%。

Claims (4)

1.一种氧化铜掺氮石墨烯气凝胶修饰电极的制备,其特征在于:步骤如下:
氧化铜掺氮石墨烯气凝胶修饰电极的制备:将氧化铜掺氮石墨烯气凝胶超声分散于超纯水中,然后将分散液滴涂到电极上,室温下干燥,得到该氧化铜掺氮石墨烯气凝胶修饰的电极。
2.根据权利要求1所述一种氧化铜掺氮石墨烯气凝胶修饰电极的制备,所述步骤中分散液的体积为5~10μL,浓度为1~4mg/mL。
3.氧化铜掺氮石墨烯气凝胶修饰电极的应用,其特征在于:步骤如下:
a、氧化铜掺氮石墨烯气凝胶修饰电极对于葡萄糖的电化学检测:使用氧化铜掺氮石墨烯气凝胶修饰电极通过电化学法对葡萄糖进行电化学检测,电化学检测采用三电极体系,氧化铜掺氮石墨烯气凝胶修饰电极为工作电极,铂片为对电极,饱和甘汞电极为参比电极,电解液为氢氧化钠溶液,在以上条件下进行葡萄糖的电流-时间曲线测试,并通过电流-时间曲线计算出氧化铜掺氮石墨烯气凝胶修饰电极用于葡萄糖检测时的检测限,灵敏度和线性范围;
b、氧化铜掺氮石墨烯气凝胶修饰电极对于葡萄糖检测抗干扰性能的测试:使用氧化铜掺氮石墨烯气凝胶修饰电极通过电化学法对葡萄糖检测时抗干扰性能的测试,抗干扰性能测试采用三电极体系,氧化铜掺氮石墨烯气凝胶修饰电极为工作电极,铂片为对电极,饱和甘汞电极为参比电极,氢氧化钠溶液为电解液,在以上条件下进行葡萄糖的电流-时间曲线测试,测试过程中,每隔60s向电解液中分别加入不同的干扰物质考察对葡萄糖电流响应值的影响。
4.根据权利要求3所述氧化铜掺氮石墨烯气凝胶修饰电极的应用,其特征是:所述步骤a和b中电化学测试中氢氧化钠电解液浓度为0.1~0.3mol/L。
CN201611018377.5A 2016-11-16 2016-11-16 一种氧化铜掺氮石墨烯气凝胶的应用 Active CN106596665B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611018377.5A CN106596665B (zh) 2016-11-16 2016-11-16 一种氧化铜掺氮石墨烯气凝胶的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611018377.5A CN106596665B (zh) 2016-11-16 2016-11-16 一种氧化铜掺氮石墨烯气凝胶的应用

Publications (2)

Publication Number Publication Date
CN106596665A CN106596665A (zh) 2017-04-26
CN106596665B true CN106596665B (zh) 2018-10-19

Family

ID=58592271

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611018377.5A Active CN106596665B (zh) 2016-11-16 2016-11-16 一种氧化铜掺氮石墨烯气凝胶的应用

Country Status (1)

Country Link
CN (1) CN106596665B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108931556A (zh) * 2018-06-14 2018-12-04 杭州电子科技大学 一种ws2气凝胶气体传感器的制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102520035A (zh) * 2011-11-04 2012-06-27 上海大学 氧化铜-石墨烯纳米复合物修饰电极的制备方法及修饰电极在测定葡萄糖中的应用
CN104698054A (zh) * 2015-04-07 2015-06-10 天津理工大学 一种纳米氧化铜修饰丝网印刷电极的非酶葡萄糖传感器
CN104730135A (zh) * 2015-04-07 2015-06-24 天津理工大学 基于纳米复合材料修饰丝网印刷电极的非酶葡萄糖传感器
CN104959141B (zh) * 2015-07-17 2017-06-16 河北工业大学 一种负载Cu/Cu2O光催化剂的还原氧化石墨烯/无定形碳复合材料及其制备方法和应用
CN105842321B (zh) * 2016-03-28 2018-03-23 安阳师范学院 氧化铜纳米针/氮掺杂石墨烯复合材料的非酶葡萄糖电化学传感器的制备方法
CN106085201A (zh) * 2016-08-05 2016-11-09 代长华 一种氧化石墨烯导电涂料及其制备方法

Also Published As

Publication number Publication date
CN106596665A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
Bao et al. 3D graphene/copper oxide nano-flowers based acetylcholinesterase biosensor for sensitive detection of organophosphate pesticides
Huang et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode
Yang et al. Nickel nanoparticle–chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices
Du et al. Nonenzymatic uric acid electrochemical sensor based on graphene-modified carbon fiber electrode
US9708640B2 (en) Electrospun nanofibrous membranes and disposable glucose biosensor
Xia et al. Mediator-free electron-transfer on patternable hierarchical meso/macro porous bienzyme interface for highly-sensitive sweat glucose and surface electromyography monitoring
Amidi et al. Sensitive electrochemical determination of rifampicin using gold nanoparticles/poly-melamine nanocomposite
Haghighi et al. Direct electron transfer from glucose oxidase immobilized on an overoxidized polypyrrole film decorated with Au nanoparticles
Liu et al. An electrochemical sensor for dopamine based on poly (o-phenylenediamine) functionalized with electrochemically reduced graphene oxide
Zheng et al. Carbon nanohorns enhanced electrochemical properties of Cu-based metal organic framework for ultrasensitive serum glucose sensing
CN106383158B (zh) 一种基于银-石墨烯纳米复合物的过氧化氢无酶传感器及其制备方法
Zhang et al. Fabrication of poly (orthanilic acid)–multiwalled carbon nanotubes composite film-modified glassy carbon electrode and its use for the simultaneous determination of uric acid and dopamine in the presence of ascorbic acid
Samoson et al. A nonenzymatic glucose sensor based on the excellent dispersion of a graphene oxide-poly (acrylic acid)-palladium nanoparticle-modified screen-printed carbon electrode
CN106248766B (zh) 一种电化学传感器在测定药品中扑热息痛含量中的应用
Naghib et al. Electrochemical biosensor for L-phenylalanine based on a gold electrode modified with graphene oxide nanosheets and chitosan
Zhang et al. Simultaneous determination of epinephrine, dopamine, ascorbic acid and uric acid by polydopamine-nanogold composites modified electrode
Pradhan et al. Electropolymerization of bromothymol blue on carbon paste electrode bulk modified with oxidized multiwall carbon nanotubes and its application in amperometric sensing of epinephrine in pharmaceutical and biological samples
Tian et al. Amperometric detection of glucose based on immobilizing glucose oxidase on g-C3N4 nanosheets
Taei et al. Simultaneous determination of cysteine, uric acid and tyrosine using Au-nanoparticles/poly (E)-4-(p-tolyldiazenyl) benzene-1, 2, 3-triol film modified glassy carbon electrode
Li et al. Flexible enzymatic biosensor based on graphene sponge for glucose detection in human sweat
Liu et al. A dual-recognition molecularly imprinted electrochemiluminescence sensor based on g-C3N4 nanosheets sensitized by electrodeposited rGO-COOH for sensitive and selective detection of tyramine
Yu et al. [C3 (OH) 2mim][BF4]-Au/Pt biosensor for glutamate sensing in vivo integrated with on-line microdialysis system
Luan et al. Ni3S2/ionic liquid-functionalized graphene as an enhanced material for the nonenzymatic detection of glucose
Zhao et al. Zeolitic Imidazolate Framework-67 Rhombic Dodecahedral Microcrystals with Porous {110} Facets As a New Electrocatalyst for Sensing Glutathione.
CN104034764B (zh) 一种具有靶向和可视化双功能的电化学细胞传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240108

Address after: 710000 Factory Building 5, South Zone 1, Hongshengxing Aviation Technology Industrial Park, Dunhua Road, Airport New City, Xixian New District, Xi'an City, Shaanxi Province

Patentee after: Xi'an Meinan Biotechnology Co.,Ltd.

Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Dragon totem Technology (Hefei) Co.,Ltd.

Effective date of registration: 20240108

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: Gehu Lake Road Wujin District 213164 Jiangsu city of Changzhou province No. 1

Patentee before: CHANGZHOU University