CN106596546B - 一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法 - Google Patents

一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法 Download PDF

Info

Publication number
CN106596546B
CN106596546B CN201610994558.5A CN201610994558A CN106596546B CN 106596546 B CN106596546 B CN 106596546B CN 201610994558 A CN201610994558 A CN 201610994558A CN 106596546 B CN106596546 B CN 106596546B
Authority
CN
China
Prior art keywords
individual particle
mineral
mineral individual
sample
glass slide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610994558.5A
Other languages
English (en)
Other versions
CN106596546A (zh
Inventor
赵严
曾令君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Institute of Geochemistry of CAS
Original Assignee
Guangzhou Institute of Geochemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Institute of Geochemistry of CAS filed Critical Guangzhou Institute of Geochemistry of CAS
Priority to CN201610994558.5A priority Critical patent/CN106596546B/zh
Publication of CN106596546A publication Critical patent/CN106596546A/zh
Application granted granted Critical
Publication of CN106596546B publication Critical patent/CN106596546B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2813Producing thin layers of samples on a substrate, e.g. smearing, spinning-on
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/286Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q involving mechanical work, e.g. chopping, disintegrating, compacting, homogenising

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

本发明公开一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法。它包括将矿物样品粉碎、初步分选得到矿物单颗粒,然后将其在显微镜下筛选得到满足测试使用的矿物单颗粒样品,具体是将多颗矿物单颗粒置于载玻片上,再将石蜡放置于矿物单颗粒周围,加热石蜡使其熔化并使矿物单颗粒浸到石蜡中后,用气流将矿物单颗粒吹散,待石蜡凝固后,将此载有矿物单颗粒的载玻片置于偏光显微镜下,对矿物单颗粒进行观察,找到满足测试使用的矿物单颗粒样品,在另外一块载玻片上放置吸油纸,将载玻片上筛选的矿物单颗粒样品挑取到吸油纸上,然后加热,使吸油纸上的矿物单颗粒样品上的石蜡熔化,将吸油纸上的矿物单颗粒样品取出,由此得到矿物单颗粒样品。

Description

一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法
技术领域:
本发明具体涉及一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法。
背景技术:
现代实验分析技术的出现极大地促进了地球科学的进步与发展,有了现代实验分析数据,地学资料变得更精确可靠。在岩石学方面,虽然常规的全岩地球化学和同位素分析使岩石学研究进展显著,但岩石成因的复杂性和全岩地球化学分析的局限性限制了其深入研究。随着科学仪器技术的进步,单矿物的原位微区分析方法得以开发及应用,使得岩石学进入到更加微观和细致的研究阶段。
单矿物在测试之前,需进行样品的制备。通常,岩石经过碎样、初步分选后,在双目镜下挑选出单矿物,然后将单矿物制成环氧树脂靶,如重矿物锆石或磷灰石制成环氧树脂靶进行电子探针或激光剥蚀等测试。然而部分不符合测试要求的矿物单颗粒也可能被制在靶上,并且在靶上的矿物可能均不符合测试要求,这样既增加了额外的工作量又不利于测试。因此,在制靶之前对单矿物在显微镜下进行进一步的筛选十分有必要。
常规对矿物单颗粒的筛选主要是通过将一颗或数颗矿物颗粒放在显微镜载玻片上,在显微镜下进行观察,之后用钢针拨出符合要求的单矿物。例如部分学者对磷灰石中的熔融包裹体进行研究(王坤等,岩石学报,2013),该研究将含磷灰石的浅色辉长岩样品粉碎至60目,初步分选后得到磷灰石矿物单颗粒,然后在显微镜下按常规方法进一步筛选含有包裹体的磷灰石颗粒,之后将挑选的颗粒进行加热处理。这种常规在显微镜下筛选满足测试需要矿物的方法,存在以下几个问题:(1)矿物在载玻片上没有固定,因此在移动载玻片时矿物容易滑落;(2)如果单矿物数量较多时,例如几百颗,该方法耗时且不易操作。因此,一种高效的单矿物筛选方法是十分需要的。
发明内容:
本发明的目的是提供一种所需材料少、成本低廉、且流程简单、操作方便、高效挑选矿物单颗粒样品的方法,即在显微镜载玻片上安置和筛选矿物单颗粒样品的方法。
本发明的在显微镜载玻片上安置和筛选矿物单颗粒样品的方法,包括将矿物样品粉碎、初步分选得到矿物单颗粒,然后在显微镜下筛选矿物单颗粒得到满足测试使用的矿物单颗粒样品,其特征在于,所述的在显微镜下筛选矿物单颗粒得到矿物单颗粒样品是将多颗矿物单颗粒置于载玻片上,再将石蜡放置于矿物单颗粒周围,加热石蜡使其熔化并使矿物单颗粒浸到石蜡中后,用气流将矿物单颗粒吹散,待石蜡凝固后,将此载有矿物单颗粒的载玻片置于偏光显微镜下,对其进行观察,找到满足测试使用的矿物单颗粒样品,在另外一块载玻片上放置吸油纸,用细钢针将载玻片上筛选的矿物单颗粒样品挑取到吸油纸上,然后加热,使附着在矿物单颗粒样品上的石蜡熔化,将吸油纸上的矿物单颗粒样品取出,由此得到矿物单颗粒样品。
矿物单颗粒样品可以用于制靶,以备后续分析。
所述的将多颗矿物单颗粒置于载玻片筛选是将30~50颗矿物单颗粒置于载玻片上。
所述的用气流将矿物单颗粒吹散是用洗耳球将矿物单颗粒吹散,气流保持平缓,直到矿物单颗粒均匀铺开,且保证石蜡较薄且均匀,不能没过矿物单颗粒的一半高度。
所述的加热都可以将放置于温控台上的载玻片加热使石蜡熔化,加热温度可以调至65℃左右,使石蜡熔化,吸油纸上的石蜡会被吸油纸所吸附。
所述的矿物单颗粒样品是根据本领域的技术人员的常规知识,根据不同的矿物种类去筛选,其具体要求是本领域的常规知识。
本发明在显微镜载玻片上安置和筛选矿物单颗粒样品的方法,其原理是:选取的凝结剂石蜡具有白色半透明和较低熔点(47~64℃)的性质,因此不会阻挡矿物单颗粒在显微镜下的光路系统,且在石蜡熔点温度附近矿物不会遭到物理或化学性质的破坏。在近65℃下,石蜡呈液态,单颗粒矿物在液体中容易流动,因此洗耳球吹气能够让矿物单颗粒在载玻片上均匀分散开。其次,矿物单颗粒在液态石蜡中,当与载玻片接触面积最大时能量最低,而达到稳定状态,因此,理想情况下矿物单颗粒会呈现出一个晶面与载玻片接触的形式,这样矿物在显微镜下能够较好地反应其内部特征。另外,固态的石蜡具有硬度低的特点,在显微镜下,细钢针能够轻易将矿物单颗粒样品取下。筛选好的矿物单颗粒样品在吸油纸上加热,呈液态的石蜡较容易吸附在吸油纸上而从矿物单颗粒样品上脱离,这样,获得的矿物单颗粒样品为纯净的矿物单颗粒样品。
相比现有技术,本发明具有以下有益效果:
1、本发明利用石蜡将矿物单颗粒固定到载玻片上,避免了在显微镜下观察时矿物的滑动或脱落。
2、本发明一次将较多的矿物单颗粒固定到显微镜载玻片上以供挑选,极大地提高了挑选矿物的效率。
3、本发明所需材料少,成本低廉,且流程简单,操作方便,容易推广使用。
附图说明:
图1是在显微镜载玻片上安装矿物单颗粒的示意图;1–温控板,2–石蜡,3–载玻片,4–洗耳球。
图2是卸载矿物单颗粒样品的示意图;5–吸油纸。
具体实施方式:
以下实施例是对本发明的进一步说明,而不是对本发明的限制。
实施例1:以挑选有包裹体的锆石为例。
如图1和图2所示,本实施例的在显微镜载玻片上安置和筛选矿物单颗粒样品的方法包括以下步骤:
1、将采自山西省中条山地区的花岗岩,粉碎至40目,放入干净的淘洗盆中,将清水倒入该盆里,搅拌,沉淀1~2分钟,倒掉上部混有粉渣的水,重复5-6次,直到沉淀后的水变得清澈;接着用淘洗盘在清水中重力分选矿物,得到重矿物;待重矿物干燥后,用磁棒吸走有磁性矿物,保留无磁性的矿物;最后将无磁性的矿物在双目镜下挑选,初步挑选出锆石单矿物(矿物单颗粒)。
2、将显微镜载玻片3置于温控板1上,温度控制在65℃左右,将步骤1中挑选的锆石单矿物取30~50颗置于载玻片3上,用镊子刮取一小粒石蜡2置于锆石单矿物周围,待石蜡熔化,用洗耳球4向锆石单矿物吹气,气流保持平缓,直到矿物颗粒均匀铺开,需保证石蜡较薄且均匀,不能没过矿物颗粒的一半高度。
3、将步骤2中冷却的载玻片置于偏光显微镜下,对锆石单矿物进行观察,找到含有较大且清晰包裹体的锆石(矿物单颗粒样品)。
4、在步骤3的载玻片紧挨的位置,放置另一块空的载玻片,在该空的载玻片上放小块干净的吸油纸5,用细钢针将含有较大且清晰包裹体的锆石从步骤3中载玻片上的石蜡中挑出,置于吸油纸上。待矿物挑选完,将放置有吸油纸的载玻片放到温控台上,温度调至65℃左右,约10分钟左右,待液态石蜡全部吸附到吸油纸上,关闭温控台,将吸油纸上的含有较大且清晰包裹体的锆石样品取出制靶,以备后续分析。

Claims (4)

1.一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法,包括将矿物样品粉碎、初步分选得到矿物单颗粒,然后在显微镜下筛选得到满足测试使用的矿物单颗粒样品,其特征在于,所述的在显微镜下筛选矿物单颗粒得到矿物单颗粒样品是将多颗矿物单颗粒置于载玻片上,再将石蜡放置于矿物单颗粒周围,加热石蜡使其熔化并使矿物单颗粒浸到石蜡中后,用气流将矿物单颗粒吹散,待石蜡凝固后,将此载有矿物单颗粒的载玻片置于偏光显微镜下,对其进行观察,找到满足测试使用的矿物单颗粒样品,在另外一块载玻片上放置吸油纸,将载玻片上筛选的矿物单颗粒样品挑取到吸油纸上,然后加热,使附在矿物单颗粒样品上的石蜡熔化,将吸油纸上的矿物单颗粒样品取出,由此得到矿物单颗粒样品。
2.根据权利要求1所述的方法,其特征在于,所述的将多颗矿物单颗粒置于载玻片是将30~50颗矿物单颗粒置于载玻片上。
3.根据权利要求1所述的方法,其特征在于,所述的用气流将矿物单颗粒吹散是用洗耳球将矿物单颗粒吹散。
4.根据权利要求1所述的方法,其特征在于,所述的加热都可以将放置于温控台上的载玻片加热使石蜡熔化。
CN201610994558.5A 2016-11-11 2016-11-11 一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法 Expired - Fee Related CN106596546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610994558.5A CN106596546B (zh) 2016-11-11 2016-11-11 一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610994558.5A CN106596546B (zh) 2016-11-11 2016-11-11 一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法

Publications (2)

Publication Number Publication Date
CN106596546A CN106596546A (zh) 2017-04-26
CN106596546B true CN106596546B (zh) 2019-05-17

Family

ID=58591378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610994558.5A Expired - Fee Related CN106596546B (zh) 2016-11-11 2016-11-11 一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法

Country Status (1)

Country Link
CN (1) CN106596546B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11662564B2 (en) 2017-06-15 2023-05-30 Shenzhen Prs Limited Paraffin shield coating for microscope slide
WO2018228508A1 (en) * 2017-06-15 2018-12-20 Sunstone Scientific Limited. Paraffin shield coating for microscope slide

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568540A (zh) * 2014-12-24 2015-04-29 上海理工大学 一种宽粒度分布的标准颗粒固态样品的制备方法
CN105675364A (zh) * 2016-01-15 2016-06-15 中国地质科学院矿产资源研究所 一种锆石矿物颗粒透射样品的制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568540A (zh) * 2014-12-24 2015-04-29 上海理工大学 一种宽粒度分布的标准颗粒固态样品的制备方法
CN105675364A (zh) * 2016-01-15 2016-06-15 中国地质科学院矿产资源研究所 一种锆石矿物颗粒透射样品的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
攀枝花镁铁质层状岩体磷灰石中的熔融包裹体:岩浆不混熔的证据;王坤 等;《岩石学报》;20131231;第29卷(第10期);第3507页 *

Also Published As

Publication number Publication date
CN106596546A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
Peckhaus et al. A comparative study of K-rich and Na/Ca-rich feldspar ice-nucleating particles in a nanoliter droplet freezing assay
Korhonen et al. How long-lived is ultrahigh temperature (UHT) metamorphism? Constraints from zircon and monazite geochronology in the Eastern Ghats orogenic belt, India
Insley et al. Microscopy of ceramics and cements: including glasses, slags, and foundry sands
Weiss et al. Records of an ancient Martian magnetic field in ALH84001
Spear et al. Cathodoluminescence imaging and titanium thermometry in metamorphic quartz
CN106596546B (zh) 一种在显微镜载玻片上安置和筛选矿物单颗粒样品的方法
CN110062880B (zh) 通过受控样品蒸发制备无损冷冻载网
Baldwin et al. Age and duration of ultrahigh‐temperature metamorphism in the Anápolis–Itauçu Complex, Southern Brasília Belt, central Brazil–constraints from U–Pb geochronology, mineral rare earth element chemistry and trace‐element thermometry
CN101419223B (zh) 用于三维显微解剖的方法和装置
Ashworth Matrix textures in unequilibrated ordinary chondrites
Haus et al. Assessment of high purity quartz resources
JP2005516217A (ja) 循環している癌細胞の急速かつ効果的な単離のための方法および試薬
Bacon et al. Atomic spectrometry update–a review of advances in environmental analysis
CN105181783B (zh) 白云岩、石英岩型铂族矿床中铂钯金相态分析方法
CN107960118A (zh) 用于高分辨率电子显微镜的无损冷冻-网格制备台
Watling et al. The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to the analysis of selected sulphide minerals
CN112557429A (zh) 一种石墨矿石中全矿物定量测定方法及制样方法
Beydoun et al. A new multicomponent heterogeneous ice nucleation model and its application to Snomax bacterial particles and a Snomax–illite mineral particle mixture
CN106770278A (zh) 一种厘定砂岩储层中古成岩流体来源的方法
CN110596427A (zh) 一种在粉末颗粒上制备三维原子探针样品的方法
Brück et al. Single cells for forensic DNA analysis—from evidence material to test tube
Prameswara et al. Leaching behaviour and kinetic of light and heavy rare earth elements (REE) from zircon tailings in Indonesia
Kuehn et al. Tephra from Ice—A Simple Method to Routinely Mount, Polish, and Quantitatively Analyze Sparse Fine Particles
Schröder et al. Dwarf planet (1) Ceres surface bluing due to high porosity resulting from sublimation
RU94706U1 (ru) Тигельное устройство

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190517

Termination date: 20201111

CF01 Termination of patent right due to non-payment of annual fee