CN106588715B - 18f标记的航空煤油正电子显像剂及其制备方法 - Google Patents

18f标记的航空煤油正电子显像剂及其制备方法 Download PDF

Info

Publication number
CN106588715B
CN106588715B CN201610974874.6A CN201610974874A CN106588715B CN 106588715 B CN106588715 B CN 106588715B CN 201610974874 A CN201610974874 A CN 201610974874A CN 106588715 B CN106588715 B CN 106588715B
Authority
CN
China
Prior art keywords
pet imaging
imaging agent
marks
aviation kerosine
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610974874.6A
Other languages
English (en)
Other versions
CN106588715A (zh
Inventor
堵梦
赵敏
姚敏
齐雅楠
张航
张越淇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201610974874.6A priority Critical patent/CN106588715B/zh
Publication of CN106588715A publication Critical patent/CN106588715A/zh
Application granted granted Critical
Publication of CN106588715B publication Critical patent/CN106588715B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/63Esters of sulfonic acids
    • C07C309/72Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/73Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/001Acyclic or carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/26Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
    • C07C303/30Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reactions not involving the formation of esterified sulfo groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/10Different kinds of radiation or particles
    • G01N2223/108Different kinds of radiation or particles positrons; electron-positron annihilation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明提供了一种18F标记的航空煤油正电子显像剂及其制备方法,该正电子显像剂的结构式如式Ⅰ所示:其制备方法是以乙腈为溶剂,将BTE前体与[K+/222]18F混合物在氮气保护下加热反应制成。本发明的正电子显像剂能与航空煤油互溶,且不影响航空煤油的燃烧特性;可作为显像材料应用于无损检测领域。

Description

18F标记的航空煤油正电子显像剂及其制备方法
技术领域
本发明属于显像剂技术领域,具体涉及一种18F标记的航空煤油正电子显像剂及其制备方法。
背景技术
正电子是电子的反粒子,是人类发现的第一个反物质。利用正电子湮没研究凝聚态物质的缺陷和相变能得到许多有关缺陷种类、尺寸及其分布的详尽信息。正电子湮没技术能进行原位测量,测量过程中还可以改变样品的温度和其他条件,对于无损检测具有重要价值。目前正电子湮没技术主要应用于核化学、物理学和生物医学等领域,但对正电子的研究及技术成果仅限于生物医疗与材料微观结构领域,在无损检测领域尚为空白。
目前由回旋加速器产生的显像用正电子核素18F,13N,11C和15O等除18F具有109min的物理半衰期外,其余核素的物理半衰期都非常短,其中15O仅122s,所以18F有利于合成标记。氟的化学性质活泼,易将化合物氧化为氟化物。氟与有机化合物发生取代反应后形成有机氟化合物,由于C-F键的键能极高,有机氟化物有良好的表面活性、热稳定性、化学稳定性和抗氧化性。目前最常用的18F其化学性质类似于H和氢氧根OH,易于标记各种有机化合物,制成发射正电子的放射性物质。
在医疗领域,正电子湮没技术主要应用于正电子发射断层显像仪(PET),将发射正电子的放射性核素及其标记化合物引入体内后,应用PET对全身或局部脏器及组织进行断层显像,根据正电子核素的分布状态来反映脏器或组织的功能、代谢变化。应用正电子核素标记不同的代谢底物可以反映机体不同的代谢状况,应用较多的正电子核素显像剂有18F-FDG、18F- 脱氧葡萄糖等。
随着我国科技进步、国力增强,对高端装备复杂件的需求大大增加,同时对无损检测提出了新的课题:研究面向特殊需求的无损检测新理论、方法,实现对高端装备复杂件从生产加工到成品下线再到离线故障、在线运行状态的检测。2016年1月18日,美国OrbitalATK公司采用3D打印的高超音速发动机燃烧室成功在美国宇航局兰利研究中心通过了测试,如何在3D 打印过程中实时监测工艺流程、对打印出的燃烧室缺陷定位及燃烧过程的在线状态检测都是无损检测领域的新的难题。在进行发动机离线故障、在线运行状态检测时,并不能直接将核素溶液注入到发动机中,而是将正电子核素均匀地标记到载体溶剂(液态的航空煤油、汽油、柴油等),当载体溶剂注入到高端装备复杂件时会在其内部伴随着正电子的产生,可以采用正电子发射断层显像技术对其进行无损检测,而这种注入式正电子湮没γ光子3D成像无损检测方法具有穿透力强、成像精度高、可在高温、高压等恶劣环境开展等优势。
然而18F标记正电子示踪剂在无损检测领域应用很少,医学上则多是应用18F标记蛋白质、葡萄糖、氨基酸等,这些都是人体代谢所必须的物质,然而在工程应用中所用材料复杂多变,这种标记方式首先必须鉴定成分且通用性较低。
发明内容
解决的技术问题:本发明的目的是克服现有技术的不足而提供一种18F标记的航空煤油正电子显像剂及其制备方法,该显像剂能与航空煤油互溶,且不影响航空煤油的燃烧特性。
技术方案:一种18F标记的航空煤油正电子显像剂,其结构式如式Ⅰ所示:
上述18F标记的航空煤油正电子显像剂的制备方法,包括以下步骤:
步骤1,将H18F的H2 18O溶液导入QMA固相萃取柱,得到吸附有H18F的QMA固相萃取柱;
步骤2,用K222/K2CO3淋洗液洗脱步骤1的QMA固相萃取柱,所得洗脱液在氮气保护下蒸干溶剂后,再加入乙腈,在氮气保护下蒸干乙腈,得到[K+/222]18F混合物;
步骤3,将BTE前体的乙腈溶液与[K+/222]18F混合物混合,在氮气保护下加热反应;
步骤4,将反应产物冷却至室温,用C-18固相萃取柱分离纯化,得到正电子显像剂;
所述BTE前体的结构如式Ⅱ所示:
进一步地,步骤1中QMA固相萃取柱在导入H18F的H2 18O溶液前需先用0.5MNaHCO3溶液冲洗,再用超纯水冲洗。
进一步地,步骤3中反应温度为90℃。
上述18F标记的航空煤油正电子显像剂作为显像材料,在无损检测领域的应用。
有益效果:本发明的18F标记的航空煤油正电子显像剂能与航空煤油互溶,且不影响航空煤油的燃烧特性;可作为显像材料应用于无损检测领域。
附图说明
图1为18F标记的航空煤油正电子显像剂的制备方法流程图;
图2为灌注了含有实施例1的18F标记的航空煤油正电子显像剂的航空煤油的燃烧室的三视图成像;
图3为含有实施例1的18F标记的航空煤油正电子显像剂的航空煤油在燃烧时的火焰三视图成像。
具体实施方式
实施例1
(一)合成材料:
(1)无水乙腈:Sigma-Aldrich,USA
(2)K222:4,7,13,16,21,24一六氧-1,10-二氮双环[8,8,8]-二十六烷(4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8,8,8]-hexacosane),Aldrich,USA
(3)BTE前体:1,2-双甲苯磺酰氧基乙烷
(4)无水乙醚
(5)K2CO3
(6)四甲基铵(QMA)固相萃取柱:waters,USA
(7)Sep-Pak C-18固相萃取柱:waters,USA
合成原理:
(二)合成步骤:
1.先用10mL 0.5M NaHCO3冲洗QMA固相萃取柱,再用20mL超纯水冲洗;
2.将回旋加速器生产的含H18F的H2 18O溶液在氮气流输送下通过QMA固相萃取柱;
3.用1.5mL K222/K2CO3淋洗液将18F离子洗脱至反应管,在氮气流下加热器将混合物加热至105℃蒸干溶剂;
4.加入2mL无水乙腈,在氮气流下105℃蒸干溶剂,开启冷却风扇冷却反应管至50℃以下;
5.将10mg BTE前体溶于1mL无水乙腈后加入反应管,反应液在氮气流保护下90℃加热 10min,反应结束后冷却至室温;
6.用C-18固相萃取柱分离纯化产物,得到18F-BTE正电子显像剂。
(三)质控实验:
主要的目的是证实18F-BTE在煤油中是均匀分布的。
取一定量的18F-BTE混合到航空煤油,搅拌十分钟,得到可用于正电子发射断层显像的含18F的航空煤油。
假设煤油总活度为X,分别从溶液的上中下三层中各取出1/10体积煤油共三份,分别测量活度为Y1、Y2、Y3,三者之间相差不超过1%,同时检测Y(平均)与X/10相差不差过1%。 10min后再从溶液的上中下三层中各取出1/10体积煤油共三份,重复以上测量方法。满足该要求的可以认为是均匀分布的标有18F的航空煤油。
(四)本发明所述18F标记的18F-BTE正电子显像剂用作示踪材料的应用
取一定量的18F-BTE混合到航空煤油,搅拌十分钟,得到可用于正电子发射断层显像的含18F的航空煤油。
将均匀分布的标有18F的航空煤油灌注到石英玻璃煤油瓶中,点燃后将其放入到设计好的密闭燃烧室中,然后使用PET装置进行扫描,图像经过重建之后可以反映整个燃烧室内温度场分布、速度场分布、各燃烧产物的物质分布状况等,扫描结果如附图2所示;同时可以获取感兴趣区域的细节信息,附图3反映了航空煤油在燃烧时的火焰图像。
可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保护范围。

Claims (1)

1.如式Ⅰ18F标记的航空煤油正电子显像剂作为显像材料,在无损检测领域的应用,
CN201610974874.6A 2016-11-07 2016-11-07 18f标记的航空煤油正电子显像剂及其制备方法 Expired - Fee Related CN106588715B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610974874.6A CN106588715B (zh) 2016-11-07 2016-11-07 18f标记的航空煤油正电子显像剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610974874.6A CN106588715B (zh) 2016-11-07 2016-11-07 18f标记的航空煤油正电子显像剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106588715A CN106588715A (zh) 2017-04-26
CN106588715B true CN106588715B (zh) 2018-04-17

Family

ID=58589755

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610974874.6A Expired - Fee Related CN106588715B (zh) 2016-11-07 2016-11-07 18f标记的航空煤油正电子显像剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106588715B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108760787B (zh) * 2018-04-27 2020-02-18 南京航空航天大学 一种实现密闭腔体内喷雾形状检测和成像的系统及方法
CN113687404A (zh) * 2021-08-19 2021-11-23 南京航空航天大学 一种18f标记的气溶胶化正电子显像剂及其制备方法
CN113511989A (zh) * 2021-08-19 2021-10-19 南京航空航天大学 一种航空煤油正电子标记方法
CN114656329A (zh) * 2022-03-09 2022-06-24 南京航空航天大学深圳研究院 一种18f-十二烷正电子显像剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080274046A1 (en) * 2007-02-20 2008-11-06 Christian Prenant Radiolabelling
CN101585816A (zh) * 2008-05-20 2009-11-25 中国科学院上海应用物理研究所 一种苯磺酰胺类羟基衍生物及其中间体及制备方法和应用
CN102353880A (zh) * 2011-07-11 2012-02-15 云南电力试验研究院(集团)有限公司 电力开关类设备内部缺陷可视化无损检测方法
CN102675329A (zh) * 2012-06-05 2012-09-19 浙江大学 一种正电子发射断层显像剂及其制备方法
CN103254139A (zh) * 2012-02-17 2013-08-21 北京师范大学 新型18f标记4-氨基喹唑啉类衍生物及其制备方法和肿瘤pet显像应用
CN105153227A (zh) * 2015-07-04 2015-12-16 河南中医学院 一种[18f]-氟甲基三苯基膦盐及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080274046A1 (en) * 2007-02-20 2008-11-06 Christian Prenant Radiolabelling
CN101585816A (zh) * 2008-05-20 2009-11-25 中国科学院上海应用物理研究所 一种苯磺酰胺类羟基衍生物及其中间体及制备方法和应用
CN102353880A (zh) * 2011-07-11 2012-02-15 云南电力试验研究院(集团)有限公司 电力开关类设备内部缺陷可视化无损检测方法
CN103254139A (zh) * 2012-02-17 2013-08-21 北京师范大学 新型18f标记4-氨基喹唑啉类衍生物及其制备方法和肿瘤pet显像应用
CN102675329A (zh) * 2012-06-05 2012-09-19 浙江大学 一种正电子发射断层显像剂及其制备方法
CN105153227A (zh) * 2015-07-04 2015-12-16 河南中医学院 一种[18f]-氟甲基三苯基膦盐及其制备方法与应用

Also Published As

Publication number Publication date
CN106588715A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN106588715B (zh) 18f标记的航空煤油正电子显像剂及其制备方法
Cho Chiral perturbation theory for hadrons containing a heavy quark. The sequel
Chen et al. Effect of microbiological growth components for bacteria-based self-healing on the properties of cement mortar
Mohseni et al. Investigation of the role of nano-titanium on corrosion and thermal performance of structural concrete with macro-encapsulated PCM
Chakravarty et al. An electroamalgamation approach to separate 47Sc from neutron-activated 46Ca target for use in cancer theranostics
TW201201844A (en) Gallium-68 radioisotope generator and generating method thereof
Fonseca et al. Production of GMP-compliant clinical amounts of Copper-61 radiopharmaceuticals from liquid targets
Watanabe et al. X-ray CT imaging of vitrified glasses containing simulant radioactive wastes: structure and chemical reactions of glass beads and wastes in the cold cap
Damuka et al. Method to development of PET radiopharmaceutical for cancer imaging
Yang Fermionic dark matter through a light pseudoscalar portal: Hints from the DAMA results
CN108133794B (zh) 单分散超顺磁性纳米磁珠及其苯并二氮*类药物的检测应用
Wang et al. The influence of alkali-free shotcrete accelerators on early age hydration and property development within cement systems
Meng et al. Evaluating the impact of different positron emitters on the performance of a clinical PET/MR system
Bratteby et al. Fully automated GMP-compliant synthesis of [18F] FE-PE2I
CN113511989A (zh) 一种航空煤油正电子标记方法
Ali et al. An improved assay for 68Ga‐hydroxide in 68Ga‐DOTATATE formulations intended for neuroendocrine tumour imaging
Li et al. Calculations of two-neutrino double-β decay for f p g shell nuclei
Huang et al. Preparation and Experimental Study of Phase Change Materials for Asphalt Pavement
Xia et al. Synthesis and Characterization of a Novel Non-Isolated-Pentagon-Rule Isomer of Th@ C76: Th@ C 1 (17418)-C76
Matsarskaia Multivalent ions for tuning the phase behaviour of protein solutions
De Silva et al. Process validation, current good manufacturing practice production, dosimetry, and toxicity studies of the carbonic anhydrase IX imaging agent [111In] In‐XYIMSR‐01 for phase I regulatory approval
Clark et al. Evidence against solidification of a model neutron system
Ferlazzo et al. Space radiation and individual radiosensitivity-ANSTO CAS & Human Health in air beam experiments
Yalow et al. INS News Letter
Häusermann et al. The imaging and medical beamline is expanding

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180417

Termination date: 20191107

CF01 Termination of patent right due to non-payment of annual fee