CN106588524A - 一种高能量密度混合炸药及其制备方法 - Google Patents

一种高能量密度混合炸药及其制备方法 Download PDF

Info

Publication number
CN106588524A
CN106588524A CN201611180062.0A CN201611180062A CN106588524A CN 106588524 A CN106588524 A CN 106588524A CN 201611180062 A CN201611180062 A CN 201611180062A CN 106588524 A CN106588524 A CN 106588524A
Authority
CN
China
Prior art keywords
energy
powder
density
explosive
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611180062.0A
Other languages
English (en)
Other versions
CN106588524B (zh
Inventor
郑保辉
罗观
刘涛
黄勇
蔡忠展
郭朋林
肖春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemical Material of CAEP
Original Assignee
Institute of Chemical Material of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemical Material of CAEP filed Critical Institute of Chemical Material of CAEP
Priority to CN201611180062.0A priority Critical patent/CN106588524B/zh
Publication of CN106588524A publication Critical patent/CN106588524A/zh
Application granted granted Critical
Publication of CN106588524B publication Critical patent/CN106588524B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • C06B33/12Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being two or more oxygen-yielding compounds
    • C06B33/14Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide the material being two or more oxygen-yielding compounds at least one being an inorganic nitrogen-oxygen salt

Abstract

本发明公开了一种高能量密度混合炸药采用低熔点单质炸药:梯恩梯、2,4‑二硝基苯甲醚、3,4‑二硝基呋咱基氧化呋咱为粘结剂,质量百分比含量在5~30%;以RDX、HMX、CL‑20、TATB、NTO、NQ、LLM‑105或其混合物为主炸药,质量百分比含量在15~60%;以铝粉、锌粉、锆粉、改性铝粉、镁铝合金粉、硼铝合金粉、氢化铝、氢化镁为燃烧剂,质量百分比含量在15~40%;以高氯酸铵、硝酸铵、二硝酰胺铵为氧化剂,质量百分比含量在0~25%;铝热剂作为高密度高能量添加剂,质量百分比含量在5~50%。本发明制备得到的混合炸药具有较高的能量密度:密度≥2.0g/cm3;单位体积爆热≥16000J/g。

Description

一种高能量密度混合炸药及其制备方法
技术领域
本发明涉及一种炸药及其制备方法,具体涉及一种高能量密度混合炸药及其制备方法,属于含能材料技术领域。
背景技术
在军事战争中,武器的攻击毁伤与防护始终是军事科技发展的两大重要主题。随着科技的发展,金属材料的强度、韧性越来越高,装甲、壳体及其它外部防护越来越厚,许多军事目标转移到地下数十米至数百米的深处或山体内部,总体上防护手段越来越高,攻击毁伤的难度越来越大;因此,大口径的炮弹、大装药量导弹、航弹、水中兵器、温压武器、侵彻武器成为目前武器发展的重要方向。
对于大口径的炮弹、大装药量导弹、航弹、水中兵器、温压武器、侵彻武器来说,装药密度越大、单位能量越高,则装药量和毁伤威力越大;对于侵彻武器而言,提高装药密度和装药量,还可以提高侵彻深度,从而增强毁伤效果和爆炸能量的利用。目前传统的混合炸药,无论是梯恩梯(TNT)基的熔铸炸药还是高聚物粘结炸药(PBX炸药),它们的密度都难以超过2.00g/cm3,单位体积爆热难以超过16000J/cm3,装入到战斗部中,已经越来越难以满足武器战斗部装药的毁伤威力需求。
铝热剂泛指点燃时可以放出大量热的金属与氧化物的混合物或者复合物。传统铝热剂中氧化剂与还原剂的颗粒分离,导致其爆燃速度和能量释放速率缓慢,这限制了铝热剂的应用。但是当铝热剂的粒度从微米超细化到纳米级时,被称为超级铝热剂(superthermites)或亚稳态分子间复合物(metastable intermolecular composites,MIC)。纳米粒子提高了材料的分散性,能更好地发挥其比表面积大、比表面能高和比表面活性高等优点,这都使超级铝热剂具有极高的能量释放速度、能量转化效率和能量释放的高度可调性。超级铝热剂的反应速度和能量释放最大可比微米级铝热剂提高千倍以上,超级铝热剂在汽车安全气囊的气体发生剂、接触式爆炸发射药、环境友好型弹药雷管、电点火具,在燃烧弹、安全裂石、弹药销毁、火工药剂、微型推进器、含能表面涂层、纳米焊接和推进剂中都有重要应用。铝热剂已经作为添加剂应用于熔铸炸药(60RDX/40TNT,cyclotol,US 3297503)以提高爆热,也用于钻地武器的PBX混合炸药(29.2RDX/8.4粘结剂/11.5Al/50.9CuO,US20030015265),具有高能量密度的特点。
发明内容
本发明的目的之一在于提供一种高能量密度混合炸药及其制备方法。采用本发明方法制备的高能量密度混合炸药,具有较高的密度、爆热,能量密度高,可以用作大口径的炮弹、大装药量导弹、航弹、水中兵器、温压武器、侵彻武器的主装药。
本发明是这样实现的:
一种高能量密度混合炸药,具有如下配方组成:
如表1所示,本发明的高能量密度混合炸药,采用低熔点单质炸药:梯恩梯(TNT)、2,4-二硝基苯甲醚(DNAN)、3,4-二硝基呋咱基氧化呋咱(DNTF)为粘结剂,质量百分比含量在5~30%;以三硝基三氮杂环己烷(黑索今,RDX)、四硝基四氮杂环辛烷(奥克托今,HMX)、六硝基六氮杂异戊兹烷(CL-20)、三氨基三硝基苯(TATB)、3-硝基-1,2,4-三唑-5-酮(NTO)、硝基胍(NQ)、1-氧-2,6-二氨基-3,5-二硝基吡嗪(LLM-105)或其混合物为主炸药,质量百分比含量在15~60%;以铝粉、锌粉、锆粉、改性铝粉、镁铝合金粉、硼铝合金粉、氢化铝、氢化镁为燃烧剂,质量百分比含量在15~40%;以高氯酸铵(AP)、硝酸铵(AN)、二硝酰胺铵(ADN)为氧化剂,质量百分比含量在0~25%;铝热剂作为高密度高能量添加剂,质量百分比含量在5~50%。
表1高能量密度混合炸药配方组成
上述铝热剂由纳米铝粉和金属氧化物组成,其中纳米铝粉的粒度为50nm~1000nm,金属氧化物为氧化铁、四氧化三铁、氧化铜、氧化亚铜、氧化钼、三氧化钨、二氧化钨、氧化镍、氧化铅、二氧化锰中的一种或者多种的混合物,金属氧化物与纳米铝粉中活性铝的比例大于等于氧化还原化学反应计量比(具体指发生氧化还原化学反应的摩尔比,当反应物确定,则这个比例为一个定值;反应物不同,则这个比例不同)。
本发明还公开了上述高能量密度混合炸药的制备方法,具体包括:
①预混
按比例称取粘结剂、主炸药、燃烧剂、氧化剂和铝热剂,机械混合;
②热压
将炸药粉体混合物铺展在模具中,升温至低于粘接剂熔点30~40℃,抽真空,真空度≤—0.092MPa,机械加压20~150MPa,保压30~120min;
③后处理
按0.5~3MPa/s速率泄压,按0.1~1℃/min速率降温,最终降至常温常压,开模得到高能量密度混合炸药样品。
本发明制备得到的混合炸药具有较高的能量密度:密度≥2.0g/cm3;单位体积爆热≥16000J/g;可以用作大口径的炮弹、大装药量导弹、航弹、水中兵器、温压武器、侵彻武器的主装药。另外本发明提供的制备方法简单实用,具有较强的实用价值。
具体实施方式
以下是几项应用本发明技术方案的具体实例,它们仅作为例子给出,不视为对本发明的应用限制。凡操作条件、物质组成和比例的等同替换或等效交换,均在本发明的保护范围之内。
实施例1:添加Al/Fe2O3的TNT基高能量密度炸药
配方组成(质量百分比)如下:
炸药制备过程如下:
①预混
按比例称取TNT、RDX、Al和铝热剂Al/Fe2O3,机械混合;
②热压
将炸药粉体混合物铺展在模具中,升温至45℃(TNT熔点80℃),抽真空,真空度—0.094MPa,机械加压40MPa,保压120min;
③后处理
按2MPa/s速率泄压,按1℃/min速率降温,降至常温常压,开模,得到高能量密度混合炸药样品,其密度和爆热如表2所示。
实施例2:添加Al/CuO的DNAN基高能量密度炸药
配方组成(质量百分比)如下:
炸药制备过程如下:
①预混
按比例称取DNAN、NTO、AP、锆粉和铝热剂Al/CuO,机械混合;
②热压
将炸药粉体混合物铺展在模具中,升温至55℃(DNAN熔点96℃),抽真空,真空度—0.092MPa,机械加压80MPa,保压90min;
③后处理
按1MPa/s速率泄压,按0.5℃/s速率降温,降至常温常压,开模,得到高能量密度混合炸药样品,其密度和爆热如表2所示。
实施例3:添加Al/WO2的DNAN基高能量密度炸药
配方组成(质量百分比)如下:
炸药制备过程如下:
①预混
按比例称取DNAN、NTO、RDX、铝粉和铝热剂Al/WO2,机械混合;
②热压
将炸药粉体混合物铺展在模具中,升温至60℃(DNAN熔点96℃),抽真空,真空度—0.092MPa,机械加压80MPa,保压90min;
③后处理
按0.8MPa/s速率泄压,按0.5℃/s速率降温,降至常温常压,开模,得到高能量密度混合炸药样品,其密度和爆热如表2所示。
实施例4:添加Al/MoO3的DNTF基高能量密度炸药
配方组成(质量百分比)如下:
炸药制备过程如下:
①预混
按比例称取DNTF、TATB、NQ、镁铝合金粉和铝热剂Al/MoO3,机械混合;
②热压
将炸药粉体混合物铺展在模具中,升温至70℃(DNTF熔点110℃),抽真空,真空度—0.094MPa,机械加压100MPa,保压60min;
③后处理
按0.5MPa/s速率泄压,按0.3℃/s速率降温,降至常温常压,开模,得到高能量密度混合炸药样品,其密度和爆热如表2所示。
表2高能量密度炸药性能
尽管这里参照本发明的解释性实施例对本发明进行了描述,上述实施例仅为本发明较佳的实施方式,本发明的实施方式并不受上述实施例的限制,应该理解,本领域技术人员可以设计出很多其他的修改和实施方式,这些修改和实施方式将落在本申请公开的原则范围和精神之内。

Claims (3)

1.一种高能量密度混合炸药,其特征在于具有如下配方组成:
采用低熔点单质炸药:梯恩梯、2,4-二硝基苯甲醚、3,4-二硝基呋咱基氧化呋咱为粘结剂,质量百分比含量在5~30%;以三硝基三氮杂环己烷、四硝基四氮杂环辛烷、六硝基六氮杂异戊兹烷、三氨基三硝基苯、3-硝基-1,2,4-三唑-5-酮、硝基胍、1-氧-2,6-二氨基-3,5-二硝基吡嗪或其混合物为主炸药,质量百分比含量在15~60%;以铝粉、锌粉、锆粉、改性铝粉、镁铝合金粉、硼铝合金粉、氢化铝、氢化镁为燃烧剂,质量百分比含量在15~40%;以高氯酸铵、硝酸铵、二硝酰胺铵为氧化剂,质量百分比含量在0~25%;铝热剂作为高密度高能量添加剂,质量百分比含量在5~50%。
2.根据权利要求1所述高能量密度混合炸药,其特征在于:
所述铝热剂由纳米铝粉和金属氧化物组成,其中纳米铝粉的粒度为50nm~1000nm,金属氧化物为氧化铁、四氧化三铁、氧化铜、氧化亚铜、氧化钼、三氧化钨、二氧化钨、氧化镍、氧化铅、二氧化锰中的一种或者多种的混合物,金属氧化物与纳米铝粉中活性铝的比例大于等于氧化还原化学反应计量比。
3.权利要求1或2所述高能量密度混合炸药的制备方法,其特征在于包括:
①预混
按比例称取粘结剂、主炸药、燃烧剂、氧化剂和铝热剂,机械混合;
②热压
将炸药粉体混合物铺展在模具中,升温至低于粘接剂熔点30~40℃,抽真空,真空度≤—0.092MPa,机械加压20~150MPa,保压30~120min;
③后处理
按0.5~3MPa/s速率泄压,按0.1~1℃/min速率降温,最终降至常温常压,开模得到高能量密度混合炸药样品。
CN201611180062.0A 2016-12-19 2016-12-19 一种高能量密度混合炸药及其制备方法 Active CN106588524B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611180062.0A CN106588524B (zh) 2016-12-19 2016-12-19 一种高能量密度混合炸药及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611180062.0A CN106588524B (zh) 2016-12-19 2016-12-19 一种高能量密度混合炸药及其制备方法

Publications (2)

Publication Number Publication Date
CN106588524A true CN106588524A (zh) 2017-04-26
CN106588524B CN106588524B (zh) 2018-08-14

Family

ID=58601840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611180062.0A Active CN106588524B (zh) 2016-12-19 2016-12-19 一种高能量密度混合炸药及其制备方法

Country Status (1)

Country Link
CN (1) CN106588524B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512994A (zh) * 2017-08-15 2017-12-26 中国工程物理研究院化工材料研究所 3‑硝基‑1,2,4‑三唑‑5‑酮纳米多孔炸药及其制备方法
CN108191590A (zh) * 2018-01-23 2018-06-22 中国工程物理研究院化工材料研究所 一种含能硼粉及其制备方法
CN108623424A (zh) * 2018-05-04 2018-10-09 北京理工大学 一种添加高活性Ti/2B纳米粉体材料的炸药及其制备方法
CN108840784A (zh) * 2018-08-08 2018-11-20 山西师范大学 一种耐热含能材料及其制备方法
CN108947753A (zh) * 2018-08-08 2018-12-07 山西师范大学 一种抗高温高能量材料及其制备方法
CN112266806A (zh) * 2020-09-30 2021-01-26 华中科技大学 具有燃烧增压效应的金属燃料及其应用和制备方法
CN113376208A (zh) * 2021-06-09 2021-09-10 四川弘博新材科技股份有限公司 钼在提升含硼的含能材料反应性能中的应用
CN116283454A (zh) * 2023-03-30 2023-06-23 中国工程物理研究院化工材料研究所 一种微纳米复合铝粉颗粒、成粒方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297503A (en) * 1965-09-21 1967-01-10 Paul O Hoffmann Cyclotol and thermite explosive composition
WO2002085816A2 (en) * 2001-04-25 2002-10-31 Lockheed Martin Corporation Energy dense explosives
CN103980073A (zh) * 2014-04-30 2014-08-13 北京理工大学 一种含氢化铈高热量炸药的制备方法
CN105315114A (zh) * 2014-06-10 2016-02-10 湖北航天化学技术研究所 一种浇注型叠氮基高聚物粘结炸药及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3297503A (en) * 1965-09-21 1967-01-10 Paul O Hoffmann Cyclotol and thermite explosive composition
WO2002085816A2 (en) * 2001-04-25 2002-10-31 Lockheed Martin Corporation Energy dense explosives
CN103980073A (zh) * 2014-04-30 2014-08-13 北京理工大学 一种含氢化铈高热量炸药的制备方法
CN105315114A (zh) * 2014-06-10 2016-02-10 湖北航天化学技术研究所 一种浇注型叠氮基高聚物粘结炸药及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
罗庆平: "Al/Fe2O3-RDX纳米复合物的反应特性研究", 《中国博士学位论文全文数据库工程科技I辑》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107512994A (zh) * 2017-08-15 2017-12-26 中国工程物理研究院化工材料研究所 3‑硝基‑1,2,4‑三唑‑5‑酮纳米多孔炸药及其制备方法
CN107512994B (zh) * 2017-08-15 2019-06-21 中国工程物理研究院化工材料研究所 3-硝基-1,2,4-三唑-5-酮纳米多孔炸药及其制备方法
CN108191590A (zh) * 2018-01-23 2018-06-22 中国工程物理研究院化工材料研究所 一种含能硼粉及其制备方法
CN108623424A (zh) * 2018-05-04 2018-10-09 北京理工大学 一种添加高活性Ti/2B纳米粉体材料的炸药及其制备方法
CN108623424B (zh) * 2018-05-04 2020-08-14 北京理工大学 一种添加高活性Ti/2B纳米粉体材料的炸药及其制备方法
CN108840784A (zh) * 2018-08-08 2018-11-20 山西师范大学 一种耐热含能材料及其制备方法
CN108947753A (zh) * 2018-08-08 2018-12-07 山西师范大学 一种抗高温高能量材料及其制备方法
CN112266806A (zh) * 2020-09-30 2021-01-26 华中科技大学 具有燃烧增压效应的金属燃料及其应用和制备方法
CN113376208A (zh) * 2021-06-09 2021-09-10 四川弘博新材科技股份有限公司 钼在提升含硼的含能材料反应性能中的应用
CN113376208B (zh) * 2021-06-09 2023-04-25 四川弘博新材科技股份有限公司 钼在提升含硼的含能材料反应性能中的应用
CN116283454A (zh) * 2023-03-30 2023-06-23 中国工程物理研究院化工材料研究所 一种微纳米复合铝粉颗粒、成粒方法及其应用

Also Published As

Publication number Publication date
CN106588524B (zh) 2018-08-14

Similar Documents

Publication Publication Date Title
CN106588524B (zh) 一种高能量密度混合炸药及其制备方法
Akhavan The chemistry of explosives 4E
US8075715B2 (en) Reactive compositions including metal
Yen et al. Reactive metals in explosives
CN105753616B (zh) 基于纳米Al/MxOy/氧化剂的含能破片
US4331080A (en) Composite high explosives for high energy blast applications
US6679960B2 (en) Energy dense explosives
CA2541174C (en) Improvements in and relating to oil well perforators
JPH08508972A (ja) インフレータのガス発生器のための発火組成物
US10766832B1 (en) Nano-enhanced explosive material
US20050199323A1 (en) Reactive material enhanced munition compositions and projectiles containing same
US10415938B2 (en) Propellant
CN102603442B (zh) 一种安全环保型起爆药替代物及制备方法
CN112479795A (zh) 一种含硼炸药及其制备方法
JP2003104789A (ja) 安全点火器
US8092623B1 (en) Igniter composition, and related methods and devices
CN103980073A (zh) 一种含氢化铈高热量炸药的制备方法
CN107935799A (zh) 基于静电喷雾法制备的钝感起爆药及其方法
DeLuca Innovative solid formulations for rocket propulsion
EP0487472A1 (en) Method for increasing the effect of high-energy explosives mixtures, and explosives mixtures produced in accordance with this method
CN112592246B (zh) 一种不敏感炸药
Kasztankiewicz et al. Application and properties of aluminum in rocket propellants and pyrotechnics.
Talawar et al. Studies on nickel hydrazinium nitrate (NHN) and bis-(5-nitro-2H tetrazolato-N 2) tetraamino cobalt (III) perchlorate (BNCP): Potential lead-free advanced primary explosives
US3742859A (en) Explosive charge
CN108623424B (zh) 一种添加高活性Ti/2B纳米粉体材料的炸药及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant